Einstein Double Field Equations

Stephen Angus, Kyoungho Cho, and Jeong-Hyuck Park

Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, KOREA

Core idea: string theory predicts its own gravity rather than GR

In General Relativity the metric $g_{\mu\nu}$ is the only geometric and gravitational field, whereas in string theory the closed-string massless sector comprises a two-form potential $B_{\mu\nu}$ and the string dilaton ϕ in addition to the metric $g_{\mu\nu}$. Furthermore, these three fields transform into each other under T-duality. This hints at a natural augmentation of GR: upon treating the whole closed string massless sector as stringy graviton fields, Double Field Theory [1, 2] may evolve into 'Stringy Gravity'. Equipped with an O(D,D) covariant differential geometry beyond Riemann [3], we spell out the definitions of the stringy Einstein curvature tensor and the stringy Energy-Momentum tensor. Equating them, all the equations of motion of the closed string massless sector are unified into a single expression [4],

$$G_{AB} = 8\pi G T_{AB} \tag{1}$$

which we dub the Einstein Double Field Equations.

Double Field Theory as Stringy Gravity

• Built-in symmetries & Notation:

- $-\mathbf{O}(D,D)$ T-duality
- -DFT diffeomorphisms (ordinary diffeomorphisms plus B-field gauge symmetry)
- Twofold local Lorentz symmetries, $\mathbf{Spin}(1,D-1) \times \mathbf{Spin}(D-1,1)$
- \Rightarrow Two locally inertial frames exist separately for the left and the right modes.

Index	Representation	Metric (raising/lowering indices)			
$A, B, \cdots, M, N, \cdots$	$\mathbf{O}(D,D)$ vector	$\mathcal{J}_{AB} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$			
p,q,\cdots	$\mathbf{Spin}(1, D-1)$ vector	$\eta_{pq} = \mathrm{diag}(-++\cdots+)$			
$lpha,eta,\cdots$	$\mathbf{Spin}(1, D-1)$ spinor	$C_{\alpha\beta}, \qquad (\gamma^p)^T = C\gamma^p C^{-1}$			
$ar{p},ar{q},\cdots$	$\mathbf{Spin}(D-1,1)$ vector	$ar{\eta}_{ar{p}ar{q}} = \mathrm{diag}(+\cdots-)$			
$ar{lpha}, ar{eta}, \cdots$	$\mathbf{Spin}(D-1,1)$ spinor	$\bar{C}_{\bar{\alpha}\bar{\beta}}, \qquad (\bar{\gamma}^{\bar{p}})^T = \bar{C}\bar{\gamma}^{\bar{p}}\bar{C}^{-1}$			

The O(D,D) metric \mathcal{J}_{AB} divides doubled coordinates into two: $x^A = (\tilde{x}_\mu, x^\nu), \partial_A = (\tilde{\partial}^\mu, \partial_\nu).$

• Doubled-yet-gauged spacetime:

The doubled coordinates are 'gauged' through a certain equivalence relation, $x^A \sim x^A + \Delta^A$, such that each equivalence class, or gauge orbit in \mathbb{R}^{D+D} , corresponds to a single physical point in \mathbb{R}^D [5]. This implies a section condition, $\partial_A \partial^A = 0$, which can be conveniently solved by setting $\tilde{\partial}^{\mu} \equiv 0$.

• Stringy graviton fields (closed-string massless sector), $\{d, V_{Mp}, \bar{V}_{N\bar{q}}\}$: Defining properties of the DFT-metric,

$$\mathcal{H}_{MN} = \mathcal{H}_{NM}, \qquad \mathcal{H}_K{}^L \mathcal{H}_M{}^N \mathcal{J}_{LN} = \mathcal{J}_{KM}, \tag{2}$$

set a pair of symmetric and orthogonal projectors,

$$P_{MN} = P_{NM} = \frac{1}{2}(\mathcal{J}_{MN} + \mathcal{H}_{MN}), \qquad P_L{}^M P_M{}^N = P_L{}^N,$$

 $\bar{P}_{MN} = \bar{P}_{NM} = \frac{1}{2}(\mathcal{J}_{MN} - \mathcal{H}_{MN}), \qquad \bar{P}_L{}^M \bar{P}_M{}^N = \bar{P}_L{}^N, \qquad P_L{}^M \bar{P}_M{}^N = 0.$

