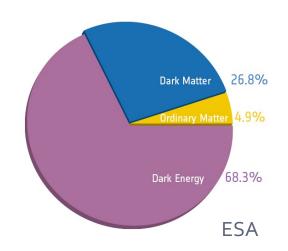
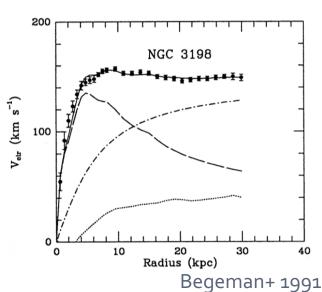
Cosmological constraints on the velocity-dependent Baryon-Dark matter coupling


Junpei Ooba


Collaborators: Hiroyuki Tashiro, Kenji Kadota, Joseph Silk

Contents

- Introduction
- Baryon–Dark matter coupling
 - Effects on the cosmology
- Results
 - The constraint on the baryon-DM coupling
- Summary

- The modern cosmology indicates that the usual baryonic matter is forming only 5% of the today's energy budget of our universe.
- And the rest 95% is formed from unknown dark matter and dark energy.
- Although there are a lot of astronomical evidences which suggesting the existence of the dark matter, to reveal its nature is still a main goal of the modern cosmology.
- Usually, we assume the cold dark matter.
 - only a gravitational coupling with the baryon

- Here, we focus on a question "how dark is dark?".
- We consider an extra non-gravitational coupling between the baryon and the dark matter components which can be naturally realized by some dark matter models.
- Those models predict a scattering cross section as a power-law of the baryon-DM relative velocity.

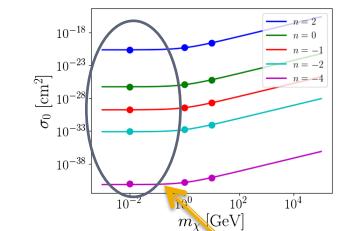
$$(cross section) \propto v^n$$

Deferent n-values correspond to deferent dark matter models.

n = -4: fractional electric charge Melchiorri+ 2007

• $n = \pm 2$: electric and magnetic dipole moment Sigurdson+ 2004

n = -1: Yukawa potential Arkani-Hamed+ 2009, Buckley+ 2010


n = 0: velocity-independent scattering
Chen+ 2002

Previous works

Dvorkin+ 2014: CMB+Lya, $m_x >> m_H$

n	CMB $(95\%CL, cm^2/g)$	$CMB + Lyman-\alpha (95\%CL, cm^2/g)$
-4	1.8×10^{-17}	1.7×10^{-17}
-2	3.0×10^{-9}	6.2×10^{-10}
-1	1.6×10^{-5}	1.4×10^{-6}
0	0.12	3.3×10^{-3}
+2	1.3×10^{5}	9.5×10^{3}

 $X_{U}+2018$: **CMB+Lya,** $m_x > 10$ **MeV**

Boddy+ 2018: CMB only, $m_x > 10 \text{ keV}$

	10 l	κeV	$1~{ m MeV}$	$10~{ m MeV}$	$100~{ m MeV}$	$200~{ m MeV}$	$500~{ m MeV}$	$1~{ m GeV}$
n = -	$4 \mid 1.7\epsilon$	e-41	1.7e-41	1.7e-41	1.55-41	2.1e-41	2.6e-41	3.5e-41
n = -	$2 2 3\epsilon$	e-33	2.3e-33	2.4e-33	2.6e-33	2.8e-33	3.6e-33	4.9e-33

No mass dependency?

Our study focus on the DM mass below ~ 10 keV, and put constraints by using CMB + Lya data

Baryon-dark matter coupling

- Effects on the cosmology
 - Background thermal history
 - Perturbation evolution

Background temperature

The baryon gas temperature could be affected by baryon-DM coupling.

$$\dot{T}_b = -2\frac{\dot{a}}{a}T_b + \frac{2\mu_b}{m_e}R_{\gamma}(T_{\gamma} - T_b) + \frac{2\mu_b}{m_{\chi} + m_b}\frac{\rho_{\chi}}{\rho_b}R_{\chi}(T_{\chi} - T_b)$$

