Quantum Diffusion During Inflation and Primordial Black Holes

Chris Pattison

Based on arXiv:1707.00537 (JCAP10 2017 046) Collaboration with David Wands, Vincent Vennin and Hooshyar Assadullahi

COSMO-18, Daejeon, South Korea, 30th August 2018

Chris Pattison (ICG, Portsmouth, UK) christopher.pattison@port.ac.uk

- Primordial black holes (brief introduction!)
- $\bullet~$ Introduction to stochastic- δN inflation
- Characteristic function formalism
- Summary

Curvature perturbations $\boldsymbol{\zeta}$ leave the Horizon during inflation.

Curvature perturbations ζ leave the Horizon during inflation. If $\zeta > \zeta_c$, collapse to form PBHs when they re-enter the horizon after inflation ends. Curvature perturbations ζ leave the Horizon during inflation. If $\zeta > \zeta_c$, collapse to form PBHs when they re-enter the horizon after inflation ends.

The number of PBHs produced is then calculated from the probability distribution $P(\zeta, \phi)$ of these large perturbations using

$$\beta \left[M\left(\phi \right) \right] = 2 \int_{\zeta_{\rm c}}^{\infty} P\left(\zeta, \phi \right) \mathrm{d}\zeta \,.$$

Curvature perturbations ζ leave the Horizon during inflation. If $\zeta > \zeta_c$, collapse to form PBHs when they re-enter the horizon after inflation ends.

The number of PBHs produced is then calculated from the probability distribution $P(\zeta, \phi)$ of these large perturbations using

$$\beta \left[M\left(\phi \right) \right] = 2 \int_{\zeta_c}^{\infty} P\left(\zeta, \phi \right) \mathrm{d}\zeta \,.$$

This gives the mass fraction of the universe contained in PBHs.

Gaussian Example

It is typically assumed ζ has a Gaussian distribution.

The inflaton ϕ has classical equation of motion

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0.$$

The inflaton ϕ has classical equation of motion

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0.$$

We work only the **slow roll approximation**.

The inflaton ϕ has classical equation of motion

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0.$$

We work only the **slow roll approximation**. This gives simplified equation of motion

$$\dot{\phi}_{\mathrm{SR}} \simeq -\frac{V'(\phi)}{3H} \,.$$

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ .

Stochastic inflation (Starobinsky, 1986) treats the quantum fluctuations as white noise, ξ .

Then ϕ is described by a Langevin equation

$$\frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi\left(N\right)\,,$$

where $\langle \xi(N) \rangle = 0$ and $\langle \xi(N) \xi(N') \rangle = \delta(N - N')$, k < aH and $N = \int H dt$.

Inflaton evolves under Langevin equation until ϕ reaches $\phi_{\rm end}$ where inflation ends.

Figure 1: A reflective wall is added at ϕ_{uv} to prevent the field from exploring arbitrarily large values.

Chris Pattison (ICG, Portsmouth, UK)

christopher.pattison@port.ac.uk

Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ζ is

$$\zeta(t, \mathbf{x}) = N(t, \mathbf{x}) - N_0(t) \equiv \delta N \,,$$

where N is the local number of e-folds of inflation, and N_0 is the amount of expansion in an unperturbed universe.

Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ζ is

$$\zeta(t, \mathbf{x}) = N(t, \mathbf{x}) - N_0(t) \equiv \delta N \,,$$

where N is the local number of e-folds of inflation, and N_0 is the amount of expansion in an unperturbed universe.

Figure 2: N_0 is at a zero curvature surface, final slice is constant density.

Chris Pattison (ICG, Portsmouth, UK) christopher.pattison@port.ac.uk

The identification of ζ and δN defines the δN formalism.

The identification of ζ and δN defines the δN formalism.

The stochastic formalism treats the number of e-folds N as a random variable, denoted \mathcal{N} .

The identification of ζ and δN defines the δN formalism.

The stochastic formalism treats the number of e-folds N as a random variable, denoted \mathcal{N} .

This reduces calculating curvature perturbations to calculating statistics of ${\cal N}$ realised under Langevin equation

$$\frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi\left(N\right)\,.$$

We want to know about **all** the moments of \mathcal{N} , and set $f_n(\phi) = \langle \mathcal{N}^n(\phi) \rangle$. Characteristic function $\chi_{\mathcal{N}}(t, \phi)$ is

$$\chi_{\mathcal{N}}(t,\phi) = \left\langle e^{it\mathcal{N}(\phi)} \right\rangle$$
$$= \sum_{n=0}^{\infty} \frac{(it)^n}{n!} f_n(\phi) \,.$$

We want to know about **all** the moments of \mathcal{N} , and set $f_n(\phi) = \langle \mathcal{N}^n(\phi) \rangle$. Characteristic function $\chi_{\mathcal{N}}(t, \phi)$ is

$$\chi_{\mathcal{N}}(t,\phi) = \left\langle e^{it\mathcal{N}(\phi)} \right\rangle$$

= $\sum_{n=0}^{\infty} \frac{(it)^n}{n!} f_n(\phi)$

We derive an ODE to solve for χ_N and then find the PDF $P(N, \phi)$ by an inverse Fourier transform.

$$v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$$

.

$$v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$$

The computational program is then

• solve our ODE for $\chi_{\mathcal{N}}(t,\phi)$

$$v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t,\phi)$
- Fourier transform (numerically!) to find the PDF of δN , i.e. of the curvature perturbations.

$$v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$$

The computational program is then

- solve our ODE for $\chi_{\mathcal{N}}(t,\phi)$
- Fourier transform (numerically!) to find the PDF of δN , i.e. of the curvature perturbations.

Figure 3: Plot of the PDF of \mathcal{N} against \mathcal{N} , for the potential $v(\phi) = v_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^2$.

Chris Pattison (ICG, Portsmouth, UK)

christopher.pattison@port.ac.uk

Stochastic Limit

Inflationary models that produce $\zeta > \zeta_c$ can be approximated by a flat potential at the end of inflation, so $v \simeq v_0$.

Stochastic Limit

Inflationary models that produce $\zeta > \zeta_c$ can be approximated by a flat potential at the end of inflation, so $v \simeq v_0$. For $v = v_0$, we can solve for χ_N exactly.

Chris Pattison (ICG, Portsmouth, UK)

christopher.pattison@port.ac.uk

Figure 4: The PDF we obtain for a flat potential.

- The stochastic- δN formalism is needed to analyse curvature perturbations and PBH formation.
- We developed a characteristic function formalism to calculate the PDF of large fluctuations.
- Large non-Gaussianities are possible and can impact PBH production.

- Stochastic inflation needs to be extended beyond slow-roll (Biagetti et al 1804.07124, Ezquiaga et al 1805.06731)
 - We have started a USR background analysis (Pattison et al 1806.09553)
- Study higher-order corrections to the tail of the Gaussian, even in the classical case
- Extend the formalism to include multi-field inflation.