Filling the gap in the GUNS: the solar neutrino flux at keV energies

6th Symposium on Neutrinos and Dark Matter in Nuclear Physics (NDM18), Daejeon, South Korea
June 14, 2018
Edoardo Vitagliano
edovita@mpp.mpg.de
Max Planck Institute for Physics, Munich

Based on arXiv:1708.02248 w/ J.Redondo and G.Raffelt
What I am going to discuss

Weakly interactive, low mass particles (like neutrons or BSM particles, e.g. axions) can be produced in stars.

MeV Neutrinos produced in the Sun are a signal for solar physics studies and background for dark matter searches.
What I am going to discuss

Weakly interactive, low mass particles (like neutrinos or BSM particles, e.g. axions) can be produced in stars

MeV Neutrinos produced in the Sun are a signal for solar physics studies and background for dark matter searches

THIS IS TRUE ALSO AT keV ENERGIES
Outline

What
• Introduction to the Grand Unified Neutrino Spectrum
• Filling the gap: keV neutrinos from the Sun

Why
• New window on solar physics
• Background to keV mass sterile neutrinos

How
• Fun with thermal physics!

Featuring concepts useful for early universe cosmology, dark matter etc.
THE GRAND UNIFIED PHOTON SPECTRUM

(The diffuse extragalactic background spectrum at all energies)

THE GRAND UNIFIED PHOTON SPECTRUM

(The diffuse extragalactic background spectrum at all energies)

in the multi-messenger astronomy era...
THE GRAND UNIFIED NEUTRINO SPECTRUM (guns)

Spread the meme!
THE GRAND UNIFIED NEUTRINO SPECTRUM (guns)
THE GRAND UNIFIED NEUTRINO SPECTRUM (guns)
Is there a source for keV neutrinos?
Yes! Directly from our domestic star...

...keV neutrinos
Neutrino Solar production

Nuclear processes:
• well known
• pp chain, CNO cycles etc.

Thermal processes:
• less analysed
• processes involving mostly photons and/or electrons

\[e(p_1) \quad \nu(k_1) \quad \bar{\nu}(k_2) \quad \gamma(k) \quad e(p_2) \]
Neutrino Solar production

Nuclear processes:
- well known
- pp chain, CNO cycles etc.

Thermal processes:
- less analysed
- processes involving mostly photons and/or electrons

!!!(See also Haxton&Lin, arXiv:nucl-th/0006055)
An aside: beyond the WIMP paradigm

WIMPs searches are a success (*WIMP-Moore’s Law*: factor of 10 every 6.5 years!)

Lots of discussions about several dark matter candidates (from axions to MACHOs…)

Time to discuss the possible background to the detection of these candidates
An aside: beyond the WIMP paradigm

WIMPs searches are a success (*WIMP-Moore’s Law*: factor of 10 every 6.5 years!)

Lots of discussions about several dark matter candidates (from axions to MACHOs…)

Time to discuss the possible background to the detection of these candidates

ALPs, keV sterile neutrinos etc.

Superheavy dark matter etc.

e.g. arXiv:1507.01000
S.Boucenna, M.Chianese, G.Mangano, G.Miele, S.Morisi, O.Pisanti, E.V.

arXiv:1601.02934
M.Chianese, G.Miele, S.Morisi, E.V.
Sterile neutrino dark matter

- Gives mass to neutrinos
- With mass above 0.4 keV no Tremaine-Gunn bound
- Solves the cusp-core problem

A White Paper on keV sterile neutrino Dark Matter
Editors: M. Drewes, T. Lasserre, A. Merle and S. Mertens

arXiv:1602.04816

A very good candidate!
And now: why

We have a “What”, computing (and detecting…) the neutrino flux produced in the Sun at keV energies. Why is it interesting?
And now: why

We have a “What”, computing (and detecting…) the neutrino flux produced in the Sun at keV energies. Why is it interesting?

- Why 1: background of keV-mass sterile neutrino

http://icecube.wisc.edu
And now: why

We have a “What”, computing (and detecting…) the neutrino flux produced in the Sun at keV energies. Why is it interesting?

- Why 1: background of keV-mass sterile neutrino
- Why 2: new window on solar physics
And now: why

We have a “What”, computing (and detecting…) the neutrino flux produced in the Sun at keV energies. Why is it interesting?

