Stringy Gravity and the Einstein Double Field Equations

Stephen Angus Ewha Woman's University, Seoul

based on

1804.00964 (SA, K. Cho, J.H. Park) and

18xx.0xxxx (SA, K. Cho, G. Franzmann, S. Mukohyama, J.H. Park)

• □ ▷ < □ ▷ < □ ▷</p>

Cosmo 2018 IBS, Daejeon

Stringy Gravity and the EDFEs

Outline

Introduction and motivation

- General Relativity
- Stringy extension?

Stringy Gravity

- Review of Double Field Theory as Stringy Gravity
- Einstein Double Field Equations

- Homogeneous and isotropic backgrounds
- Friedmann Double Field Equations

Introduction

General Relativity is a successful theory of gravity.

- Equivalence Principle: gravity = acceleration; at every spacetime point, ∃ local inertial frame in which laws of Physics are invariant.
- Geometry ⇔ Matter; expressed via Einstein's equations

$$G_{\mu
u}=8\pi G T_{\mu
u}$$
 .

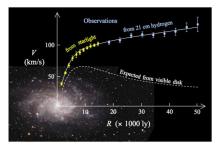
< 同 > < 三 > < 三 >

Motivation: "dark universe"

- GR accurately describes astrophysical/cosmological phenomena: perihelion precession, gravitational lensing, Big Bang cosmology...
- However, some results cannot be explained by GR + visible matter alone, eg. galaxy rotation curves.
- Kepler/Newton/GR: orbital velocity

$$V^2 = \frac{GM}{R} \; ,$$

does not match observations.



<回ト < 回ト < 回ト

Broadly, two classes of solutions to such problems:

- GR is correct, but there is additional dark matter, dark energy, ...
- ② Theory of gravity should be modified for appropriate R/(MG).

nar

Motivation: string theory

In GR, the metric $g_{\mu\nu}$ is the only gravitational field.

In string theory, the closed-string massless sector always includes:

- the metric, $g_{\mu\nu}$;
- an antisymmetric 2-form potential, $B_{\mu\nu}$;
- the dilaton, ϕ .

Furthermore, these fields transform into each other under the stringy symmetry of T-duality: e.g. $R_{IIA} \sim 1/R_{IIB}$, momentum \leftrightarrow winding.

Natural stringy extension of General Relativity:

Consider $\{g_{\mu\nu}, B_{\mu\nu}, \phi\}$ as the fundamental gravitational multiplet.

This is the idea of Stringy Gravity.

<ロト < 同ト < 三ト < 三ト < 三ト < ○への</p>

Stringy extension?

Uroboros spectrum

- In Stringy Gravity, the additional degrees of freedom B_{μν} and φ augment gravity beyond GR, allowing new types of solutions.
- E.g. D = 4, spherical, static case: Stringy Gravity has 4 free parameters (c.f. 1 parameter in GR, the Schwarzschild mass).
- Gravity is modified at "short" distances (Ko, Park, Suh; 2017); best expressed in terms of the dimensionless variable R/(MG).
- Anomalous behavior of large astrophysical objects corresponds to this parameter range, as very large $M \Rightarrow \text{small } R/(MG) \lesssim 10^7$.

0	Electron $(R \simeq 0)$	Proton	Hydrogen Atom	Billiard Ball	Earth	Solar System $(1 \text{AU}/M_{\odot}G)$			Universe $(M \propto R^3)$
R/(MG)	0^{+}	$7.1{\times}10^{38}$	$2.0{\times}10^{43}$	$2.4{\times}10^{26}$	$1.4{ imes}10^9$	$1.0{ imes}10^8$	$1.5{ imes}10^6$	$\sim 10^5$	0^{+}

'Uroboros' spectrum of the dimensionless Radial variable normalized by Mass in natural units. The orbital speed of rotation curves is also dimensionless, and depends on the single variable, R/(MG).

・ロト ・ 同 ト ・ 三 ト ・ 三 ト

A brief introduction to Double Field Theory

- Stringy Gravity can be realized using Double Field Theory (DFT).
- In Double Field Theory (Hull, Zwiebach; 2009) we describe *D*-dim. physics using D + D coordinates, $x^A = (\tilde{x}_{\mu}, x^{\nu}), A = 1, ..., D + D$.
- ∃ an O(D, D) T-duality gauge symmetry; doubled vector indices are raised and lowered using the O(D, D)-invariant metric:

 $\mathcal{J}_{AB} = \left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight).$

・ロト ・ 中 ・ モ ト ・ 日 ・ - 日 ・

- \exists twofold local Lorentz symmetry: **Spin**(1, *D*-1) × **Spin**(*D*-1, 1), with local metrics $\eta_{pq} = \text{diag}(-++\cdots+), \bar{\eta}_{\bar{p}\bar{q}} = \text{diag}(+-\cdots-).$
- Equivalence relation: $x^{A} \sim x^{A} + \Delta^{A}(x)$, for $\Delta^{A} \sim \partial^{A} = (\partial_{\nu}, \tilde{\partial}^{\mu})$.
- This is equivalent to the section condition: $\partial_A \partial^A = 2 \partial_\mu \tilde{\partial}^\mu = 0$.

