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Primordial Black Holes (PBHs)

Curvature perturbations ( leave the Horizon during inflation.
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Primordial Black Holes (PBHs)

Curvature perturbations ¢ leave the Horizon during inflation.
If ¢ > (., collapse to form PBHs when they re-enter the horizon
after inflation ends.

The number of PBHs produced is then calculated from the
probability distribution P((, ¢) of these large perturbations using

B (M () =2/:OP<<,¢>d<.
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Primordial Black Holes (PBHs)

Curvature perturbations ¢ leave the Horizon during inflation.
If ¢ > (., collapse to form PBHs when they re-enter the horizon
after inflation ends.

The number of PBHs produced is then calculated from the
probability distribution P((, ¢) of these large perturbations using

B (M () =2/:OP<<,¢>d<.

This gives the mass fraction of the universe contained in PBHs.
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Gaussian Example

It is typically assumed ¢ has a Gaussian distribution.
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The inflaton ¢ has classical equation of motion

b+3Hdp+V'(¢)=0.
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Inflation

The inflaton ¢ has classical equation of motion

b+3Hp+ V() =0.

We work only the slow roll approximation.

Chris Pattison (ICG, Portsmouth, UK) christopher.pattison@port.ac.uk



Inflation

The inflaton ¢ has classical equation of motion

b+3Hp+ V() =0.

We work only the slow roll approximation.
This gives simplified equation of motion
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Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum
fluctuations as white noise, £.
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Stochastic Formalism

Stochastic inflation (Starobinsky, 1986) treats the quantum
fluctuations as white noise, £.

Then ¢ is described by a Langevin equation
do __V
dN ~ 3H?

where (¢ (N)) =0and ((N)E(N')) =6 (N —N'), k < aH and
N = [ Hdt.

H
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Inflaton evolves under Langevin equation until ¢ reaches ¢eng
where inflation ends.
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Figure 1: A reflective wall is added at ¢, to prevent the field from
exploring arbitrarily large values.
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Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ( is
¢(t,x) = N(t,x) — No(t) = 0N,

where N is the local number of e-folds of inflation, and Ny is the
amount of expansion in an unperturbed universe.
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Separate Universe (Wands et al, 2000)

The primordial curvature perturbation ( is
C(t,x) = N(t,x) — No(t) =N,

where N is the local number of e-folds of inflation, and Ny is the
amount of expansion in an unperturbed universe.

. . . ._._ No
Figure 2: Ny is at a zero curvature surface, final slice is constant density.
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Stochastic-6 N Formalism

The identification of ¢ and J N defines the § N formalism.
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Stochastic-0 N Formalism

The identification of ¢ and J N defines the § N formalism.

The stochastic formalism treats the number of e-folds IV as a
random variable, denoted N
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Stochastic-0 N Formalism

The identification of ¢ and J N defines the § N formalism.

The stochastic formalism treats the number of e-folds IV as a
random variable, denoted N

This reduces calculating curvature perturbations to calculating
statistics of NV realised under Langevin equation

d¢ Vi H
20 L T e(N).
v~ s Tt W)
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Characteristic Function Formalism (Pattison et al, 2017)

We want to know about all the moments of A/, and set
fn(@) = (N™(¢)). Characteristic function xar(t, @) is

X (t, ¢) = <€’W(¢)>
2L (i)™
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Characteristic Function Formalism (Pattison et al, 2017)

We want to know about all the moments of A/, and set
fn(®) = (N"(¢)). Characteristic function xar(t, ) is

X (t, ¢) = <6’w(¢)>
= (it)"
=3 ).

We derive an ODE to solve for s and then find the PDF
P(N, ¢) by an inverse Fourier transform.
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As an example, we take the potential
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Simple Example

As an example, we take the potential

v(qﬁ):vo(ﬂjPl)Q.

The computational program is then

@ solve our ODE for xas(¢, ¢)

Chris Pattison (ICG, Portsmouth, UK) christopher.pattison@port.ac.uk



Simple Example

As an example, we take the potential

v(qﬁ):vo(ﬂzl>2.

The computational program is then
@ solve our ODE for xar(t, ¢)

o Fourier transform (numerically!) to find the PDF of 6\,
i.e. of the curvature perturbations.
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Figure 3: Plot of the PDF of A/ against \V, for the potential
2
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Stochastic Limit

Inflationary models that produce ¢ > (. can be approximated by a
flat potential at the end of inflation, so v ~ vy.
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Stochastic Limit

Inflationary models that produce ¢ > (. can be approximated by a
flat potential at the end of inflation, so v ~ vy. For v = vy, we can
solve for x s exactly.
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Figure 4: The PDF we obtain for a flat potential.
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Summary

@ The stochastic-0 /N formalism is needed to analyse curvature
perturbations and PBH formation.

@ We developed a characteristic function formalism to calculate
the PDF of large fluctuations.

@ Large non-Gaussianities are possible and can impact PBH
production.
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Future Work

@ Stochastic inflation needs to be extended beyond slow-roll
(Biagetti et al 1804.07124, Ezquiaga et al 1805.06731)

o We have started a USR background analysis (Pattison et al
1806.09553)

@ Study higher-order corrections to the tail of the Gaussian,
even in the classical case

@ Extend the formalism to include multi-field inflation.
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