- **Why 1**: background of keV-mass sterile neutrino
- **Why 2**: new window on solar physics
- aka the signal of today is the background of tomorrow (or vice versa)
WHY: ✓
WHY: ✓

but... how?
How - the ABCD processes

- Atomic recombination (fb) and deexcitation (bb)
- Bremsstrahlung (ff)
- Compton process
- Decay of a plasmon

Let's start with this one!
Good old weak interaction in the Fermi interaction limit

All previously shown processes are mediated by the interaction

$$\mathcal{L}_{\text{int}} = \frac{G_F}{\sqrt{2}} \bar{\psi}_e \gamma^\mu (C_V - C_A \gamma_5) \psi_e \bar{\psi}_\nu \gamma^\mu (1 - \gamma_5) \psi_\nu$$

$$C_V = \frac{1}{2} (4 \sin \Theta_W + 1) \quad \text{and} \quad C_A = +\frac{1}{2} \quad \text{for} \quad \nu_e,$$

$$C_V = \frac{1}{2} (4 \sin \Theta_W - 1) \quad \text{and} \quad C_A = -\frac{1}{2} \quad \text{for} \quad \nu_\mu \text{ and } \nu_\tau$$

$$C_{V}^2 = 0.9263 \quad \text{for} \quad \nu_e \bar{\nu}_e \quad \text{and} \quad C_{V}^2 = 0.0014 \quad \text{for} \quad \nu_{\mu,\tau} \bar{\nu}_{\mu,\tau}$$

$$C_{A}^2 = \frac{1}{4}$$

(different flavors, different vector couplings)
Plasmon decay to BSM particles

- It's different from Compton scattering! It's the photon gaining mass from the scattering.
- The photon in the medium has nontrivial dispersion relation.

\[\omega^2 - k^2 = \Pi(k) \]
Plasmon decay to BSM particles

- It's different from Compton scattering! It's the photon gaining mass from the scattering
- The photon in the medium has nontrivial dispersion relation

\[\omega^2 - k^2 = \Pi(k) \]
Plasmon decay to BSM particles

- It's different from Compton scattering! It's the photon gaining mass from the scattering
- The photon in the medium has nontrivial dispersion relation

\[\omega^2 - k^2 = \Pi(k) \]

- In this way, you produce e.g. mini charged particles in stars

Stars are laboratories of particle physics!

Vinyoles and Vogel, arXiv:1511.01122v2
More generally: Raffelt, Phys.Rept. 198 (1990) 1-113
Plasmon decay with neutrinos

- WE DON’T NEED BSM TO OBSERVE PHOTON DECAY!
- With neutrinos it’s the same, but we need a thermal loop (the medium as spectator)

\[\omega^2 = \frac{4\pi \alpha n_e}{m_e} \]

\[\omega^2 - k^2 = \Pi(k) \]

\[\omega^2 \bigg|_T = \omega_p^2 \left(1 + \frac{k^2}{\omega_p^2 + k^2/m_e} \right) + k^2 \quad \text{and} \quad \omega^2 \bigg|_L = \omega_p^2 \left(1 + \frac{3k^2}{\omega_p^2 m_e} \right) \]

\[|M_{\gamma \nu \bar{\nu}}|^2 = \frac{C_V^2 G_F^2}{8 \pi \alpha} Z_k \Pi_k^{2} \epsilon^*_\nu \epsilon_\nu N^{\mu \nu} \]

\[N^{\mu \nu} = 8 \left(k_1^\mu k_2^\nu + k_1^\nu k_2^\mu - k_1 \cdot k_2 g^{\mu \nu} + i \epsilon^{\alpha \beta \mu \nu} k_1^\alpha k_2^\beta \right) \]

- In the end

\[\frac{d\dot{n}_\nu}{d\omega_\nu} \bigg|_L = \int \frac{d^3 k}{(2\pi)^3} \frac{\Gamma_{\nu}(\omega_\nu)}{e^{\omega_\nu/T} - 1} \]

\[\frac{d\dot{n}_\nu}{d\omega_\nu} \bigg|_T = \int \frac{d^3 k}{(2\pi)^3} \frac{2 \Gamma_T g_T(\omega_\nu)}{e^{\omega_\nu/T} - 1} \]

Statistical physics: solar model Saclay+GS98
(a theoretical description of the Sun which match initial conditions and today observations)
Plasmon decay with neutrinos

It seems relevant!
The ABCD processes in general

- Write down the term in the Boltzmann equation due to the specific process
- Account for correlation effects
- Do it for the all processes
The ABCD processes in general