Further, taking the "square roots" of the projectors, we acquire a pair of DFT vielbeins,

$$P_{MN} = V_M{}^p V_N{}^q \eta_{pq} , \qquad \bar{P}_{MN} = \bar{V}_M{}^{\bar{p}} \bar{V}_N{}^{\bar{q}} \bar{\eta}_{\bar{p}\bar{q}} ,$$

satisfying their own defining properties,

$$V_{Mp}V^{M}{}_{q} = \eta_{pq}, \quad \bar{V}_{M\bar{p}}\bar{V}^{M}{}_{\bar{q}} = \bar{\eta}_{\bar{p}\bar{q}}, \quad V_{Mp}\bar{V}^{M}{}_{\bar{q}} = 0, \quad V_{M}{}^{p}V_{Np} + \bar{V}_{M}{}^{\bar{p}}\bar{V}_{N\bar{p}} = \mathcal{J}_{MN}.$$

The most general solutions to (2) can be classified by two non-negative integers (n, \bar{n}) [6],

$$\mathcal{H}_{MN} = \begin{pmatrix} H^{\mu\nu} & -H^{\mu\sigma}B_{\sigma\lambda} + Y_i^{\mu}X_{\lambda}^i - \bar{Y}_{\bar{i}}^{\mu}\bar{X}_{\lambda}^{\bar{\imath}} \\ B_{\kappa\rho}H^{\rho\nu} + X_{\kappa}^iY_i^{\nu} - \bar{X}_{\kappa}^{\bar{\imath}}\bar{Y}_{\bar{i}}^{\nu} & K_{\kappa\lambda} - B_{\kappa\rho}H^{\rho\sigma}B_{\sigma\lambda} + 2X_{(\kappa}^iB_{\lambda)\rho}Y_i^{\rho} - 2\bar{X}_{(\kappa}^{\bar{\imath}}B_{\lambda)\rho}\bar{Y}_{\bar{i}}^{\rho} \end{pmatrix}$$

where $1 \le i \le n$, $1 \le \bar{\imath}$, $i \le \bar{n}$ and

$$H^{\mu\nu}X_{\nu}^{i} = 0, \quad H^{\mu\nu}\bar{X}_{\nu}^{\bar{\imath}} = 0, \quad K_{\mu\nu}Y_{i}^{\nu} = 0, \quad K_{\mu\nu}\bar{Y}_{\bar{\imath}}^{\nu} = 0, \quad H^{\mu\rho}K_{\rho\nu} + Y_{i}^{\mu}X_{\nu}^{i} + \bar{Y}_{\bar{\imath}}^{\mu}\bar{X}_{\nu}^{\bar{\imath}} = \delta^{\mu}_{\nu}.$$

Strings become chiral and anti-chiral over n and \bar{n} directions: $X^i_\mu \partial_+ x^\mu = 0$, $\bar{X}^{\bar{\imath}}_\mu \partial_- x^\mu = 0$. Examples include (0,0) Riemannian geometry as $K_{\mu\nu} = g_{\mu\nu}$, $H^{\mu\nu} = g^{\mu\nu}$, (1,1) Gomis-Ooguri non-relativistic background, (1,0) Newton-Cartan gravity, and (D-1,0) Carroll gravity.

• Covariant derivative:

The 'master' covariant derivative, $\mathcal{D}_A = \partial_A + \Gamma_A + \Phi_A + \overline{\Phi}_A$, is characterized by compatibility:

$$\mathcal{D}_A d = \mathcal{D}_A V_{Bp} = \mathcal{D}_A \bar{V}_{B\bar{p}} = 0 , \quad \mathcal{D}_A \mathcal{J}_{BC} = \mathcal{D}_A \eta_{pq} = \mathcal{D}_A \bar{\eta}_{\bar{p}\bar{q}} = \mathcal{D}_A C_{\alpha\beta} = \mathcal{D}_A \bar{C}_{\bar{\alpha}\bar{\beta}} = 0 .$$
 The stringy Christoffel symbols are [3]

