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Something Funny Happened on the Way to the 21st Century

ν Flavor Oscillations

Neutrino oscillation experiments have revealed that neutrinos change

flavor after propagating a finite distance. The rate of change depends on

the neutrino energy Eν and the baseline L. The evidence is overwhelming.

• νµ → ντ and ν̄µ → ν̄τ — atmospheric and accelerator experiments;

• νe → νµ,τ — solar experiments;

• ν̄e → ν̄other — reactor experiments;

• νµ → νother and ν̄µ → ν̄other— atmospheric and accelerator expts;

• νµ → νe — accelerator experiments.

The simplest and only satisfactory explanation of all this data is that

neutrinos have distinct masses, and mix.
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A Realistic, Reasonable, and Simple Paradigm:




νe

νµ

ντ


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





ν1
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ν3




Definition of neutrino mass eigenstates (who are ν1, ν2, ν3?):

• m2
1 < m2

2 ∆m2
13 < 0 – Inverted Mass Hierarchy

• m2
2 −m2

1 � |m2
3 −m2

1,2| ∆m2
13 > 0 – Normal Mass Hierarchy

tan2 θ12 ≡ |Ue2|
2

|Ue1|2 ; tan2 θ23 ≡ |Uµ3|
2

|Uτ3|2 ; Ue3 ≡ sin θ13e
−iδ

[For a detailed discussion see e.g. AdG, Jenkins, PRD78, 053003 (2008)]
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NuFIT 3.2 (2018)

Normal Ordering (best fit) Inverted Ordering (∆χ2 = 4.14) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.307+0.013
−0.012 0.272→ 0.346 0.307+0.013

−0.012 0.272→ 0.346 0.272→ 0.346

θ12/
◦ 33.62+0.78

−0.76 31.42→ 36.05 33.62+0.78
−0.76 31.43→ 36.06 31.42→ 36.05

sin2 θ23 0.538+0.033
−0.069 0.418→ 0.613 0.554+0.023

−0.033 0.435→ 0.616 0.418→ 0.613

θ23/
◦ 47.2+1.9

−3.9 40.3→ 51.5 48.1+1.4
−1.9 41.3→ 51.7 40.3→ 51.5

sin2 θ13 0.02206+0.00075
−0.00075 0.01981→ 0.02436 0.02227+0.00074

−0.00074 0.02006→ 0.02452 0.01981→ 0.02436

θ13/
◦ 8.54+0.15

−0.15 8.09→ 8.98 8.58+0.14
−0.14 8.14→ 9.01 8.09→ 8.98

δCP/
◦ 234+43

−31 144→ 374 278+26
−29 192→ 354 144→ 374

∆m2
21

10−5 eV2 7.40+0.21
−0.20 6.80→ 8.02 7.40+0.21

−0.20 6.80→ 8.02 6.80→ 8.02

∆m2
3`

10−3 eV2 +2.494+0.033
−0.031 +2.399→ +2.593 −2.465+0.032

−0.031 −2.562→ −2.369

[
+2.399→ +2.593
−2.536→ −2.395

]

Three Flavor Mixing Hypothesis Fits All∗ Data Really Well.

∗Modulo a handful of 2σ to 3σ anomalies.

[Esteban et al, JHEP 01 (2017) 087, http://www.nu-fit.org]
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Understanding Neutrino Oscillations: Are We There Yet? [NO!]

(∆m2)sol

(∆m2)sol

(∆m2)atm

(∆m2)atm

νe

νµ

ντ

(m1)
2

(m2)
2

(m3)
2

(m1)
2

(m2)
2

(m3)
2

normal hierarchy inverted hierarchy

• What is the νe component of ν3?
(θ13 6= 0!)

• Is CP-invariance violated in neutrino
oscillations? (δ 6= 0, π?) [‘yes’ hint]

• Is ν3 mostly νµ or ντ? [θ23 6= π/4 hint]

• What is the neutrino mass hierarchy?
(∆m2

13 > 0?) [NH weak hint]

⇒ All of the above can “only” be

addressed with new neutrino

oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)
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We need to do this in

the lepton sector!

What we ultimately want to achieve:
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
νe

νµ

ντ

 =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




ν1

ν2

ν3



What we have really measured (very roughly):

• Two mass-squared differences, at several percent level – many probes;

• |Ue2|2 – solar data;

• |Uµ2|2 + |Uτ2|2 – solar data;

• |Ue2|2|Ue1|2 – KamLAND;

• |Uµ3|2(1− |Uµ3|2) – atmospheric data, K2K, MINOS;

• |Ue3|2(1− |Ue3|2) – Double Chooz, Daya Bay, RENO;

• |Ue3|2|Uµ3|2 (upper bound → evidence) – MINOS, T2K.

