The cosmic QCD epoch at non-

vanishing lepton asymmetry

Mandy Wygas*

Isabel M. Oldengott ${ }^{+}$

Dominik J. Schwarz*
Dietrich Bödeker*
${ }^{+}$University of Valencia, *Bielefeld University

Motivation: QCD diagram

Baryon asymmetry of Universe : $\quad b=\frac{n_{\mathrm{B}}}{s}=(8.60 \pm 0.06) \times 10^{-11} \quad$ (Planck 2015)
\rightarrow well measured, but poorly understood...

Baryon asymmetry of Universe : $\quad b=\frac{n_{\mathrm{B}}}{s}=(8.60 \pm 0.06) \times 10^{-11} \quad$ (Planck 2015)
 \rightarrow well measured, but poorly understood...

Tiny, but why so big?

\rightarrow Baryogenesis, Leptogenesis

Leptogenesis: 1.) Mechanism for creation of lepton asymmetry
2.) Sphaleron processes transfer lepton asymmetry to baryon asymmetry
\rightarrow lepton asymmetry \approx baryon asymmetry (i. e. tiny)

Baryon asymmetry of Universe : $\quad b=\frac{n_{\mathrm{B}}}{s}=(8.60 \pm 0.06) \times 10^{-11} \quad$ (Planck 2015)
\rightarrow well measured, but poorly understood...

Tiny, but why so big?

\rightarrow Baryogenesis, Leptogenesis

Leptogenesis: 1.) Mechanism for creation of lepton asymmetry
2.) Sphaleron processes transfer lepton asymmetry to baryon asymmetry
\rightarrow lepton asymmetry \approx baryon asymmetry (i. e. tiny)

Possible caveats?

- sphaleron processes experimentally not confirmed
- suppress sphaleron processes?
(S. Eijima, M. Shaposhnikov 2017; G. Barenboim, W. Park 2017;...)
- create large lepton asymmetry at later times, when sphaleron processes are inefficient

Lepton asymmetry = key parameter for origin of matter-antimatter asymmetry

What do we know about the lepton asymmetry of our Universe?
charge neutrality:
\rightarrow possibly hidden in cosmic neutrino background
\rightarrow no direct measurement possible $\left(T_{\nu}=1.9 \mathrm{~K}\right)$

Lepton asymmetry = key parameter for origin of matter-antimatter asymmetry

What do we know about the lepton asymmetry of our Universe?
charge neutrality:
\rightarrow possibly hidden in cosmic neutrino background
\rightarrow no direct measurement possible $\left(T_{\nu}=1.9 \mathrm{~K}\right)$

Any constraints?
CMB and $\mathrm{BBN}: \quad l \leq \mathcal{O}(0.01) \begin{aligned} & \text { I. Oldengott, D. Schwarz 2017; } \\ & \text { Mangano et al. } 2012\end{aligned}$
\rightarrow could be larger than baryon asymmetry by many orders of magnitude

Agnostic point of view: lepton asymmetry = free parameter for cosmology

How to compute the cosmic trajectory:

Conservation laws (at $10 \mathrm{MeV}<T<100 \mathrm{GeV}$)

How to compute the cosmic trajectory:

Conservation laws (at $10 \mathrm{MeV}<T<100 \mathrm{GeV}$)

1.) Lepton number: $l_{\alpha} s=n_{\alpha}+n_{\nu_{\alpha}}, \alpha=e, \mu, \tau$

How to compute the cosmic trajectory:

Conservation laws (at $10 \mathrm{MeV}<T<100 \mathrm{GeV}$)

1.) Lepton number: $l_{\alpha} s=n_{\alpha}+n_{\nu_{\alpha}}, \alpha=e, \mu, \tau$
2.) Baryon number: $b s=\sum_{i} B_{i} n_{i}$

How to compute the cosmic trajectory:

Conservation laws (at $10 \mathrm{MeV}<T<100 \mathrm{GeV}$)