$$\Gamma_{CAB} = 2 \left(P \partial_C P \bar{P} \right)_{[AB]} + 2 \left(\bar{P}_{[A}{}^D \bar{P}_{B]}{}^E - P_{[A}{}^D P_{B]}{}^E \right) \partial_D P_{EC}
-4 \left(\frac{1}{P_M{}^M - 1} P_{C[A} P_{B]}{}^D + \frac{1}{\bar{P}_M{}^M - 1} \bar{P}_{C[A} \bar{P}_{B]}{}^D \right) \left(\partial_D d + (P \partial^E P \bar{P})_{[ED]} \right) ,$$

and the spin connections are $\Phi_{Apq} = V^B{}_p(\partial_A V_{Bq} + \Gamma_{AB}{}^C V_{Cq})$, $\bar{\Phi}_{A\bar{p}\bar{q}} = \bar{V}^B{}_{\bar{p}}(\partial_A \bar{V}_{B\bar{q}} + \Gamma_{AB}{}^C \bar{V}_{C\bar{q}})$. In Stringy Gravity, there are no normal coordinates where Γ_{CAB} would vanish point-wise: the Equivalence Principle holds for point particles but is generically broken for strings (i.e. extended objects).

• Scalar and 'Ricci' curvatures:

The semi-covariant Riemann curvature in Stringy Gravity is defined by

$$S_{ABCD} := \frac{1}{2} \left(R_{ABCD} + R_{CDAB} - \Gamma^{E}_{AB} \Gamma_{ECD} \right) ,$$

where $R_{CDAB} = \partial_A \Gamma_{BCD} - \partial_B \Gamma_{ACD} + \Gamma_{ACE} \Gamma_B{}^E{}_D - \Gamma_{BCE} \Gamma_A{}^E{}_D$ (the "field strength" of Γ_{CAB}). The completely covariant 'Ricci' and scalar curvatures are, with $S_{AB} = S_{ACB}{}^C$,

$$S_{p\bar{q}} := V^A{}_p \bar{V}^B{}_{\bar{q}} S_{AB} \,, \qquad S_{(0)} := \left(P^{AC} P^{BD} - \bar{P}^{AC} \bar{P}^{CD} \right) S_{ABCD} \,.$$

While $e^{-2d}S_{(0)}$ corresponds to the original DFT Lagrangian density [1, 2], or the 'pure' Stringy Gravity, the master covariant derivative fixes its minimal coupling to extra matter fields, *e.g.* type II maximally supersymmetric DFT [7] or the Standard Model [8].

Derivation of Einstein Double Field Equations

Variation of the action for Stringy Gravity coupled to generic matter fields, Υ_a , gives

$$\delta \int e^{-2d} \left[\frac{1}{16\pi G} S_{(0)} + L_{\text{matter}} \right]
= \int e^{-2d} \left[\frac{1}{4\pi G} \bar{V}^{A\bar{q}} \delta V_{A}^{p} (S_{p\bar{q}} - 8\pi G K_{p\bar{q}}) - \frac{1}{8\pi G} \delta d (S_{(0)} - 8\pi G T_{(0)}) + \delta \Upsilon_{a} \frac{\delta L_{\text{matter}}}{\delta \Upsilon_{a}} \right]
= \int e^{-2d} \left[\frac{1}{8\pi G} \xi^{B} \mathcal{D}^{A} \left\{ G_{AB} - 8\pi G T_{AB} \right\} + (\hat{\mathcal{L}}_{\xi} \Upsilon_{a}) \frac{\delta L_{\text{matter}}}{\delta \Upsilon_{a}} \right],$$

where the second line is for generic variations and the third line is specifically for diffeomorphic transformations. We are naturally led to define

$$K_{p\bar{q}} := \frac{1}{2} \left(V_{Ap} \frac{\delta L_{\text{matter}}}{\delta \bar{V}_{A} \bar{q}} - \bar{V}_{A\bar{q}} \frac{\delta L_{\text{matter}}}{\delta V_{A} p} \right) , \qquad T_{(0)} := e^{2d} \times \frac{\delta \left(e^{-2d} L_{\text{matter}} \right)}{\delta d} ,$$