We still have a ways to go!
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A little more quantitative:

[Parke and Ross-Lonergan, arXiv:1508.05095]
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Golden Opportunity to Understand Matter versus Antimatter?

The SM with massive Majorana neutrinos accommodates five irreducible

CP-invariance violating phases.

• One is the phase in the CKM phase. We have measured it, it is large,

and we don’t understand its value. At all.

• One is θQCD term (θGG̃). We don’t know its value but it is only

constrained to be very small. We don’t know why (there are some

good ideas, however).

• Three are in the neutrino sector. One can be measured via neutrino

oscillations. 50% increase on the amount of information.

We don’t know much about CP-invariance violation. Is it really fair to

presume that CP-invariance is generically violated in the neutrino sector

solely based on the fact that it is violated in the quark sector? Why?

Cautionary tale: “Mixing angles are small.”
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NuFIT 3.2 (2018)

[Esteban et al, JHEP 01 (2017) 087, http://www.nu-fit.org]
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Long-Baseline Experiments, Present and Future (Not Exhaustive!)

• [NOW] T2K (Japan), NOνA (USA) – νµ → νe appearance, νµ

disappearance – precision measurements of “atmospheric parameters”

(∆m2
13, sin

2 θ23). Pursue mass hierarchy via matter effects. Nontrivial tests

of paradigm. First step towards CP-invariance violation.

• [∼2020] JUNO (China) – ν̄e disappearance – precision measurements of

“solar parameters” (∆m2
12, sin

2 θ12). Pursue the mass hierarchy via

precision measurements of oscillations.

• [∼2020] PINGU (South Pole) and ORCA (Mediterranean)– atmospheric

neutrinos – pursue mass hierarchy via matter effects.

• [∼2025] HyperK (Japan), DUNE (USA) – Second (real opportunity for

discovery!) step towards CP-invariance violation. More nontrivial tests of

the paradigm. Ultimate “super-beam” experiments.

• [>2030?] Neutrino Factories (?) – Ultimate neutrino oscillation experiment.

Test paradigm, precision measurements, solidify CP-violation discovery or

improve sensitivity significantly.
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What We Know We Don’t Know: How Light is the Lightest Neutrino?

(∆m2)sol

(∆m2)sol

(∆m2)atm

(∆m2)atm

νe
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(m2)
2
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2
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2

(m2)
2

(m3)
2

normal hierarchy inverted hierarchy

m2 = 0 ——————

——————↑
↓

m2
lightest = ?

So far, we’ve only been able to measure

neutrino mass-squared differences.

The lightest neutrino mass is only poorly

constrained: m2
lightest < 1 eV2

qualitatively different scenarios allowed:

• m2
lightest ≡ 0;

• m2
lightest � ∆m2

12,13;

• m2
lightest � ∆m2

12,13.

Need information outside of neutrino oscillations:

→ cosmology, β-decay, 0νββ
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The most direct probe of the lightest neutrino mass –

precision measurements of β-decay

Observation of the effect of non-zero neutrino masses kinematically.

When a neutrino is produced, some of the energy exchanged in the process

should be spent by the non-zero neutrino mass.

Typical effects are very, very small – we’ve never seen them! The most sensitive

observable is the electron energy spectrum from tritium decay.

3H→3He + e− + ν̄

Why tritium? Small Q value, reasonable abundances. Required sensitivity

proportional to m2/Q2.

In practice, this decay is sensitive to an effective “electron neutrino mass”:

m2
νe ≡

∑
i

|Uei|2m2
i
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André de Gouvêa Northwestern

Experiments measure the shape of the end-point of the spectrum, not the

value of the end point. This is done by counting events as a function of

a low-energy cut-off. note: LOTS of Statistics Needed!

E0 = 18.57 keV

t1/2 = 12.32 years

e

e
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NEXT GENERATION: The Karlsruhe Tritium Neutrino (KATRIN) Experiment:

(not your grandmother’s table top experiment!)

sensitivity m2
νe
> (0.2 eV)2
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What We Know We Don’t Know: Are Neutrinos Majorana Fermions?

ν
L

you

ν
R
? ν

L
?

you

__

A massive charged fermion (s=1/2) is
described by 4 degrees of freedom:

(e−L ← CPT→ e+
R)

l “Lorentz”

(e−R ← CPT→ e+
L)

A massive neutral fermion (s=1/2) is
described by 4 or 2 degrees of freedom:

(νL ← CPT→ ν̄R)

l “Lorentz” ‘DIRAC’

(νR ← CPT→ ν̄L)

(νL ← CPT→ ν̄R)

‘MAJORANA’ l “Lorentz”

(ν̄R ← CPT→ νL)
How many degrees of freedom are required
to describe massive neutrinos?
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Why Don’t We Know the Answer?