1.) Lepton number: $l_{\alpha} s=n_{\alpha}+n_{\nu_{\alpha}}, \alpha=e, \mu, \tau$
2.) Baryon number: $b s=\sum_{i} B_{i} n_{i}$
3.) Electric charge: $q s=\sum_{i} Q_{i} n_{i}$

How to compute the cosmic trajectory:

Conservation laws (at $10 \mathrm{MeV}<T<100 \mathrm{GeV}$)

1.) Lepton number: $l_{\alpha} s=n_{\alpha}+n_{\nu_{\alpha}}, \alpha=e, \mu, \tau$
2.) Baryon number: $b s=\sum_{i} B_{i} n_{i} 8^{8} \cdot 6+{ }_{10 \backslash \lambda_{2}}$
3.) Electric charge: $q s=\sum_{i}^{q=0} Q_{i} n_{i}^{\left(c_{q_{2 i g e}} n_{\left.e q i t t_{i d l}\right)}\right.}$

How to compute the cosmic trajectory:

Conservation laws (at $10 \mathrm{MeV}<T<100 \mathrm{GeV}$)

1.) Lepton number: $l_{\alpha} s=n_{\alpha}+n_{\nu_{\alpha}}, \alpha=e, \mu, \tau$

Assume $l_{\alpha}=l$ (equal flavour asymmetries)
2.) Baryon number: $b s=\sum_{i} B_{i} n_{i}^{8} \cdot 6^{6}+\frac{10 \backslash 1 / 2}{}$
3.) Electric charge: $q s=\sum_{i}^{q=0} Q_{i} n_{i}^{\left(\operatorname{ch}_{\arg _{\delta e}} n_{\left.e q u t x^{2} a l\right)}\right.}$

How to compute the cosmic trajectory:

Conservation laws (at $10 \mathrm{MeV}<T<100 \mathrm{GeV}$)

1.) Lepton number: $l_{\alpha} s=n_{\alpha}+n_{\nu_{\alpha}}, \alpha=e, \mu, \tau$

Assume $l_{\alpha}=l$ (equal flavour asymmetries)

5 conservation laws
$\rightarrow 5$ equations
$\rightarrow 5$ chemical potentials:
$\mu_{\mathrm{L}_{e}}, \mu_{\mathrm{L}_{\mu}}, \mu_{\mathrm{L}_{\tau}}, \mu_{\mathrm{B}}, \mu_{\mathrm{Q}}$

At $\mathbf{T} \gg \mathrm{T}_{\mathrm{QCD}}$

\rightarrow ideal quark gas (weak, but no strong interactions)

At $\mathbf{T} \gg \mathbf{T}_{\mathrm{QCD}}$
\rightarrow ideal quark gas (weak, but no strong interactions)
At $\mathbf{T} \ll \mathbf{T}_{\mathrm{QCD}}$
\rightarrow hadron resonance gas, HRG (weak, but no strong interactions)

At $\mathbf{T}>\mathbf{T}_{\mathrm{QCD}}$

\rightarrow ideal quark gas (weak, but no strong interactions)
At $\mathbf{T} \ll \mathbf{T}_{\mathrm{QCD}}$
\rightarrow hadron resonance gas, HRG (weak, but no strong interactions)

\rightarrow thermal and chemical equilibrium:

Net particle densities:

$$
n_{i}=\frac{g_{i}}{2 \pi^{2}} \int_{m_{i}}^{\infty} \mathrm{d} E E \sqrt{E^{2}-m_{i}^{2}} \times\left(\frac{1}{e^{\left(E-\mu_{i}\right) / T} \pm 1}-\frac{1}{e^{\left(E+\mu_{i}\right) / T} \pm 1}\right)
$$

At $\mathbf{T} \gg \mathbf{T}_{\mathrm{QCD}}$

\rightarrow ideal quark gas (weak, but no strong interactions)

At $\mathbf{T} \ll \mathbf{T}_{\mathrm{QCD}}$

\rightarrow hadron resonance gas, HRG (weak, but no strong interactions)