and subsequently the stringy Einstein curvature, G_{AB} , and Energy Momentum tensor, T_{AB} ,

$$G_{AB} = 4V_{[A}{}^{p}\bar{V}_{B]}{}^{\bar{q}}S_{p\bar{q}} - \frac{1}{2}\mathcal{J}_{AB}S_{(0)}, \qquad \mathcal{D}_{A}G^{AB} = 0 \qquad \text{(off-shell)},$$

$$T_{AB} := 4V_{[A}{}^{p}\bar{V}_{B]}{}^{\bar{q}}K_{p\bar{q}} - \frac{1}{2}\mathcal{J}_{AB}T_{(0)}, \qquad \mathcal{D}_{A}T^{AB} = 0 \qquad \text{(on-shell)}.$$

The equations of motion of the stringy graviton fields are thus unified into a single expression, the Einstein Double Field Equations (1). Note that $G_A{}^A = -DS_{(0)}$, $T_A{}^A = -DT_{(0)}$.

Restricting to the (0,0) Riemannian background, the Einstein Double Field Equations reduce to

$$R_{\mu\nu} + 2\nabla_{\mu}(\partial_{\nu}\phi) - \frac{1}{4}H_{\mu\rho\sigma}H_{\nu}^{\rho\sigma} = 8\pi G K_{(\mu\nu)},$$

$$\nabla^{\rho} \left(e^{-2\phi}H_{\rho\mu\nu}\right) = 16\pi G e^{-2\phi}K_{[\mu\nu]},$$

$$R + 4\Box\phi - 4\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{12}H_{\lambda\mu\nu}H^{\lambda\mu\nu} = 8\pi G T_{(0)},$$

which imply the conservation law, $\mathcal{D}_A T^{AB} = 0$, given explicitly by

$$\nabla^{\mu} K_{(\mu\nu)} - 2\partial^{\mu} \phi \, K_{(\mu\nu)} + \frac{1}{2} H_{\nu}{}^{\lambda\mu} K_{[\lambda\mu]} - \frac{1}{2} \partial_{\nu} T_{(0)} = 0 \,, \qquad \nabla^{\mu} \left(e^{-2\phi} K_{[\mu\nu]} \right) = 0 \,.$$

The Einstein Double Field Equations also govern the dynamics of other non-Riemannian cases, $(n, \bar{n}) \neq (0, 0)$, where the Riemannian metric, $g_{\mu\nu}$, cannot be defined.

Examples

- Pure Stringy Gravity with cosmological constant:

$$\frac{1}{16\pi G}e^{-2d}\left(S_{(0)} - 2\Lambda_{\text{DFT}}\right), \qquad K_{p\bar{q}} = 0, \qquad T_{(0)} = \frac{1}{4\pi G}\Lambda_{\text{DFT}}.$$

-RR sector, given by a $\mathbf{Spin}(1,9) \times \mathbf{Spin}(9,1)$ bi-spinorial potential, $\mathcal{C}^{\alpha}_{\bar{\alpha}}$:

$$L_{\rm RR} = \frac{1}{2} \text{Tr}(\mathcal{F}\bar{\mathcal{F}}), \qquad K_{p\bar{q}} = -\frac{1}{4} \text{Tr}(\gamma_p \mathcal{F}\bar{\gamma}_{\bar{q}}\bar{\mathcal{F}}), \qquad T_{(0)} = 0,$$

where $\mathcal{F} = \mathcal{D}_{+}\mathcal{C} = \gamma^{p}\mathcal{D}_{p}\mathcal{C} + \gamma^{(11)}\mathcal{D}_{\bar{p}}\mathcal{C}\bar{\gamma}^{\bar{p}}$ is the RR flux set by an $\mathbf{O}(D,D)$ covariant "H-twisted" cohomology, $(\mathcal{D}_{+})^{2} = 0$, and $\bar{\mathcal{F}} = \bar{C}^{-1}\mathcal{F}^{T}C$ is its charge conjugate [7].

