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Primordial Black Holes (PBHs)

Curvature perturbations ζ leave the Horizon during inflation.

If ζ > ζc, collapse to form PBHs when they re-enter the horizon
after inflation ends.

The number of PBHs produced is then calculated from the
probability distribution P (ζ, φ) of these large perturbations using

β [M (φ)] = 2

∫ ∞

ζc

P (ζ, φ) dζ .

This gives the mass fraction of the universe contained in PBHs.
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Gaussian Example

It is typically assumed ζ has a Gaussian distribution.

0 ζc
ζ

P
(ζ

)

β(M) = 2

∫ ∞

ζc

P(ζ)dζ
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Inflation

The inflaton φ has classical equation of motion

φ̈+ 3Hφ̇+ V ′(φ) = 0 .

We work only the slow roll approximation.
This gives simplified equation of motion

φ̇SR ' −
V ′(φ)

3H
.
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Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum
fluctuations as white noise, ξ.

Then φ is described by a Langevin equation

dφ

dN
= − V ′

3H2
+
H

2π
ξ (N) ,

where 〈ξ (N)〉 = 0 and 〈ξ (N) ξ (N ′)〉 = δ (N −N ′), k < aH and
N =

∫
Hdt.
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Inflaton evolves under Langevin equation until φ reaches φend
where inflation ends.

�

v

�end �UV�⇤

Figure 1: A reflective wall is added at φuv to prevent the field from
exploring arbitrarily large values.
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Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ζ is

ζ(t,x) = N(t,x)−N0(t) ≡ δN ,

where N is the local number of e-folds of inflation, and N0 is the
amount of expansion in an unperturbed universe.

Figure 2: N0 is at a zero curvature surface, final slice is constant density.
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Stochastic-δN Formalism

The identification of ζ and δN defines the δN formalism.

The stochastic formalism treats the number of e-folds N as a
random variable, denoted N .

This reduces calculating curvature perturbations to calculating
statistics of N realised under Langevin equation

dφ

dN
= − V ′

3H2
+
H

2π
ξ (N) .
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Characteristic Function Formalism (Pattison et al, 2017)

We want to know about all the moments of N , and set
fn(φ) = 〈N n(φ)〉. Characteristic function χN (t, φ) is

χN (t, φ) =
〈
eitN (φ)

〉
=

∞∑
n=0

(it)n

n!
fn(φ) .

We derive an ODE to solve for χN and then find the PDF
P (N , φ) by an inverse Fourier transform.
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Simple Example

As an example, we take the potential

v(φ) = v0

(
φ

MPl

)2

.

The computational program is then

solve our ODE for χN (t, φ)

Fourier transform (numerically!) to find the PDF of δN ,
i.e. of the curvature perturbations.
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Figure 3: Plot of the PDF of N against N , for the potential

v(φ) = v0

(
φ
MPl

)2
.
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Stochastic Limit

Inflationary models that produce ζ > ζc can be approximated by a
flat potential at the end of inflation, so v ' v0.

For v = v0, we can
solve for χN exactly.

�

v

�end �end + ��well
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Figure 4: The PDF we obtain for a flat potential.
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Summary

The stochastic-δN formalism is needed to analyse curvature
perturbations and PBH formation.

We developed a characteristic function formalism to calculate
the PDF of large fluctuations.

Large non-Gaussianities are possible and can impact PBH
production.
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Future Work

Stochastic inflation needs to be extended beyond slow-roll
(Biagetti et al 1804.07124, Ezquiaga et al 1805.06731)

We have started a USR background analysis (Pattison et al
1806.09553)

Study higher-order corrections to the tail of the Gaussian,
even in the classical case

Extend the formalism to include multi-field inflation.
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