\rightarrow thermal and chemical equilibrium:

Net particle densities:

$$
n_{i}=\frac{g_{i}}{2 \pi^{2}} \int_{m_{i}}^{\infty} \mathrm{d} E E \sqrt{E^{2}-m_{i}^{2}} \times\left(\frac{1}{e^{\left(E-\mu_{i}\right) / T} \pm 1}-\frac{1}{e^{\left(E+\mu_{i}\right) / T} \pm 1}\right)
$$

where

$$
\begin{aligned}
& T \ll T_{\mathrm{QCD}} \\
& \quad \text { } \\
& \mu_{Q}=\mu_{\pi}=\mu_{p}-\mu_{n} \\
& \mu_{B}=\mu_{n} \\
& \text { etc. }
\end{aligned}
$$

And what about $T \approx T_{\mathrm{QCD}}$?

And what about $T \approx T_{\mathrm{QCD}}$?

\rightarrow Trick from lattice QCD: Expand around $\mu \approx 0$

$$
\begin{aligned}
p^{\mathrm{QCD}}(T, \mu) & =p^{\mathrm{QCD}}(T, 0)+\frac{1}{2} \mu_{a} \chi_{a b}(T) \mu_{b}+\mathcal{O}\left(\mu^{4}\right) \\
n_{a}(T, \mu) & =\frac{\partial p^{\mathrm{QCD}}(T, \mu)}{\partial \mu_{a}}=\chi_{a b} \mu_{b}+\mathcal{O}\left(\mu^{3}\right)
\end{aligned}
$$

susceptibilities: $\quad \underset{a b}{ } \stackrel{\Delta}{(T)}=\left.\frac{\partial^{2} p^{\mathrm{QCD}}(T, \mu)}{\partial \mu_{a} \partial \mu_{b}}\right|_{\mu=0}=\chi_{b a}(T)$
\rightarrow calculated on the lattice! (Hot QCD coll. 2012 \& 2014)

And what about $T \approx T_{\mathrm{QCD}}$?

\rightarrow Trick from lattice QCD: Expand around $\mu \approx 0$

$$
\begin{aligned}
p^{\mathrm{QCD}}(T, \mu) & =p^{\mathrm{QCD}}(T, 0)+\frac{1}{2} \mu_{a} \chi_{a b}(T) \mu_{b}+\mathcal{O}\left(\mu^{4}\right) \\
n_{a}(T, \mu) & =\frac{\partial p^{\mathrm{QCD}}(T, \mu)}{\partial \mu_{a}}=\chi_{a b} \mu_{b}+\mathcal{O}\left(\mu^{3}\right)
\end{aligned}
$$

susceptibilities: $\quad \chi_{a b}(T)=\left.\frac{\partial^{2} p^{\mathrm{QCD}}(T, \mu)}{\partial \mu_{a} \partial \mu_{b}}\right|_{\mu=0}=\chi_{b a}(T)$
\rightarrow calculated on the lattice! (Hot QCD coll. 2012 \& 2014)

\rightarrow Looks smooth. No indication for a 1st order transition.

Conclusions

Conclusions

- The QCD diagram is $5+1$ dimensional.

Conclusions

- The QCD diagram is $5+1$ dimensional.
- For non-vanishing lepton asymmetry the cosmic trajectory gets shifted in the $\left(\mu_{\mathrm{B}}, T\right)$ plane.

Conclusions

- The QCD diagram is $5+1$ dimensional.
- For non-vanishing lepton asymmetry the cosmic trajectory gets shifted in the $\left(\mu_{\mathrm{B}}, T\right)$ plane.
- There is no hint for a first-order transition (assuming equal flavour asymmetries!).

Conclusions

- The QCD diagram is $5+1$ dimensional.
- For non-vanishing lepton asymmetry the cosmic trajectory gets shifted in the $\left(\mu_{\mathrm{B}}, T\right)$ plane.
- There is no hint for a first-order transition (assuming equal flavour asymmetries!).

Thank you for your attention!