Expansion of the universe

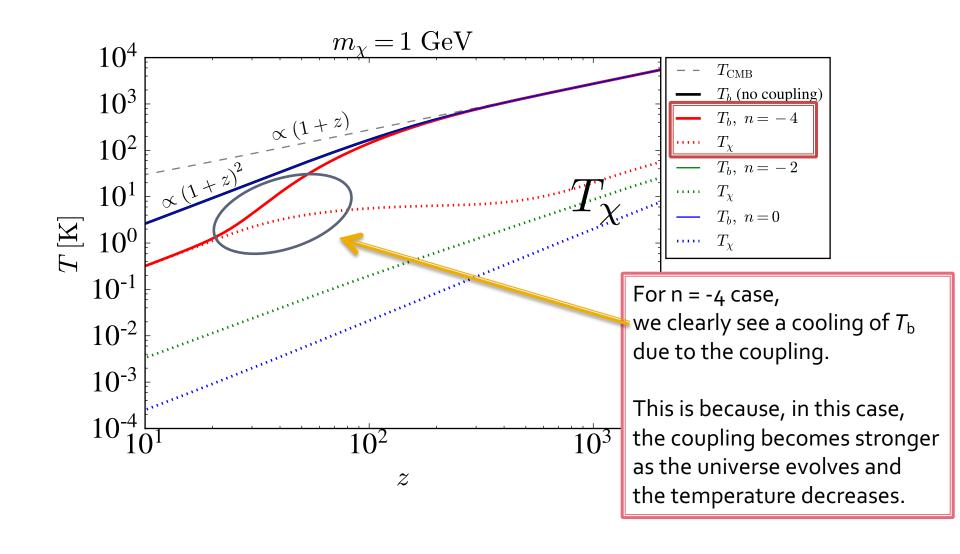
Thomson scattering

Baryon-DM coupling

$$\mu_b = m_H \left(\frac{n_H + 4n_{He}}{n_H + n_{He} + n_e} \right)$$

The dark matter temperature is

$$\dot{T}_{\chi} = -2\frac{\dot{a}}{a}T_{\chi} + \frac{2m_{\chi}}{m_{\chi} + m_b}R_{\chi}(T_b - T_{\chi})$$


Coupling rate: Thomson scattering, baryon-DM coupling

$$R_{\gamma} = \frac{4\rho_{\gamma}}{3\rho_{b}} a n_{e} \sigma_{T}$$

$$R_{\chi} = c_{n} \frac{a\rho_{b} \sigma_{0}}{m_{\chi} + m_{b}} \left(\frac{T_{b}}{m_{b}} + \frac{T_{\chi}}{m_{\chi}} + \frac{V_{\text{RMS}}^{2}}{3} \right)^{\frac{n+1}{2}}$$

$$V_{\text{RMS}}^{2} = \left\langle \vec{V}_{\chi}^{2} \right\rangle_{\xi} = \int \frac{dk}{k} \Delta_{\xi} \left(\frac{\theta_{b} - \theta_{c}}{k} \right)^{2},$$

Background temperature

Perturbation equations

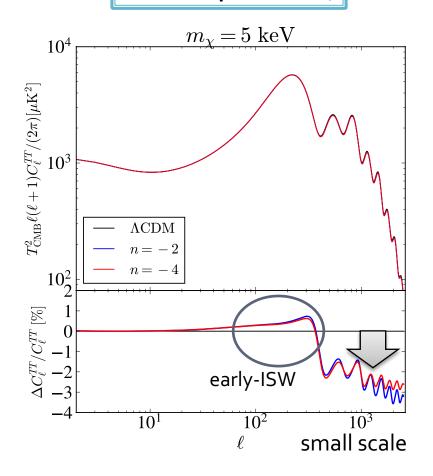
Boltzmann equations also modified as follows:

$$\dot{\delta}_b = -\theta_b + 3\dot{\phi}, \quad \dot{\delta}_\chi = -\theta_\chi + 3\dot{\phi}$$

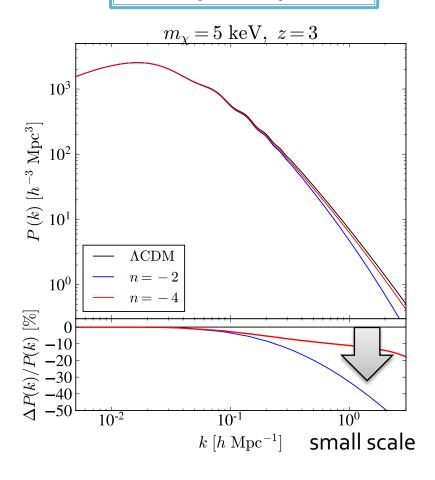
$$\dot{\theta}_b = -\frac{\dot{a}}{a}\theta_b + c_b^2 k^2 \delta_b + R_\gamma (\theta_\gamma - \theta_b) + \frac{\rho_\chi}{\rho_b} R_\chi (\theta_\chi - \theta_b) + k^2 \psi$$

$$\dot{\theta}_\chi = -\frac{\dot{a}}{a}\theta_\chi + c_\chi^2 k^2 \delta_\chi + R_\chi (\theta_b - \theta_\chi) + k^2 \psi$$