- Write down the term in the Boltzmann equation due to the specific process
- Account for correlation effects
- Do it for all processes

\(o(10\%) \) effects, not today
The ABCD processes in general

- Write down the term in the Boltzmann equation due to the specific process
- Account for **correlation effects**
- Do it for all processes
- Example: bremsstrahlung

\[\hat{n}_\nu = n_Z \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} f_1(1-f_2) \sum_{s_1,s_2} |\mathcal{M}|^2 \frac{2\pi\delta(E_1 - E_2 - \omega)}{(2m_e)^2 2\omega_1 2\omega_2} \]

\[e(p_1) \rightarrow e(p_2) \]

\[\bar{\nu}(k_2) \rightarrow \bar{\nu}(k_1) \]

\[q \rightarrow Z \]
The ABCD processes in general

- Write down the term in the Boltzmann equation due to the specific process
- Account for correlation effects
- Do it for all processes
- Example: bremsstrahlung

\[\dot{n}_\nu = n_Z \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} \frac{d^3k_1}{(2\pi)^3} \frac{d^3k_2}{(2\pi)^3} \left(f_1(1 - f_2) \right) \frac{\sum_{s_1,s_2} |\mathcal{M}|^2}{(2m_e)^2 2\omega_1 2\omega_2} 2\pi \delta(E_1 - E_2 - \omega) \]

Statistical physics: solar model (Saclay+GS98 & OP)
Particle physics
Long wavelength approximation
Bremsstrahlung in terms of structure function

Structure function (encoding medium properties)

\[
S(\omega) = \frac{(4\pi)^2}{(2m_e)^2 n_e} \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} f_1(1 - f_2) \frac{1}{q^2} 2\pi \delta(E_1 - E_2 - \omega)
\]

\[
\frac{dn_{\nu}}{d\omega_{\nu}} = n_Z n_e \frac{8 Z^2 \alpha^2}{3} \left(\frac{G_F}{\sqrt{2}} \right)^2 \frac{1}{3\pi^4} \int_{\omega_{\nu}}^{\infty} d\omega S(\omega) \frac{\omega_{\nu}^2(\omega - \omega_{\nu})^2}{\omega^4}
\]

\[
\times \left[C_V^2 (3\omega^2 - 2\omega_{\nu} + 2\omega_{\nu}^2) + 2C_A^2 (3\omega^2 - 5\omega_{\nu} + 5\omega_{\nu}^2) \right]
\]

\[
\frac{dn_{\gamma}}{d\omega} = n_Z n_e \frac{8 Z^2 \alpha^2}{3} \frac{\alpha}{\pi} \frac{S(\omega)}{\omega}
\]

\[
\frac{dn_{\nu}}{d\omega_{\nu}} = \frac{G_F^2}{6\pi^3 \alpha} \int_{\omega_{\nu}}^{\infty} d\omega \left(\frac{dn_{\gamma}}{d\omega} \right) \frac{\omega_{\nu}^2(\omega - \omega_{\nu})^2}{\omega^3}
\]

\[
\times \left[C_V^2 (3\omega^2 - 2\omega_{\nu} + 2\omega_{\nu}^2) + 2C_A^2 (3\omega^2 - 5\omega_{\nu} + 5\omega_{\nu}^2) \right]
\]
Bremsstrahlung in terms of structure function

Structure function (encoding medium properties)

\[
S(\omega) = \frac{(4\pi)^2}{(2m_e)^2} \frac{1}{n_e} \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} f_1(1 - f_2) \frac{1}{q^2} 2\pi \delta(E_1 - E_2 - \omega)
\]

\[
\frac{d\hat{n}_\nu}{d\omega_\nu} = n_Z n_e \frac{8 Z^2 \alpha^2}{3} \left(\frac{G_F}{\sqrt{2}} \right)^2 \frac{1}{3\pi^4} \int_{\omega_\nu}^\infty \! d\omega \, S(\omega) \frac{\omega_\nu^2 (\omega - \omega_\nu)^2}{\omega^4}
\]

\[
\times \left[C_V^2 \left(3\omega^2 - 2\omega \omega_\nu + 2\omega_\nu^2 \right) + 2C_A^2 \left(3\omega^2 - 5\omega \omega_\nu + 5\omega_\nu^2 \right) \right]
\]