If neutrino masses were indeed zero, this is a nonquestion: there is no

distinction between a massless Dirac and Majorana fermion.

Processes that are proportional to the Majorana nature of the neutrino

vanish in the limit mν → 0. Since neutrinos masses are very small, the

probability for these to happen is very, very small: A ∝ mν/E.

The “smoking gun” signature is the observation of LEPTON NUMBER

violation. This is easy to understand: Majorana neutrinos are their own

antiparticles and, therefore, cannot carry any quantum number —

including lepton number.
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[see also talk by Moo Hyun Lee]
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Neutrino Properties and Cosmology – A Few Comments and Questions

• Cosmological observables offer a unique opportunity to learn about

neutrino properties. Reach superior to that of lab experiments – but

think complementarity!

• Main issue: how do we know we are learning about neutrinos?

– What if there is something out there mimicking neutrinos?

– Systematics: results seem to fluctuate depending on which

observables are being used, which assumptions are being made.

– “Robustness” of result. Can we trust a positive result?

• Will we learned about neutrinos from cosmology, or about cosmology

from neutrinos?
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Combining the Different Neutrino Mass Observables – Fundamental

[Illustrative only, for Ue3 = 0, ∆m2+
13 = +2.50× 10−3 eV2, ∆m2−

13 = −2.44× 10−3 eV2]

∑
= m1 +m2 +m3

m2
νe

= |Ue1|2m2
1 + |Ue2|2m2

2 + |Ue3|2m2
3

mee = U2
e1m1 + U2

e2m2 + U2
e3m3
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What We Are Trying To Understand:

⇐ NEUTRINOS HAVE TINY MASSES

⇓ LEPTON MIXING IS “WEIRD” ⇓

VMNS ∼




0.8 0.5 0.2

0.4 0.6 0.7
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
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Neutrino Masses: Only∗ “Palpable” Evidence

of Physics Beyond the Standard Model

The SM we all learned in school predicts that neutrinos are strictly

massless. Hence, massive neutrinos imply that the the SM is incomplete

and needs to be replaced/modified.

Furthermore, the SM has to be replaced by something qualitatively

different.

——————
∗ There is only a handful of questions our model for fundamental physics cannot

explain (these are personal. Feel free to complain).

• What is the physics behind electroweak symmetry breaking? (Higgs X).

• What is the dark matter? (not in SM).

• Why is there more matter than antimatter in the Universe? (not in SM).

• Why does the Universe appear to be accelerating? Why does it appear that the

Universe underwent rapid acceleration in the past? (not in SM).
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What is the New Standard Model? [νSM]

The short answer is – WE DON’T KNOW. Not enough available info!

m

Equivalently, there are several completely different ways of addressing

neutrino masses. The key issue is to understand what else the νSM

candidates can do. [are they falsifiable?, are they “simple”?, do they

address other outstanding problems in physics?, etc]

We need more experimental input.
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One Candidate νSM

SM as an effective field theory – non-renormalizable operators

LνSM ⊃ −yij L
iHLjH

2Λ +O
(

1
Λ2

)
+H.c.

There is only one dimension five operator [Weinberg, 1979]. If Λ� 1 TeV, it

leads to only one observable consequence...

after EWSB: LνSM ⊃ mij
2 νiνj ; mij = yij

v2

Λ .

• Neutrino masses are small: Λ� v → mν � mf (f = e, µ, u, d, etc)

• Neutrinos are Majorana fermions – Lepton number is violated!

• νSM effective theory – not valid for energies above at most Λ/y.

• Define ymax ≡ 1 ⇒ data require Λ ∼ 1014 GeV.

What else is this “good for”? Depends on the ultraviolet completion!
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The Seesaw Lagrangian

A simplea, renormalizable Lagrangian that allows for neutrino masses is

Lν = Lold − λαiLαHN i −
3∑

i=1

Mi

2
N iN i +H.c.,

where Ni (i = 1, 2, 3, for concreteness) are SM gauge singlet fermions.

Lν is the most general, renormalizable Lagrangian consistent with the SM

gauge group and particle content, plus the addition of the Ni fields.

After electroweak symmetry breaking, Lν describes, besides all other SM

degrees of freedom, six Majorana fermions: six neutrinos.

aOnly requires the introduction of three fermionic degrees of freedom, no new inter-

actions or symmetries.
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To be determined from data: λ and M .

