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Destabilizing inflation with heavy fields

The paradigm of single-field inflation is amazingly successful... but also
unrealistic

More plausible is that, besides the inflaton, other fields were present

I Well motivated theoretically (string
theory and supergravity)

I Not problematic — if extra fields were
heavy (compared to the Hubble scale
H), dynamics can still be effectively
single-field

Image credit: S. Renaux-Petel
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Destabilizing inflation with heavy fields

But this is still a bit simplistic...

I More generally, higher dimension
operators will modify the kinetic
structure of the theory

−1
2 δIJ∂

µφI∂µφ
J → −1

2 GIJ (φ)∂µφI∂µφ
J

→ Curved internal field space

See K. Turzynski’s talk

I If the field space curvature is 1/M2,
the scale M need not be too large
compared to Hubble

H < M < MPl

V (�1, �2)

�1

�2

More realistic:

Geometrical 
instability

Light inflaton
+

Extra heavy fields
+

Curved field space

Basic mechanism Renaux-Petel, Turzynski, September 2016
PRL Editors’ Highlight
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Destabilizing inflation with heavy fields

S =
∫

d4x
√
−g
[

M2
Pl

2 R(g)− 1
2 GIJ (φ)∂µφI∂µφ

J − V (φ)
]

Consider perturbations QI (two
fields for simplicity), and perform an
adiabatic-entropic decomposition

QI → fluctuation δφI in flat
gauge

On super-Hubble scales the
entropic mode satisfies

Q̈s + 3HQ̇s + m2
s(eff)Qs = 0

φ1

φ2

Q1

Q2

Qσ

Qs
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Destabilizing inflation with heavy fields

Q̈s + 3HQ̇s + m2
s(eff)Qs = 0

The effective entropic mass m2
s(eff) receives contributions from both the

potential and the curvature of the internal field space

Crucially, the latter is negative if the internal field space has negative
curvature

→
m2

s(eff)

H2 ∼ m2
h

H2 − ε
(

MPl

M

)2

mh → mass of heavy field (mh � H)
M → curvature scale of internal field space (M � MPl)
ε→ slow-roll parameter

Because ε grows during inflation, it is possible that m2
s(eff) becomes nega-

tive, even if m2
h � H2

→ Geometrical destabilization of inflation
Renaux-Petel & Turzynski (2015)
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Destabilizing inflation with heavy fields

The geometrical destabilization is very generic and may take place when-
ever inflation is described by scalars with a negatively curved field space

What happens next? Uncertain — perturbation theory breaks down, infla-
tionary vacuum cannot be trusted

Two possible outcomes

I Inflation simply ends

→ “premature end of inflation”
Renaux-Petel, Turzynski, Vennin (2017)

I A second phase of inflation begins

→ “sidetracked inflation”
SGS, Renaux-Petel, Ronayne (2018)
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Sidetracked inflation

I The instability causes the inflationary trajectory to divert from its
original path in field space

I This is possible because of the existence of an attractor solution
away from the minimum of the potential (in a broad class of models)

I Observed before in specific models (hyperinflation, angular inflation)
but in fact much more generic See E. Sfakianakis’ talk
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Sidetracked inflation

Our goal: to understand the predictions of sidetracked inflation

Main results:
I Numerical calculation of power spectrum and non-Gaussianities in

several models — large differences compared to single-field
expectations

I Analytical approximations for background dynamics
I Derivation of an effective single-field theory of perturbations —

fluctuations propagate with an effective dispersion relation which
can be:

Non-relativistic: ω2 = c2
s k2 with cs � 1

Non-linear: ω2 ∝ k4

With imaginary speed of sound: ω2 = c2
s k2 with c2

s < 0
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Sidetracked inflation
Our models:

S =
∫

d4x
√
−g
[

M2
Pl

2 R(g)− 1
2 GIJ (φ)∂µφI∂µφ

J − V (φ)
]

with φI = (ϕ, χ)
V (φ) = Λ4V(ϕ) + 1

2 m2
hχ

2

V(ϕ)→ dimensionless inflaton potential

We considered two field space metrics
I Minimal:

GIJdφIdφJ =
(

1 + 2χ2

M2

)
dϕ2 + dχ2

I Hyperbolic:

GIJdφIdφJ =
(

1 + 2χ2

M2

)
dϕ2 + 2

√
2χ

M dϕdχ+ dχ2
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Sidetracked inflation
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N* < N < Nend
Nend < N
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Natural inflation V = 1 + cos (ϕ/f )

Minimal metric → solid line
Hyperbolic metric → dashed line

Remarks

I Sidetracked phase can last very long due to non-canonical kinetic
term — stretching of potential

I Very non-geodesic trajectories: η⊥ ≡ −Vs/(Hσ̇)� 1
I Super-Hubble entropic mass m2

s(eff) very large — decay of entropic
modes and conservation of ζ
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Sidetracked inflation
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Sidetracked inflation

Minimal metric, Natural inflation
(f = 10)

I Size of non-Gaussianities — quantified by fnl

I Shape of non-Gaussianities — quantified by correlation C with a
given template
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Sidetracked inflation

Hyperbolic metric, Natural inflation
(f = 10)

I Sidetracked inflation predicts large non-Gaussianities and allows for
a non-standard “orthogonal shape” in the hyperbolic case
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Summary

I Geometrical destabilization — given multiple scalars in a
negatively curved field space, entropic fluctuations during inflation
may generically become unstable

I Sidetracked inflation — the instability may drive the system into a
new inflationary attractor away from the potential valley

I Power spectrum — can be very different from single-field
predictions; very large power spectrum for hyperbolic field space

I Bispectrum — typically large non-Gaussianities, but shapes are
model-dependent; unusual orthogonal-type shape for hyperbolic
field space

I Effective single-field theory with imaginary speed of sound —
applicable in the hyperbolic case, allows to explain numerical results

Thank you!
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