DQ P

Field content of Double Field Theory

- The basic fields of Double Field Theory are: {*d*, *H*_{AB}}, the DFT dilaton and the symmetric **O**(*D*, *D*) metric, respectively.
- After imposing $\tilde{\partial}^{\mu} = 0$, these fields reduce to the closed-string massless sector, $\{g_{\mu\nu}, B_{\mu\nu}, \phi\}$, e.g. $e^{-2d} \simeq e^{-2\phi} \sqrt{-g}$.
- Can construct "semi-covariant" derivatives, e.g. ∇_A = ∂_A + Γ_A, as well as the fully covariant DFT Ricci tensor S_{pq̄} and scalar S₍₀₎.
- \nexists normal coordinates where $\Gamma_{ABC} = 0 \Rightarrow$ no equivalence principle! ($B_{\mu\nu}$ sources string; EP does not apply to extended objects.)
- On *D*-dim. Riemannian backgrounds ($\tilde{\partial}^{\mu} = 0$), reduces to e.g.

$$S_{(0)} = R + 4\Box \phi - 4\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{12}H_{\lambda\mu\nu}H^{\lambda\mu\nu}$$

where $H_{\lambda\mu\nu} = \nabla_{[\lambda} B_{\mu\nu]}$.

This gives the spacetime Lagrangian for Stringy Gravity.

DQ C

Stringy energy-momentum tensor

We will now consider DFT as Stringy Gravity coupled to matter $\{\Upsilon_a\}$. The action is

$$\int_{\Sigma} e^{-2d} \left[\frac{1}{16\pi G} S_{(0)} + L_{\text{matter}}(\Upsilon_a) \right] \,,$$

where the integral is performed over a *D*-dimensional section Σ .

Note: O(D, D) invariance \Rightarrow proper distance, geodesic motion, etc. have a natural covariant definition in string (Jordan) frame.

The resulting equations of motion are

$$S_{p\bar{q}} = 8\pi G K_{p\bar{q}} , \qquad S_{(0)} = 8\pi G T_{(0)} , \qquad rac{\delta L_{ ext{matter}}}{\delta \Upsilon_2} \equiv 0 .$$

Here the stringy energy-momentum tensor has components

$$\mathcal{K}_{\rho\bar{q}} := \frac{1}{2} \left(V_{A\rho} \frac{\delta L_{\text{matter}}}{\delta \bar{V}_{A} \bar{q}} - \bar{V}_{A\bar{q}} \frac{\delta L_{\text{matter}}}{\delta V_{A} \rho} \right) , \quad \mathcal{T}_{(0)} := e^{2d} \times \frac{\delta \left(e^{-2d} L_{\text{matter}} \right)}{\delta d} ,$$

where V and \bar{V} are DFT vielbeins: $\mathcal{H}_{A}{}^{B} = V_{Ap}V_{\Box}{}^{Bp} + \bar{V}_{A\bar{p}}\bar{V}_{\Box}{}^{B\bar{p}}$.

200

c .

Einstein Double Field Equations

Analogously to GR, we can define the stringy Einstein curvature tensor which is covariantly conserved,

$$G_{AB} = 4 V_{[A}{}^{\rho} \bar{V}_{B]}{}^{\bar{q}} S_{\rho \bar{q}} - \tfrac{1}{2} \mathcal{J}_{AB} S_{\scriptscriptstyle (0)} , \qquad \mathcal{D}_A G^{AB} = 0 \qquad (\text{off-shell}) .$$

This implies that the energy-momentum tensor can be written similarly,

$$T_{AB} := 4 V_{[A}{}^{
ho} ar{V}_{B]}{}^{ar{q}} K_{
hoar{q}} - rac{1}{2} \mathcal{J}_{AB} T_{\scriptscriptstyle (0)} \;, \qquad \mathcal{D}_A T^{AB} \equiv 0 \qquad (ext{on-shell}) \;.$$

Hence the Einstein Double Field Equations can be summarized as

$$G_{AB}=8\pi GT_{AB}$$
 .

Note: unlike in GR, the DFT Ricci tensor is traceless \Rightarrow the $S_{(0)} \propto T_{(0)}$ part is an essential and independent component of the equations.

nac

Riemannian backgrounds

• Riemannian backgrounds: EDFEs reduce to usual closed-string equations, plus source terms from $K_{\mu\nu} = 2e_{\mu}{}^{p}\bar{e}_{\nu}{}^{q}K_{p\bar{q}}$ and $T_{(0)}$:

$$\begin{split} R_{\mu\nu} + 2 \nabla_{\mu} (\partial_{\nu} \phi) - \frac{1}{4} H_{\mu\rho\sigma} H_{\nu}^{\rho\sigma} &= 8\pi G K_{(\mu\nu)} ;\\ \nabla^{\rho} \Big(e^{-2\phi} H_{\rho\mu\nu} \Big) &= 16\pi G e^{-2\phi} K_{[\mu\nu]} ;\\ R + 4 \Box \phi - 4 \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} &= 8\pi G T_{(0)} . \end{split}$$