The data can be summarized as follows: there is evidence for three

neutrinos, mostly “active” (linear combinations of νe, νµ, and ντ ). At

least two of them are massive and, if there are other neutrinos, they have

to be “sterile.”

This provides very little information concerning the magnitude of Mi

(assume M1 ∼M2 ∼M3).

Theoretically, there is prejudice in favor of very large M : M � v. Popular

examples include M ∼MGUT (GUT scale), or M ∼ 1 TeV (EWSB scale).

Furthermore, λ ∼ 1 translates into M ∼ 1014 GeV, while thermal

leptogenesis requires the lightest Mi to be around 1010 GeV.

we can impose very, very few experimental constraints on M
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( Why are Neutrino Masses Small in the M 6= 0 Case?

If µ�M , below the mass scale M ,

L5 =
LHLH

Λ
.

Neutrino masses are small if Λ� 〈H〉. Data require Λ ∼ 1014 GeV.

In the case of the seesaw,

Λ ∼ M

λ2
,

so neutrino masses are small if either

• they are generated by physics at a very high energy scale M � v

(high-energy seesaw); or

• they arise out of a very weak coupling between the SM and a new, hidden

sector (low-energy seesaw); or

• cancellations among different contributions render neutrino masses

accidentally small (“fine-tuning”).

)
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[AdG, Huang, Jenkins, arXiv:0906.1611]
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André de Gouvêa Northwestern

Dirac Neutrinos – Enhanced Symmetry!(Symmetries?)

If all Mi ≡ 0, the neutrinos are Dirac fermions.

Lν = Lold − λαiLαHN i +H.c.,

where Ni (i = 1, 2, 3, for concreteness) are SM gauge singlet fermions. In

this case, the νSM global symmetry structure is enhanced. For example,

U(1)B−L is an exactly conserved, global symmetry. This is new!

Downside: The neutrino Yukawa couplings λ are tiny, less than 10−12.

What is wrong with that? We don’t like tiny numbers, but Nature seems

to not care very much about what we like. . .

More to the point, the failure here is that it turns out that the neutrino

masses are not, trivially, qualitatively different. This seems to be a

“missed opportunity.”
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André de Gouvêa Northwestern

There are lots of ideas that lead to very small Dirac neutrino masses.

Maybe right-handed neutrinos exist, but neutrino Yukawa couplings are

forbidden – hence neutrino masses are tiny.

One possibility is that the N fields are charged under some new symmetry

(gauged or global) that is spontaneously broken.

λαiL
αHN i → καi

Λ
(LαH)(N iΦ),

where Φ (spontaneously) breaks the new symmetry at some energy scale

vΦ. Hence, λ = κvΦ/Λ. How do we test this?

E.g., AdG and D. Hernández, arXiv:1507.00916

Gauged chiral new symmetry for the right-handed neutrinos, no Majorana

masses allowed, plus a heavy messenger sector. Predictions: new stable massive

states (mass around vΦ) which look like (i) dark matter, (ii) (Dirac) sterile

neutrinos are required. Furthermore, there is a new heavy Z′-like gauge boson.

⇒ Natural Conections to Dark Matter, Sterile Neutrinos, Dark Photons!
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VMNS ∼
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1

Understanding Fermion Mixing

One of the puzzling phenomena uncovered by the neutrino data is the

fact that Neutrino Mixing is Strange. What does this mean?

It means that lepton mixing is very different from quark mixing:

[|(VMNS)e3| < 0.2]

WHY?

They certainly look VERY different, but which one would you label

as “strange”?
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Neutrino Mixing Anarchy: Alive and Kicking!
[Hall, Murayama, Weiner hep-ph/9911341]

[AdG, Murayama, 1204.1249]
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André de Gouvêa Northwestern

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
sin2e23

si
n2
e 1

3
Anarchy vs. Order — more precision required!

Order: sin2 θ13 = C cos2 2θ23, C ∈ [0.8, 1.2] [AdG, Murayama, 1204.1249]
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Piecing the Neutrino Mass Puzzle

Understanding the origin of neutrino masses and exploring the new physics in the

lepton sector will require unique theoretical and experimental efforts, including . . .

• understanding the fate of lepton-number. Neutrinoless double beta decay!

• a comprehensive long baseline neutrino program, towards precision oscillation

physics.

• other probes of neutrino properties, including neutrino scattering.

• precision studies of charged-lepton properties (g − 2, edm), and searches for rare

processes (µ→ e-conversion the best bet at the moment).

• collider experiments. The LHC and beyond may end up revealing the new physics

behind small neutrino masses.