Coupling rate (again):


$$R_{\chi} = c_n \frac{a\rho_b \sigma_0}{m_{\chi} + m_b} \left(\frac{T_b}{m_b} + \frac{T_{\chi}}{m_{\chi}} + \frac{V_{\text{RMS}}^2}{3} \right)^{\frac{n+1}{2}}$$

Perturbation evolutions are also modified by baryon-DM coupling.

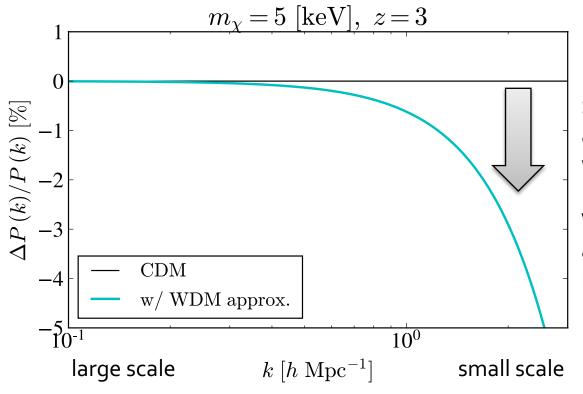

Therefore, DM's evolution could be prevented by this coupling because the baryon-photon coupling.

Perturbation equations

CMB temperature C_{ℓ}

Matter power spectrum

Warm dark matter effect


- If the dark matter particle mass is below ~MeV, an additional relativistic effect cannot be neglected anymore and the perturbation evolution changes from the CDM case.
- This effect erases a small scale P(k), which is similar to a warm dark matter case.
- We use an approximated form of P(k) to include the WDM dumping effect on the P(k).

$$P_{WDM}(k) = T_{\chi}^{2}(k)P_{CDM}(k)$$

 $T_{\chi}(k) = [1 + (\alpha k)^{\nu}]^{-\mu}$

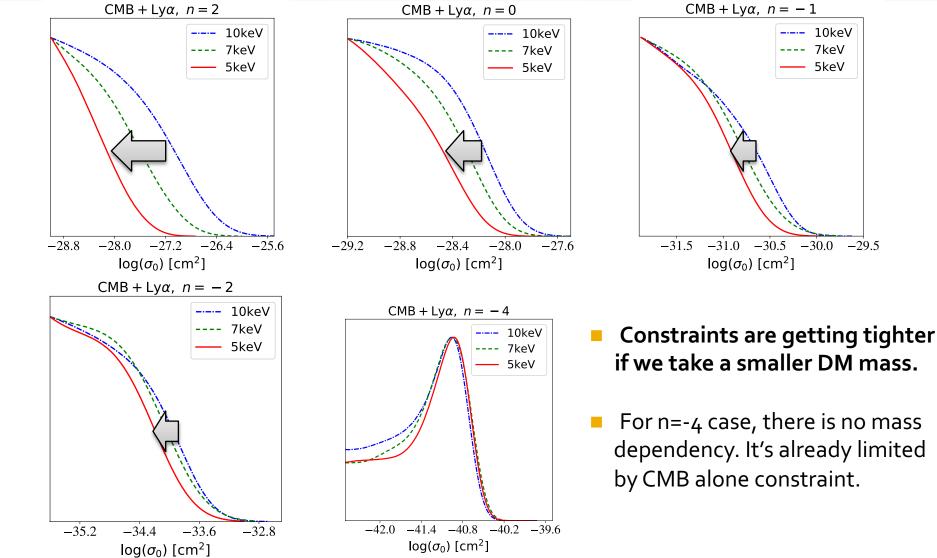
where,

Warm dark matter effect

Residual plot between CDM and WDM approx. cases.

Suppression due to a free-streaming effect with DM mass 5 keV.

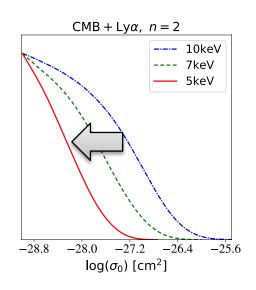
We apply this effect in addition to the baryon-DM coupling effect.