Asymmetric K_{µν} possible (e.g. fermions, strings) → source for *H*.
 In addition, the conservation laws (on-shell) reduce to

$$\begin{split} \nabla^{\mu} \mathcal{K}_{(\mu\nu)} - 2 \partial^{\mu} \phi \, \mathcal{K}_{(\mu\nu)} + \frac{1}{2} \mathcal{H}_{\nu}^{\lambda\mu} \mathcal{K}_{[\lambda\mu]} - \frac{1}{2} \partial_{\nu} \mathcal{T}_{(0)} \equiv \mathbf{0} \ , \\ \nabla^{\mu} \Big(\boldsymbol{e}^{-2\phi} \mathcal{K}_{[\mu\nu]} \Big) \equiv \mathbf{0} \ . \end{split}$$

• D = 4, spherically symmetric solution: gravity modified at small radius-per-mass, R/(MG) (SA, Cho, Park; 2018).

Homogeneous and isotropic backgrounds

Consider solutions in D = 4 which are homogeneous and isotropic.

 Solving the (doubled) Killing equations for the gravitational fields gives the ansatz

$$ds^{2} = -N(t)^{2}dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1-kr^{2}} + r^{2}d\Omega^{2}\right] ,$$

$$B_{(2)} = \frac{hr^{2}}{\sqrt{1-kr^{2}}}\cos\vartheta \,dr \wedge d\varphi , \quad \phi = \phi(t) .$$

- Note: can choose e.g. cosmic gauge where the function N(t) = 1; solutions are parametrized by a(t), φ(t), and h (a constant).
- Similarly, the stringy energy-momentum tensor is constrained as

$$K^{\mu}{}_{\nu} = \operatorname{diag}(K^{t}{}_{t}(t), K^{r}{}_{r}(t), \dots, K^{r}{}_{r}(t)), \quad T_{(0)} = T_{(0)}(t).$$

SOR

・ロト ・ 同ト ・ ヨト ・ ヨト

Energy density and pressure

Define energy density and pressure as

$$\rho := \left(-K^{t}_{t} + \frac{1}{2}T_{(0)}\right)e^{-2\phi}, \qquad p := \left(K^{r}_{r} - \frac{1}{2}T_{(0)}\right)e^{-2\phi}.$$

- Why? E.g. demand $\rho \equiv \mathcal{H}$ (Hamiltonian): recall Stringy Gravity matter action is of the form $\int e^{-2d} L_{\text{matter}}$, where $e^{-2d} = e^{-2\phi}\sqrt{-g}$; $-K^t{}_t = \pi^a \partial_0 \Upsilon_a$, $T_0 = -2L_{\text{matter}}$ (if L_{matter} is dilaton-independent).

• One non-trivial conservation law:

$$\dot{
ho} + 3H(
ho +
ho) + \dot{\phi}T_{(0)}e^{-2\phi} = 0$$
,

where $H \equiv \frac{\dot{a}}{a}$ (in cosmic gauge), and $\dot{\{\}} = \frac{d\{\}}{dt}$.

SOR

Friedmann Double Field Equations

• In the homogeneous and isotropic case, the EDFEs reduce to

$$\begin{split} &\frac{8\pi G}{3}\rho e^{2\phi} - \frac{k}{a^2} = H^2 - 2\dot{\phi}H + \frac{2}{3}\dot{\phi}^2 - \frac{h^2}{12a^6} \ , \\ &\frac{4\pi G}{3}(\rho + 3p)e^{2\phi} = -\dot{H} - H^2 + \ddot{\phi} + \dot{\phi}H - \frac{2}{3}\dot{\phi}^2 - \frac{h^2}{6a^6} \ , \\ &\frac{4\pi G}{3}\left(2\rho e^{2\phi} - T_{(0)}\right) = -\dot{H} - H^2 + \frac{2}{3}\ddot{\phi} \end{split}$$

 \rightarrow "Friedmann Double Field Equations".

• Note: 3 FDFEs + 1 conservation law \Rightarrow 3 independent equations.

- Analytic solutions for vacuum, massless scalar, radiation... (SA, Cho, Franzmann, Mukohyama, Park; to appear)
- For $\dot{\phi} = \ddot{\phi} = 0$, h = 0, recover usual cosmology in string frame.
- New terms suppressed at late times; contribute at early times
 - \Rightarrow new, expanded framework for early-universe cosmology.

10 A

Summary

- Stringy Gravity considers the closed string massless sector $\{g_{\mu\nu}, B_{\mu\nu}, \phi\}$ to be the fundamental gravitational multiplet $\Rightarrow (D^2 + 1)$ degrees of freedom, thus richer spectrum.
- We studied Double Field Theory as Stringy Gravity in the presence of matter. Imposing on-shell energy-momentum conservation gives the Einstein Double Field Equations,

$$G_{AB}=8\pi GT_{AB}$$
 .

• D = 4: spherically symmetric solutions suggest a modification to gravity at small R/(MG), while homogeneous and isotropic solutions allow for new early-universe cosmology in string frame.

Further work: possibility of de Sitter solutions; generating (almost) scale-invariant curvature perturbations; dilaton stabilization; ...

SOR