\[
\frac{d\hat{n}_\gamma}{d\omega} = n_Z n_e \frac{8 Z^2 \alpha^2}{3} \frac{\alpha}{\pi} \frac{S(\omega)}{\omega}
\]

\[
\frac{d\hat{n}_\nu}{d\omega_\nu} = \frac{G_F^2}{6\pi^3 \alpha} \int_{\omega_\nu}^\infty \! d\omega \left(\frac{d\hat{n}_\gamma}{d\omega} \right) \frac{\omega_\nu^2 (\omega - \omega_\nu)^2}{\omega^3}
\]

\[
\times \left[C_V^2 \left(3\omega^2 - 2\omega \omega_\nu + 2\omega_\nu^2 \right) + 2C_A^2 \left(3\omega^2 - 5\omega \omega_\nu + 5\omega_\nu^2 \right) \right]
\]
Bremsstrahlung in terms of structure function

Structure function (encoding medium properties)

\[S(\omega) = \frac{(4\pi)^2}{(2m_e)^2} \frac{1}{n_e} \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} f_1(1 - f_2) \frac{1}{q^2} \frac{1}{2\pi} \delta(E_1 - E_2 - \omega) \]

\[\frac{d\hat{n}_\nu}{d\omega_\nu} = n_Z n_e \frac{8 Z^2 \alpha^2}{3} \left(\frac{G_F}{\sqrt{2}} \right)^2 \frac{1}{3\pi^4} \int_{\omega_\nu}^\infty d\omega S(\omega) \frac{\omega^2(\omega - \omega_\nu)^2}{\omega^4} \]

\[\times \left[C_V^2 \left(3\omega^2 - 2\omega \omega_\nu + 2\omega_\nu^2 \right) + 2C_A^2 \left(3\omega^2 - 5\omega \omega_\nu + 5\omega_\nu^2 \right) \right] \]

\[\frac{d\hat{n}_\gamma}{d\omega} = n_Z n_e \frac{8 Z^2 \alpha^2}{3} \frac{\alpha S(\omega)}{\pi} \]

\[\frac{d\hat{n}_\nu}{d\omega_\nu} = \frac{G_F^2}{6\pi^3 \alpha} \int_{\omega_\nu}^\infty d\omega \left(\frac{d\hat{n}_\gamma}{d\omega} \right) \frac{\omega^2(\omega - \omega_\nu)^2}{\omega^3} \]

\[\times \left[C_V^2 \left(3\omega^2 - 2\omega \omega_\nu + 2\omega_\nu^2 \right) + 2C_A^2 \left(3\omega^2 - 5\omega \omega_\nu + 5\omega_\nu^2 \right) \right] \]
Bremsstrahlung in terms of structure function

Structure function (encoding medium properties)

\[
S(\omega) = \frac{(4\pi)^2}{(2m_e)^2} \frac{1}{n_e} \int \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} f_1(1 - f_2) \frac{1}{q^2} 2\pi \delta(E_1 - E_2 - \omega)
\]

\[
\frac{d\dot{n}_\nu}{d\omega_\nu} = n_Z n_e \frac{8}{3} \frac{Z^2 \alpha^2}{\sqrt{2}} \left(\frac{G_F}{\sqrt{2}} \right)^2 \frac{1}{3\pi^4} \int_{\omega_\nu}^{\infty} d\omega S(\omega) \frac{\omega^2(\omega - \omega_\nu)^2}{\omega^4}
\]

\[
\times \left[C_V^2 (3\omega^2 - 2\omega_\nu + 2\omega_\nu^2) + 2C_A^2 (3\omega^2 - 5\omega_\nu + 5\omega_\nu^2) \right]
\]

\[
\frac{d\dot{n}_\gamma}{d\omega} = n_Z n_e \frac{8}{3} \frac{Z^2 \alpha^2}{\sqrt{2}} \frac{\alpha}{\pi} \frac{S(\omega)}{\omega}
\]

\[
\frac{d\dot{n}_\nu}{d\omega_\nu} = \frac{G_F^2}{6\pi^3 \alpha} \int_{\omega_\nu}^{\infty} d\omega \frac{d\dot{n}_\gamma}{d\omega} \frac{\omega^2(\omega - \omega_\nu)^2}{\omega^3}
\]

\[
\times \left[C_V^2 (3\omega^2 - 2\omega_\nu + 2\omega_\nu^2) + 2C_A^2 (3\omega^2 - 5\omega_\nu + 5\omega_\nu^2) \right]
\]

\[\nu\text{ flux in terms of the photon flux}\]
Atomic processes

- A-processes are difficult (lot of atomic physics)
- But long wavelength approximation + detailed balance principle
- We can use photon opacities!
- We can take advantage from stars’ axion and photon production calculation (axial current and vector current)