Result

- The constraint on the baryon-DM coupling
 - Method and Data
 - Results of the constraint

Method and Data

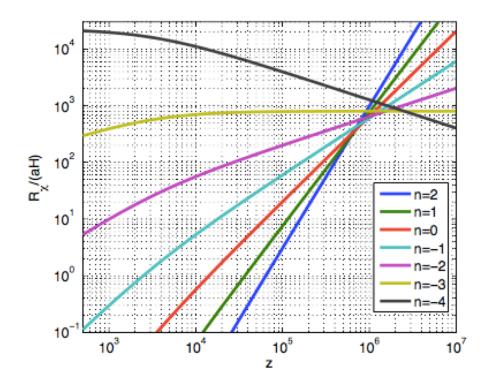
- CLASS (class-code.net)
 - To compute CMB angular power spectra and matter power spectrum.
- Monte python (montepython.net)
 - To analyze data by using the Markov chain Monte Carlo (MCMC) method.
- Data
 - Planck 2015: TT, lowP, lensing -> C_ℓ
 - SDSS: Lyman- α -forest (McDonald+ 2006) -> P(k) at $k\sim 1$, z=3


Junpei Ooba August 29th, 2018 COSMO-18

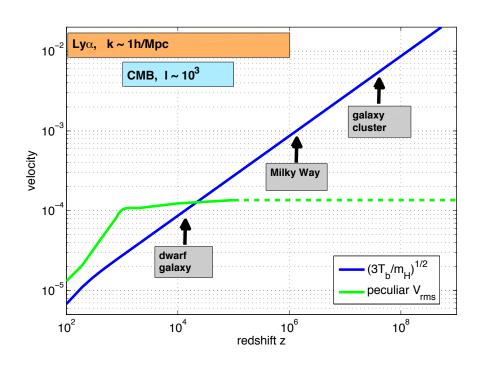
Summary

- We put constraint on the cross section of the baryon-DM coupling.
- Those couplings induce
 - lower baryonic gas temperature,
 - suppression of the small scale P(k),
 - multiple effects on the C_{ℓ} (dumping, early-ISW).
- We got the tighter constraint on the cross section of the coupling if we consider the DM mass below 10 keV.

Thank you for your attention.



Back up


Coupling rate vs. Resdshift August 29th, 2018

COSMO-18

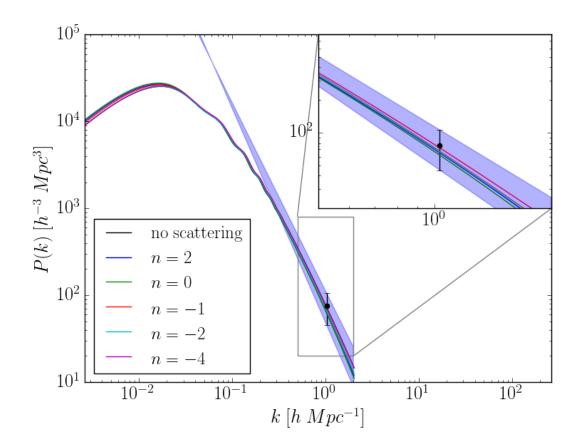
$$R_{\chi} = c_n \frac{a\rho_b \sigma_0}{m_{\chi} + m_b} \left(\frac{T_b}{m_b} + \frac{T_{\chi}}{m_{\chi}} + \frac{V_{\text{RMS}}^2}{3} \right)^{\frac{n+1}{2}}$$

