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Introduction

e Cosmological inflation - a natural ingredient of the
standard big bang cosmological model

e However:
e Remains very general theory (many models of inflation
consistent with data)
o The relation of inflaton field (or fields) with standard model of
particle physics still unclear
e Consequently: the physics of reheating - not well known

o Nevertheless, there exist possible scenarios for reheating!
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Self-resonance

@ the natural scenario based on inflaton perturbations evolution

@ Coherent oscillations @ Time dependent periodic
mass for perturbations
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@ Self-resonance = inflaton fragmentation!
@ Kofman, Linde, Starobinsky @ Amin, Lozanov
hep-th/9405187 Phys. Rev. Lett. 119 061301
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Floquet theory

@ By Floquet theorem we have the solution:

/1/}'( - Floquet exponents -

2
dok(t) = Z 0i k(t, to) exp(uj(t — to))  amplitude growth

i=1 Denodic indicators

o Big Floquet exponents = the inflaton condensate stops
to be dominant = back reaction = inflaton fragmentation
@ the equation of state parameter
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@ the inflaton fragmentation may change w and potentially lead

to radiation domination (w = %)
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Exemplary plot of Floquet exponents
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Possibility of oscillons formation

@ The condensate fragmentation may not be the sufficient
condition to obtain the radiation dominated Universe!

@ Two possible scenarios: V(o)

o Viin~¢*> = Oscillons 1.0

formation (effectively
=£2=0)
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@ For reheating we need both the big Floquet exponents and
non-quadratic potential at its minimum!:

@ Amin, Easther,

@ Amin, Easther, Finkel, Flauger, @ Amin, Lozanov
Finkel Hertzberg Phys. Rev. D97,
JCAP 1012 001 Phys. Rev. Lett. 108 023533
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Investigated models
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@ Martin,

Ringeval,
Vennin
Encyclopaedia
Inflationaris
Phys. Dark
Univ. 5-6
75-235

@ Planck
Collaboration
[arXiv:1807.06209
[astro-ph.CO]]
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Models with positive Floquet exponents

@ Single-field models consistent with current cosmological data
for which the Floquet exponents are positive:

o Mutated hilltop inflation (MHI)  V(¢) = M* <1 - sech(i))

e Radion gauge inflation (RGl)  V(¢) = M4%
o Witten-O'Raifeartaigh inflation (WRI) V() = Mﬁ&(%)

o Generalized renormalizable point inflation (GRIPI)
2 3 4
vio = ()" $0(2) + 1o())
. ) —p -1
o KKLT inflation (KKLTI)  V(¢) = M4<1 T (%) >

@ Only the KKLTI model for p # 2 has non-quadratic minimum!
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MHI

V(p) =M1 - sech(%)
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RGI
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WRI

V() = M4ln2(£)
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GRIPI
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Results of lattice simulations for KKLTI model

@ KKLTI model has quadratic minimum for p = 2 and
nonquadratic minimum for p =3

@ the results of lattice simulations confirm the oscillons
domination for p = 2 and effective reheating for p = 3
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Conclusions

@ From many single-field inflationary models described in
Encyclopaedia Inflationaris, there are 5 characterized with
both, agreement with cosmological data and the strong
destabilization of inflaton perturbations via the self-resonance
mechanism.

@ Only one of these models, namely KKLT inflation model, has
non-quadratic minimum, which prevents the formation of
long-lived oscillons.

@ Therefore only for the KKLT inflation model the
self-resonance mechanism can be solely responsible for
post-inflationary reheating.
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Conclusions

@ From many single-field inflationary models described in
Encyclopaedia Inflationaris there are 5 characterized with
both, agreement with cosmological data and the strong
destabilization of inflaton perturbations via the self-resonance
mechanism.
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non-quadratic minimum, which prevents the formation of
long-lived oscillons.

@ Therefore only for the KKLT inflation model the
self-resonance mechanism can be solely responsible for
post-inflationary reheating.

Thank you for your attention!
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