The Opacity Project - The Iron Project

The names Opacity Project (OP) and Iron Project (OP) refer to an international collaboration that was formed in 1984 to calculate the extensive atomic data required to estimate stellar envelope opacities and to compute Rosseland mean opacities and other related quantities. It

Neutrino emission rate as a function of photon absorption rate

see also J. Redondo, arXiv:1310.0823, same approach but for axions
ABCD processes to be multiplied by C_V^2 and C_A^2
Total flux on Earth - with oscillation

Flux of mass eigenstates, no matter effect for keV neutrinos

Matter potential

\[\Delta V = \sqrt{2} G_F n_e = 7.6 \times 10^{-12} \text{ eV} \]

\[\omega_{\text{osc}} = \frac{\Delta m^2}{2E} = 3.8 \times 10^{-8} \frac{\text{eV}}{E_{\text{keV}}} \]

\[\omega_{\text{osc}} = 1.25 \times 10^{-3} \frac{\text{eV}}{E_{\text{keV}}} \]

Solar

Atmospheric

\[E_{\text{keV}} = \frac{E}{\text{keV}} \]

Flux of mass eigenstates, no matter effect for keV neutrinos to be seen in a detector
Summary

• For energies smaller than few keV, the dominant source is the Sun via thermal processes (ABCD)
Summary

- For energies smaller than few keV, the dominant source is the Sun via thermal processes (ABCD)
- A new window on solar physics
Summary

• For energies smaller than few keV, the dominant source is the Sun via thermal processes (ABCD)
• A new window on solar physics
• Background to sterile neutrinos direct detection experiments
Summary

• For energies smaller than few keV, the dominant source is the Sun via thermal processes (ABCD)
• A new window on solar physics
• Background to sterile neutrinos direct detection experiments
• With the same techniques: effective masses, WISPs astrophysical bounds and much more
Summary

• For energies smaller than few keV, the dominant source is the Sun via thermal processes (ABCD)
• A new window on solar physics
• Background to sterile neutrinos direct detection experiments
• With the same techniques: effective masses, WISPs astrophysical bounds and much more

Thank you!
Backup slides
Thermal physics: a lesson on star cooling

Weakly interactive, low mass particles (like \textit{neutrinos} or axions) contribute to the energy loss (or transfer) in stars
Thermal physics: a lesson on star cooling

Weakly interactive, low mass particles (like \textit{neutrinos} or axions) contribute to the energy loss (or transfer) in stars.

Quite intuitive: inside a star, you have many interactions that produce particles. Either they interact strongly enough (affecting energy transport) or they don’t (energy loss).

The combination of four protons and two electrons can occur essentially only in two ways. The first mechanism starts with the combination of two protons to form a deuteron with positron emission, \textit{viz.}

\begin{equation}
H + H = D + e^+.
\end{equation}

The deuteron is then transformed into He^4 by further capture of protons; these captures occur very rapidly compared with process (1). The second mechanism uses carbon and nitrogen as catalysts, according to the chain reaction

\begin{align}
C^{12} + H &= N^{13} + \gamma, \\
N^{13} + H &= C^{14} + \gamma, \\
C^{14} + H &= N^{14} + \gamma, \\
N^{14} + H &= O^{15} + \gamma, \\
O^{15} + H &= C^{16} + \text{He}^4.
\end{align}
Weakly interactive, low mass particles (like neutrinos or axions) contribute to the energy loss (or transfer) in stars.

Quite intuitive: inside a star, you have many interactions that produce particles. Either they interact strongly enough (affecting energy transport) or they don’t (energy loss).

