Floquet analysis of self-resonance in single-field inflationary models

Michał Wieczorek

Faculty of Physics, University of Warsaw

August 29, 2018

1/16

Based on work with: K. Turzyński arXiv:1808.00835

- Cosmological inflation a natural ingredient of the standard big bang cosmological model
- However:
 - Remains very general theory (many models of inflation consistent with data)
 - The relation of inflaton field (or fields) with standard model of particle physics still unclear
- Consequently: the physics of reheating not well known
- Nevertheless, there exist possible scenarios for reheating!

Self-resonance

- the natural scenario based on inflaton perturbations evolution
- Coherent oscillations

• Time dependent periodic mass for perturbations $\phi(t, x) \equiv \phi(t) + \delta \phi(t, \mathbf{x})$ $\delta \ddot{\phi}_k + \left(k^2 + \underbrace{V_{\phi\phi}}_{periodic}\right) \delta \phi_k = 0$

 $\delta\phi_k$ - the Fourier component of $\delta\phi$

Self-resonance ⇒ inflaton fragmentation!

Kofman, Linde, Starobinsky hep-th/9405187

Amin, Lozanov Phys. Rev. Lett. 119 061301

Floquet theory

• By Floquet theorem we have the solution:

$$\delta\phi_k(t) = \sum_{i=1}^2 \underbrace{\delta\phi_{i,k}(t, t_0)}_{\text{periodic}} \exp(\mu_k^i(t - t_0))$$

 μ_k^i - Floquet exponents - amplitude growth indicators

- Big Floquet exponents ⇒ the inflaton condensate stops to be dominant ⇒ back reaction ⇒ inflaton fragmentation
- the equation of state parameter

$$w \equiv \frac{\langle p \rangle}{\langle \rho \rangle} = \frac{\left\langle \frac{1}{2}\dot{\phi}^2 - \frac{1}{6}(\nabla\phi)^2 - V(\phi) \right\rangle}{\left\langle \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}(\nabla\phi)^2 + V(\phi) \right\rangle}$$
$$V_{min} \sim \phi^n \qquad \Rightarrow \qquad w_{hom} = \frac{n-2}{n+2}$$

• the inflaton fragmentation may change w and potentially lead to radiation domination $(w = \frac{1}{3})$

4/16

Exemplary plot of Floquet exponents

Possibility of oscillons formation

- The condensate fragmentation may not be the sufficient condition to obtain the radiation dominated Universe!
- Two possible scenarios: • $V_{min} \sim \phi^2 \Rightarrow \text{Oscillons}$
 - formation (effectively
 - $w \equiv \frac{p}{\rho} = 0)$ • $V_{min} \sim \phi^n; n \neq 2 \Rightarrow$ Subsequent radiation domination $(w = \frac{1}{3})$

• For reheating we need both the big Floquet exponents and non-quadratic potential at its minimum!:

Amin, Easther, Finkel JCAP 1012 001

6/16

Investigated models

model	# parameters	Planck data OK?	large FE?
Higgs inflation (HI)	0	Yes	-
Exponential SUSY inflation (ESI)	1	Yes	-
Power law inflation (PLI)	1	No	-
Loop inflation (LI)	1	Yes	-
Arctan inflation (AI)	1	Yes	-
Constant n_s A inflation (CNAI)	1	Yes	-
Constant n_s B inflation (CNBI)	1	Yes	-
Radiatively corrected Quartic inflation (RCQI)	1	No	-
Horizon flow inflation at first order (HF1I)	1	No	-
Radiatively corrected Higgs Inflation (RCHI)	1	Yes	-
MSSM inflation (MSSMI)	1	Yes	-
Renormalizable inflection point inflation (RIPI)	1	Yes	-
Open string tachyonic inflation (OSTI)	1	Yes	-
Colemann Weinberg inflation (CWI)	1	Yes	-
Large field inflation (LFI)	1	Yes	No
Mixed Large field inflation (MLFI)	1	Yes	No
Radiatively corrected massive inflation (RCMI)	1	Yes	No
Natural inflation (NI)	1	Yes	No
Kahler Moduli inflation I (KMII)	1	Yes	No
Double well potential inflation (DWI)	1	Yes	No
$R + R^{2p}$ inflation (RpI)	1	Yes	No
Mutated hilltop inflation (MHI)	1	Yes	Yes
Radion gauge inflation (RGI)	1	Yes	Yes
Witten-O'Raifeartaigh inflation (WRI)	1	Yes	Yes
Small field inflation (SFI)	2	Yes	-
Intermediate inflation (II)	2	No	-
Logamediate inflation (LMI)	2	Yes	-
Brane SUSY breaking inflation (BSUSYBI)	2	No	-
β -exponential inflation (BEI)	2	Yes	-
Pseudo natural inflation (PSNI)	2	Yes	-
Non canonical Kahler inflation (NCKI)	2	Yes	-
Constant n_s C inflation (CNCI)	2	No	-
Inverse monomial inflation (IMI)	2	No	-
Brane inflation (BI)	2	Yes	-
Kahler moduli inflation II (KMIII)	2	Yes	-
Twisted inflation (TWI)	2	No	-
Generalized MSSM inflation (GMSSMI)	2	Yes	-
Constant spectrum inflation (CSI)	2	No	-
Orientifold inflation (OI)	2	No	-
Tip inflation (TI)	2	Yes	-
Supergravity brane inflation (SBI)	2	Yes	No
Spontaneous symmetry breaking inflation (SSBI)	2	Yes	No
Generalized renormalizable point inflation (GRIPI)	2	Yes	Yes
KKLT inflation (KKLTI)	2	Yes	Yes
Running-mass inflation (RMI)	3	Yes	-
Valley hybrid inflation (VHI)	3	Yes	-
Constant n_S D inflation (CNDI)	3	Yes	-
Logarithmic potential inflation (LPI)	3	Yes	No
Dynamical supersymmetric inflation (DSI)	3	No	-
Generalized mixed inflation (GMLFI)	3	No	-

Martin, Ringeval, Vennin Encyclopaedia Inflationaris Phys. Dark Univ. 5-6 75-235

Planck Collaboration [arXiv:1807.06209 [astro-ph.CO]]

Models with positive Floquet exponents

- Single-field models consistent with current cosmological data for which the Floquet exponents are positive:
 - Mutated hilltop inflation (MHI) $V(\phi) = M^4 \left(1 \operatorname{sech}\left(\frac{\phi}{\mu}\right)\right)$
 - Radion gauge inflation (RGI) $V(\phi) = M^4 \frac{(\phi/M_P)^2}{\alpha + (\phi/M_P)^2}$
 - Witten-O'Raifeartaigh inflation (WRI) $V(\phi) = M^4 \ln^2 \left(\frac{\phi}{\phi_0}\right)$
 - Generalized renormalizable point inflation (GRIPI)

$$V(\phi) = M^4 \left(\left(\frac{\phi}{\phi_0} \right)^2 - \frac{4}{3} \alpha \left(\frac{\phi}{\phi_0} \right)^3 + \frac{1}{2} \alpha \left(\frac{\phi}{\phi_0} \right)^4 \right)$$

• KKLT inflation (KKLTI) $V(\phi) = M^4 \left(1 + \left(\frac{\phi}{\mu} \right)^{-p} \right)^{-1}$

• Only the KKLTI model for $p \neq 2$ has non-quadratic minimum!

9/16

RGI

WRI

GRIPI

KKLTI

・ロ ・ ・ 一部 ・ く言 ・ く言 ・ 言 の へ ()
13 / 16

Results of lattice simulations for KKLTI model

- KKLTI model has quadratic minimum for p = 2 and nonquadratic minimum for p = 3
- the results of lattice simulations confirm the oscillons domination for p = 2 and effective reheating for p = 3

Conclusions

- From many single-field inflationary models described in *Encyclopaedia Inflationaris*, there are 5 characterized with both, agreement with cosmological data and the strong destabilization of inflaton perturbations via the self-resonance mechanism.
- Only one of these models, namely KKLT inflation model, has non-quadratic minimum, which prevents the formation of long-lived oscillons.
- Therefore only for the KKLT inflation model the self-resonance mechanism can be solely responsible for post-inflationary reheating.

Conclusions

- From many single-field inflationary models described in *Encyclopaedia Inflationaris* there are 5 characterized with both, agreement with cosmological data and the strong destabilization of inflaton perturbations via the self-resonance mechanism.
- Only one of these models, namely KKLT inflation model, has non-quadratic minimum, which prevents the formation of long-lived oscillons.
- Therefore only for the KKLT inflation model the self-resonance mechanism can be solely responsible for post-inflationary reheating.

Thank you for your attention!