- -Spinor field: $L_{\psi} = \bar{\psi}\gamma^p \mathcal{D}_p \psi + m_{\psi} \bar{\psi} \psi$, $K_{p\bar{q}} = -\frac{1}{4}(\bar{\psi}\gamma_p \mathcal{D}_{\bar{q}}\psi \mathcal{D}_{\bar{q}}\bar{\psi}\gamma_p \psi)$, $T_{(0)} = 0$.
- Green-Schwarz superstring (κ-symmetric):

$$e^{-2d}L_{\text{string}} = \frac{1}{4\pi\alpha'} \int d^2\sigma \left[-\frac{1}{2}\sqrt{-h}h^{ij}\Pi_i^M\Pi_j^N \mathcal{H}_{MN} - \epsilon^{ij}D_iy^M (\mathcal{A}_{jM} - i\Sigma_{jM}) \right] \delta^D(x - y(\sigma)),$$

$$K_{p\bar{q}}(x) = \frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{-h}h^{ij}(\Pi_i^M V_{Mp})(\Pi_j^N \bar{V}_{N\bar{q}}) e^{2d}\delta^D(x - y(\sigma)), \qquad T_{(0)} = 0,$$

where
$$\Sigma_i^M = \bar{\theta} \gamma^M \partial_i \theta + \bar{\theta}' \bar{\gamma}^M \partial_i \theta'$$
 and $\Pi_i^M = \partial_i y^M - \mathcal{A}_i^M - i \Sigma_i^M$ (doubled-yet-gauged) [9].

Gravitational effect

The regular spherical solution to the D=4 Einstein Double Field Equations shows that Stringy Gravity modifies GR (Schwarzschild geometry), in particular at "short" dimensionless scales, R/MG, i.e. distance normalized by mass times Newton constant. This might shed new light upon the dark matter/energy problems, as they arise essentially from "short distance" observations. Furthermore, it would be intriguing to view the B-field and DFT dilaton d as 'dark gravitons', since they decouple from the geodesic motion of point particles, which should be defined in string frame [10].

		Electron $(R \simeq 0)$	Proton	Hydrogen Atom	Billiard Ball	Earth	Solar System $(1 \mathrm{AU}/M_{\odot}G)$		8	Universe $(M \propto R^3)$
83	R/(MG)	0+	7.1×10^{38}	2.0×10^{43}	2.4×10^{26}	1.4×10^9	1.0×10^{8}	1.5×10^{6}	$\sim 10^5$	0+

References

- [1] W. Siegel, "Two vierbein formalism for string inspired gravity," Phys. Rev. D 47 (1993) 5453.
- [2] C. Hull and B. Zwiebach, "Double Field Theory," JHEP **0909** (2009) 099 [arXiv:0904.4664].
- [3] I. Jeon, K. Lee and J. H. Park, "Stringy differential geometry, beyond Riemann," Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294 [hep-th]].
- [4] S. Angus, K. Cho and J. H. Park, "Einstein Double Field Equations," arXiv:1804.00964.
- [5] J. H. Park, "Comments on double field theory and diffeomorphisms," JHEP **1306** (2013) 098 [arXiv:1304.5946 [hep-th]].
- [6] K. Morand and J. H. Park, "Classification of non-Riemannian doubled-yet-gauged spacetime," Eur. Phys. J. C 77 (2017) no.10, 685 [arXiv:1707.03713 [hep-th]].
- [7] I. Jeon, K. Lee, J. H. Park and Y. Suh, "Stringy Unification of Type IIA and IIB Supergravities under N=2D=10 Supersymmetric Double Field Theory," Phys. Lett. B **723** (2013) 245 [arXiv:1210.5078 [hep-th]]. Twofold spin group, $\mathbf{Spin}(1,9) \times \mathbf{Spin}(9,1)$, unifies IIA and IIB.
- [8] K. S. Choi and J. H. Park, "Standard Model as a Double Field Theory," Phys. Rev. Lett. 115 (2015) no.17, 171603 [arXiv:1506.05277 [hep-th]].
- [9] J. H. Park, "Green-Schwarz superstring on doubled-yet-gauged spacetime," JHEP **1611** (2016) 005 [arXiv:1609.04265 [hep-th]].
- [10] S. M. Ko, J. H. Park and M. Suh, "The rotation curve of a point particle in stringy gravity," JCAP **1706** (2017) no.06, 002 [arXiv:1606.09307 [hep-th]].