The combination of four protons and two electrons can occur essentially only in two ways. The first mechanism starts with the combination of two protons to form a deuteron with positron emission, *viz.*

\[H + H = D + e^+. \]

The deuteron is then transformed into He\(^4\) by further capture of protons; these captures occur very rapidly compared with process (1). The second mechanism uses carbon and nitrogen as catalysts, according to the chain reaction

\[\begin{align*}
C^{12} + H &= N^{13} + \gamma, \\
C^{12} + H &= N^{14} + \gamma, \\
N^{14} + H &= O^{16} + \gamma, \\
N^{16} + H &= C^{18} + He^4.
\end{align*} \]

Fun fact: first papers (e.g. by Bethe) on stars evolution didn’t mention neutrinos at all.
Thermal physics: a lesson on star cooling

- Frieman et al. 1987, nice quantitative analysis of what we have said
- Assuming that a new energy loss induce a homology transformation from a configuration to the other
- Long story short: the star contracts, surface luminosity increases, as well as central temperature

\[
\frac{\delta R}{R} = \frac{-2\delta x}{2\nu + 5}, \quad \frac{\delta L}{L} = \frac{\delta x}{2\nu + 5}, \quad \frac{\delta T}{T} = \frac{2\delta x}{2\nu + 5}
\]
Why is it interesting?

While in other branches of physics (say, solid state physics) we are used to media, particle physics is usually studied in vacuum.

BUT

many particle backgrounds—> fundamental physics!
Example? MSW effect and neutrino masses.

Particles in stars and in the Early Universe propagate as light in crystals, and their interactions are with a complicated environment.
When is it interesting?

A (quasi) crystal, our domestic star and a map of the universe. Enough said.
The Sun is a sphere of gas where the gravitational compression is balanced by the pressure gradient. Nuclei can overcome the nuclear barrier, so that fusion is possible.

The energy transport is driven by radiation and convection. The inner part of the Sun (98% in mass) is radiative, so we need the opacity as a function of temperature, density and composition. In the outer part of the Sun, convection dominates the energy transport; this is modeled through a mixing length theory.

The Sun energy is produced by fusing protons into ^4He via the pp-chain and the CN cycle.

Boundary conditions include the initial mass of the Sun and today’s radius, the luminosity, age and photospheric composition, related to the initial abundances.
Temperature profile
Electron density and plasma frequency profile
Degeneracy

\[n_e = 2 \int \frac{d^3p}{(2\pi)^3} \frac{1}{e^{\frac{p^2}{2m_e^2} - \eta} + 1} \]

\[R_\eta = \frac{2}{n_e} \int \frac{d^3p}{(2\pi)^3} f_p(1 - f_p) \]

\[k^2_e = R_\eta \frac{4\pi \alpha n_e}{T} \]
Atomic vs Bremsstrahlung (free-free) transitions
Bremsstrahlung process flux
Compton process flux
Plasmon decay process flux

The diagrams show the flux of neutrinos as a function of energy for different decay processes: T, L, and pp. The flux is given in units of cm$^{-2}$ s$^{-1}$ keV$^{-1}$. The graphs depict how the flux varies across different energy levels for each process.
Total flux on Earth - no oscillation

- Electron anti(neutrinos) produced by vector current
- All flavor produced by axial current
- Electron neutrinos from pp
Look like quite standard stuff: previous attempts?

The very low energy solar flux of electron and heavy-flavor neutrinos and antineutrinos

W.C. Haxton a, Wei Lin b,1

a Institute for Nuclear Theory, Box 351350, and Department of Physics, University of Washington, Seattle, Washington 98195-1350, USA
b Center for Theoretical Physics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

Received 23 June 2000; accepted 27 June 2000
Editor: J. Frieman

Abstract

We calculate the thermal flux of low-energy solar neutrinos and antineutrinos of all flavors arising from a variety of neutrino pair processes: Compton production (including plasmon-pole diagrams), neutral current decay of thermally populated nuclear states, plasmon decay, and electron transitions from free to atomic bound states. The resulting flux density per flavor is significant \(10^{3} - 10^{7} \text{cm}^{-2} \text{sec}^{-1} \text{MeV}^{-1}\) below \(\sim 5 \text{keV}\), and the distributions fill much of the valley between the high-energy edge of the cosmic background neutrino spectrum and the low energy tails of the pp-chain electron neutrino and terrestrial electron antineutrino spectra. Thermal neutrinos carry information on the solar core temperature distribution and on heavy flavor neutrino masses for \(m_{e} \) or \(m_{\nu} \geq 1 \text{keV}\). The detection of these neutrinos is a daunting but interesting challenge. © 2000 Elsevier Science B.V. All rights reserved.

arXiv:nucl-th/0006055
Fig. 1. Representative diagrams for the various thermal neutrino pair processes considered here: a) Compton process; b) plasmon pole contribution to the Compton process; c) transverse plasmon decay; d) nuclear Z^0 emission; and e) pair production in free-bound atomic transitions.

+ something is missing