Magnetogenesis from isocurvatures @ second order Pedro Carrilho

Based on ongoing work with Karim Malik

Contents

- Cosmic Magnetism
- Magnetogenesis from vortical currents
- Magnetogenesis with isocurvatures
- Conclusions

Cosmic Magnetism

- Magnetic fields are found at all scales in the Universe
 - Planets, Stars, Galaxies,...
- It is even measured in the large-scale structure,

Could the origin of magnetic seeds be cosmological?

- We study a model based on vortical currents generated by non-linearities:
 - Thomson scattering generates a net electric field

$$\vec{E} \sim (1-\beta^3) \sigma_T \Delta \vec{v}_{b\gamma}$$

• At 1st order in perturbations, no \vec{B} is generated (no vectors)

$$(a^2\vec{B})'\propto \nabla\times\vec{E}=0$$

• But at 2nd order we get

$$(a^{2}\vec{B})' \sim \nabla \times \Delta \vec{v}_{b\gamma} + \nabla \left(\delta_{\gamma} - \Psi + \Phi\right) \times \Delta \vec{v}_{b\gamma} + \nabla \times (\Pi_{\gamma} \cdot \vec{v}_{b})$$

- Adiabatic case already explored with Boltzmann codes
 - [Ichiki et al 2007, Fenu et al 2011, Saga et al 2015, Fidler et al 2016]
 - Result for adiabatic mode $B \sim 10^{-29} G @ 1 \text{ Mpc} @ z = 0$

Magnetogenesis from Isocurvatures

- Introducing isocurvatures has several advantages [Maeda et al. 2011]
 - With 2 d.o.f. we can generate vorticity

 $\vec{\omega}' \propto \nabla \delta S \times \Delta \vec{\nu}_{b\gamma}$

• Suppressed only at first order in tight coupling $\left(\alpha^{2}\vec{D}\right)' \propto \vec{x} + \nabla S S \times A \vec{x} = O(\alpha^{2}\vec{D})$

$$\left(a^2 \vec{B}\right)' \propto \vec{\omega} + \nabla \delta S \times \Delta \vec{v}_{b\gamma} \sim O(\alpha^{-1})$$

• Promising analytical results of $B \sim 10^{-20} G @ 1 \text{ Mpc}$, but only calculated at M-R equality.

Magnetogenesis from Isocurvatures

- The main question:
 - Can isocurvatures contribute to magnetogenesis?
- The Plan:

We calculate the spectrum with 2nd order Boltzmann code SONG: [Pettinari et al 2014]

- Solve Faraday law and all vector equations
- Calculate spectrum: $P_B(k) \sim \langle B^i(\vec{k}) B_i(\vec{k}') \rangle$
- Parametrize input spectrum of isocurvatures with

$$P_{iso}(k) = k^{-3} f_{iso} A_s \left(\frac{k}{k^*}\right)^{n_i - 1}$$

- Before evolution we need initial conditions for mixed modes:
 - Baryon iso x Adiabatic

$$\vec{B}(\tau_0) = \frac{m_p}{e} \frac{1 - \beta^3}{1 + \beta^2} \frac{5R_b(4275 + 1320R_\nu + 64R_\nu^2)}{288(15 + 2R_\nu)(15 + 4R_\nu)^2} \vec{k}_1 \times \vec{k}_2 \ \omega \tau_0 \ \delta S^0_{b,k_1} \zeta^0_{k_2}$$

• CDM iso x Adiabatic

$$\vec{B}(\tau_0) = \frac{m_p}{e} \frac{1 - \beta^3}{1 + \beta^2} \frac{5R_c(525 + 220R_\nu + 24R_\nu^2)}{48(15 + 2R_\nu)(15 + 4R_\nu)^2} \vec{k}_1 \times \vec{k}_2 \ \omega\tau_0 \ \delta S^0_{c,k_1} \zeta^0_{k_2}$$

• Other modes

$$\vec{B}(\tau_0) \lesssim O(\tau_0^2)$$

• Indication: at early times, mixed modes produce larger *B*.

- Result spectra for isocurvature cases with SONG
 - Scale-invariant isocurvature spectrum ($n_i = 1$)

- Result spectra for isocurvature cases with SONG
 - Scale-invariant isocurvature spectrum ($n_i = 1$)

- New spectra for isocurvature cases with SONG
 - Dependence on spectral index

Conclusions

- Isocurvatures can enhance magnetogenesis:
- Large scales: $k < 10^{-3} \text{ Mpc}^{-1}$:
 - Large enhancement of several orders of magnitude
- Small scales $k > 10^{-3} \text{ Mpc}^{-1}$:
 - Small enhancement of order 10—30 depending on $n_i > 1$
 - Large enhancement for $n_i \leq -1$, but depends on IR cut-off.
- Even in the best case scenario $B \ll 10^{-17} G$ in this model
- Future: Correlated isocurvatures and compensated isocurvature mode.

Magnetogenesis from isocurvatures @ second order Pedro Carrilho Thank you!

Based on ongoing work with Karim Malik