• cosmic surveys. Neutrino properties affect, in a significant way, the history of the

universe. Will we learn about neutrinos from cosmology, or about cosmology from

neutrinos?

• searches for baryon-number violating processes.
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In Conclusion

The venerable Standard Model sprang a leak at the end of the last

century: neutrinos are not massless! (we are still trying to patch it. . . )

1. We know very little about the new physics uncovered by neutrino

oscillations.

• It could be renormalizable → “boring” (?) Dirac neutrinos.

• It could be due to Physics at absurdly high energy scales M � 1 TeV →
high energy seesaw. How can we convince ourselves that this is correct?

• It could be due to very light new physics. Prediction: new light

propagating degrees of freedom – sterile neutrinos

• It could be due to new physics at the TeV scale → either weakly

coupled, or via a more subtle lepton number breaking sector.

2. neutrino masses are very small – we don’t know why, but we think it

means something important.

3. neutrino mixing is “weird” – we don’t know why, but we think it means

something important.
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4. we need a minimal νSM Lagrangian. In order to decide which one is

“correct” we need to uncover the faith of baryon number minus

lepton number (0νββ is the best [only?] bet).

5. We need more experimental input These will come from a rich, diverse

experimental program which relies heavily on the existence of underground

facilities capable of hosting large detectors (double-beta decay,

precision neutrino oscillations, supernova neutrinos, nucleon

decay). Also “required”

• Powerful neutrino beam;

• Precision studies of charged-lepton lepton properties and processes;

• High energy collider experiments (the LHC will do for now);

6. There is plenty of room for surprises, as neutrinos are potentially very

deep probes of all sorts of physical phenomena. Remember that neutrino

oscillations are “quantum interference devices” – potentially very sensitive

to whatever else may be out there (e.g., Λ ' 1014 GeV).
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Backup Slides . . .
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Not all is well(?): The Short Baseline Anomalies

Different data sets, sensitive to L/E values small enough that the known

oscillation frequencies do not have “time” to operate, point to unexpected

neutrino behavior. These include

• νµ → νe appearance — LSND, MiniBooNE;

• νe → νother disappearance — radioactive sources;

• ν̄e → ν̄other disappearance — reactor experiments.

None are entirely convincing, either individually or combined. However,

there may be something very very interesting going on here. . .
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• LSND

• MB ν

• MB, ν̄

[Courtesy of G. Mills]
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[Statistical Errors Only]

[Courtesy of G. Mills]
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What is Going on Here?

• Are these “anomalies” related?

• Is this neutrino oscillations, other new physics, or something else?

• Are these related to the origin of neutrino masses and lepton mixing?

• How do clear this up definitively?

Need new clever experiments, of the short-baseline type!

Observable wish list:

• νµ disappearance (and antineutrino);

• νe disappearance (and antineutrino);

• νµ ↔ νe appearance;

• νµ,e → ντ appearance.
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High-energy seesaw has no other observable consequences, except, perhaps, . . .

Baryogenesis via Leptogenesis

One of the most basic questions we are allowed to ask (with any real hope

of getting an answer) is whether the observed baryon asymmetry of the

Universe can be obtained from a baryon–antibaryon symmetric initial

condition plus well understood dynamics. [Baryogenesis]

This isn’t just for aesthetic reasons. If the early Universe undergoes a

period of inflation, baryogenesis is required, as inflation would wipe out

any pre-existing baryon asymmetry.

It turns out that massive neutrinos can help solve this puzzle!
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In the old SM, (electroweak) baryogenesis does not work – not enough

CP-invariance violation, Higgs boson too light.

Neutrinos help by providing all the necessary ingredients for successful

baryogenesis via leptogenesis.

• Violation of lepton number, which later on is transformed into baryon

number by nonperturbative, finite temperature electroweak effects (in

one version of the νSM, lepton number is broken at a high energy

scale M).

• Violation of C-invariance and CP-invariance (weak interactions, plus

new CP-odd phases).

• Deviation from thermal equilibrium (depending on the strength of the

relevant interactions).
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E.g. – thermal, seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

• L-violating processes

• y ⇒ CP-violation

• deviation from thermal eq.
constrains combinations of

MN and y.

• need to yield correct mν

not trivial!

[G. Giudice et al, hep-ph/0310123]

[Fukugita, Yanagida]
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E.g. – thermal, seesaw leptogenesis, L ⊃ −yiαLiHNα − Mαβ
N

2 NαNβ +H.c.

[G. Giudice et al, hep-ph/0310123]

It did not have to work – but it does

MSSM picture does not quite work – gravitino problem

(there are ways around it, of course...)
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