## Scalar Leptoquarks for B-meson Anomalies and Dark Matter.

Soo Min Choi, Yoo Jin Kang, Hyun Min Lee, Tae Gyu Ro\*

Chung-Ang Univ. Dept. Physics

## Abstract

The LHCb experiment has recently provided several new measurements to test the lepton flavor universality in the Standard Model (SM) and confirmed some of the prevailing anomalies from the B-meson decays in BaBar and/or Belle experiments. We consider the setup where scalar leptoquarks or extra U(1) gauge bosons have flavor-dependent couplings to the SM. In this work, we discuss the flavor structure for quarks and leptons and various constraints on the model and propose a natural candidate for dark matter.

| B-meson Anomalies<br>Lepton Flavor Universality |                                                    | <ul> <li>Singlet real scalar dark matter</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\tau^- \rightarrow \tau^{\nu_{\tau}}$          | $e^-,\mu^-,	au^-$                                  | $\mathcal{L}_{S} = \left  D_{\mu} S_{LQ} \right ^{2} - m_{LQ}^{2} \left  S_{LQ} \right ^{2} + \frac{1}{2} \left( \partial_{\mu} S \right)^{2} - \frac{1}{2} m_{S}^{2} S^{2} - \frac{1}{4} \lambda_{1} S^{4} - \lambda_{2} \left  S_{LQ} \right ^{4} - \frac{1}{2} \lambda_{3} S^{2} \left  S_{LQ} \right ^{2} - \frac{1}{2} \lambda_{4} S^{2}  H ^{2} - \lambda_{5}  H ^{2} \left  S_{LQ} \right ^{2}$ |
|                                                 | $e^-$ , $\mu^- Z \sim $ Eepton Flavor Universality | Relic density for scalar dark matter                                                                                                                                                                                                                                                                                                                                                                   |
|                                                 | $\bar{x}$ $\bar{x}$ for Weak interaction           | In this cases, Lagrangian includes term for $\lambda_3$ in contrast with general scalar dark matter (without leptoquarks).                                                                                                                                                                                                                                                                             |
|                                                 | $v_{e}, v_{\mu} > e^{+}, \mu^{+}, \tau^{+}$        | So, two diagrams for tree-level annihilation cross section are added. And we need to consider the loop-induced annihilation                                                                                                                                                                                                                                                                            |