Dvorkin+ 2014

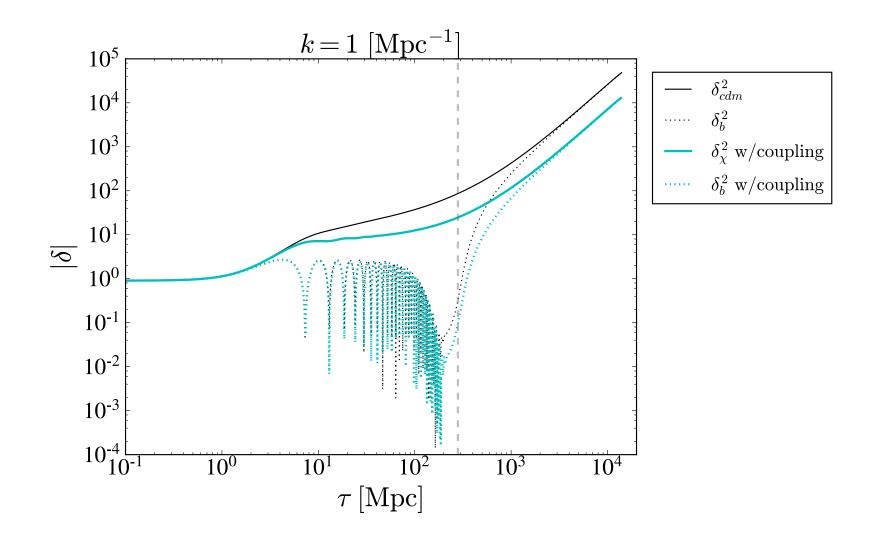
$$V_{\rm RMS}^2 \equiv \langle V_{\chi}^2 \rangle \simeq \begin{cases} 10^{-8} & z > 10^3 \\ 10^{-8} \left(\frac{(1+z)}{10^3} \right)^2 & z \le 10^3 \end{cases}.$$

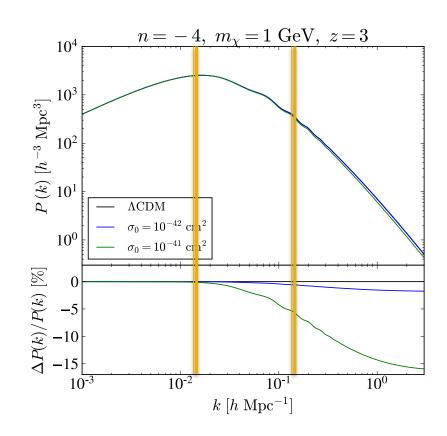
Dvorkin+ 2014 Xu+ 2018

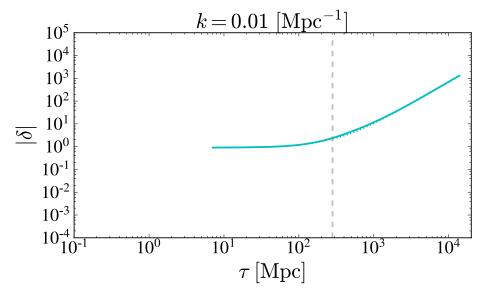
IC of the DM temperature

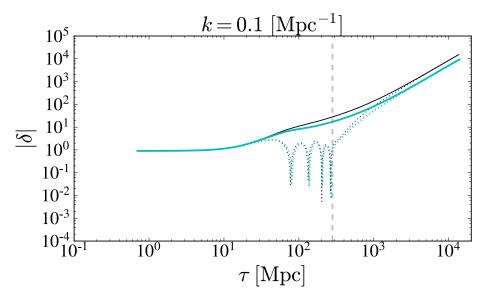

- It depends on its velocity dependency n.
- For n > -3 cases, we use the following expression.

$$T_{\chi} = \begin{cases} T_b, & R_{\chi} \frac{m_{\chi}}{m_{\chi} + m_b} > aH \\ T_{dec} \left(\frac{a_{dec}}{a}\right)^2, & R_{\chi} \frac{m_{\chi}}{m_{\chi} + m_b} < aH \end{cases}$$

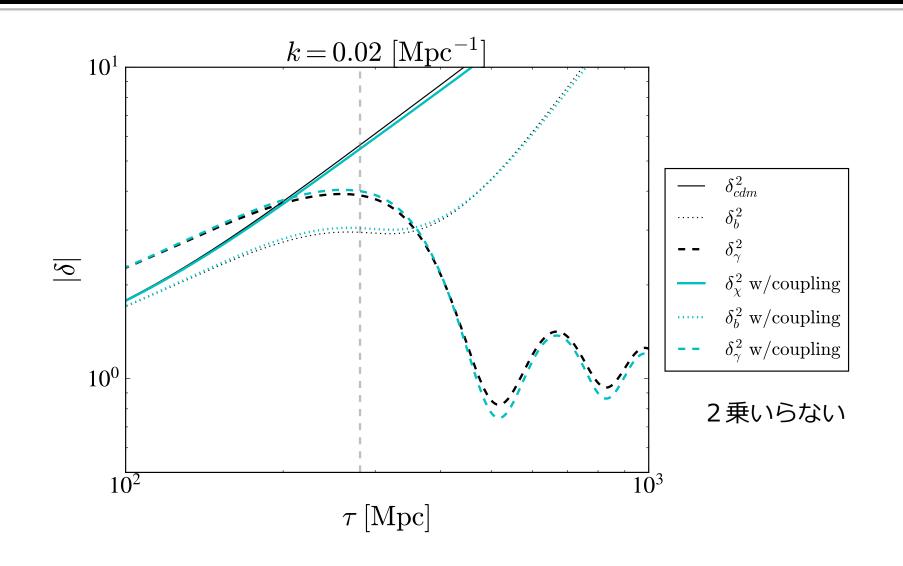

For n = -4 case, we start from $T_x = 0$, because the effect of the coupling is very weak in the early epoch so that we consider its temperature is already sufficiently small in an epoch we study here (z < 10^6).

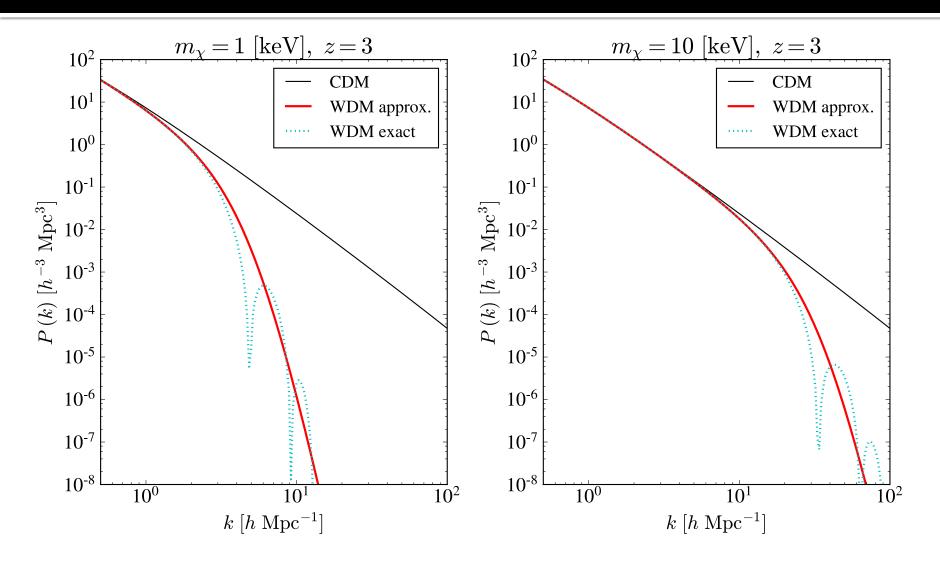

Lyman-α forest data


Lyman-α data: amplitude, tilt, curvature of P(k) at k~1, z=3



Perturbation evolution





CMB temperature fluctuation Junpei Ooba COSMO-18

Velocity-dependent Baryon-DM coup ling 2018 COSMO-18

- Model: millicharged dark matter
 - dark matter has a fractional electric charge.

$$q = \epsilon e \quad (\epsilon \ll 1)$$

The cross-section of the baryon-DM scattering is

Junpei Ooba August 29th, 2018 COSMO-18

Introduction

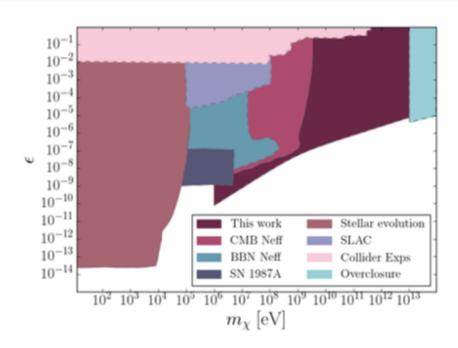
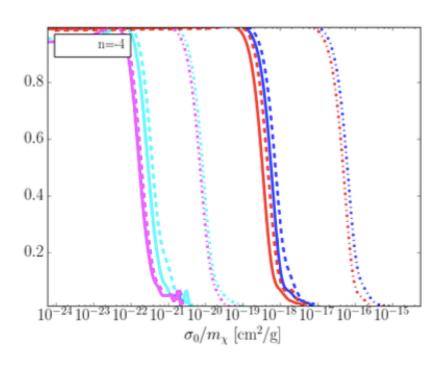



FIG. 12: Constraints from this work on millicharged DM scattering (corresponding to the n=-4 scenario) in $\epsilon-m_\chi$ space compared to bounds from other areas: cooling of giants, white dwarfs, and supernovae and constraints on N_{eff} from BBN and CMB [38, 72], overclosure of the Universe [87] and various collider experiments [35, 73, 74, 87]. We have assumed here that all DM is millicharged.

