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Cosmological Parameters 2

The Friedmann equations for loop quantum cosmology (LQC) are given by

H2 =
ρ

3

(
1− ρ

ρ1

)
, (1)

Ḣ = −ρ + p

3

(
1− 2

ρ

ρ1

)
. (2)

We consider the universe to be comprised of two components such as scalar field dark

energy (DE) model and dark matter (DM). For this scenario, the Friedmann equations can

be written in effective form as

3H2 = ρeff

(
1− ρeff

ρ1

)
, (3)

Ḣ = −1

2
(ρeff + peff )

(
1− 2ρeff

ρ1

)
. (4)

where ρeff = ρφ + ρm.
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Cosmological Parameters 3

It is assumed that the scalar field and DM components do not conserve separately but

interact with each other through a source term Q (Ferreira et al. PRD 2017).

The conservation equations can be expressed as

ρ̇φ + 3H(ρφ + pφ) = −Q, ρ̇m + 3H(ρm + pm) = Q. (5)

Following (Das et al. APSS 2015), Q can be expressed as

Q = ζH(φ̇)4, (6)

where ζ appears as a constant. We consider cold DM which is pressureless (pm = 0) and

leads to peff = pφ.
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Cosmological Parameters 4

However, the energy density and pressure of non-canonical scalar field can be defined as

(Das and Mamon, APSS 2015)

ρφ =
3

4
(φ̇)4 + V (φ), (7)

pφ =
1

4
(φ̇)4 − V (φ). (8)

In the following, we consider two different forms of equation of state (EoS) parameter ωφ

for elaborating the cosmological parameters such as

• Constant EoS parameter (ωφ = ω)

• Variable EoS parameter (ωφ = ω(z))
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Cosmological Parameters 5

Constant EoS Parameter:

In this case, we consider EoS parameter ωφ as constant (ω) which can be written as

ωφ =
pφ

ρφ

=
X2 − V

X2 + V
= ω. (9)

With the help of above assumption, the various components of non-canonical scalar field

model can be expressed as (Das and Mamon, APSS 2015)

V (z) = v0(1 + z)ε, ρφ =
4

1− 3ω
V (z), pφ =

4ω

1− 3ω
V (z). (10)

Using Eq.(5), we evaluate ρm as

ρm =
4v0ζ(1 + ω)

(1− 3ω)(3− ε)
(1 + z)ε + (1 + z)3. (11)

Here ε = (1 + ω)(3 + ζ) and v0 is a positive constant.
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Cosmological Parameters 6

To investigate the stability of this particular interacting non-canonical scalar field model,

we calculate square speed of sound which is defined as

C2
s =

∂peff

∂ρeff

=

∂peff

∂z
∂ρeff

∂z

. (12)

For this EoS parameter, the above expression for square speed of sound turns out to be

C2
s =

4ωv0ε(1+z)ε−1

1−3ω

4v0ε(1+z)ε−1

1−3ω
− 4v0ζ(1+ω)ε(1+z)ε−1

(1−3ω)(3−ε)
+ 3(1 + z)2

. (13)
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Cosmological Parameters 7

It can be observed that square speed of sound remains positive for all three selected values

of ω. This exhibits the stability of under consideration interacting non-canonical scalar

field model.
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Figure 1: Plot of C2
s versus z. The values of other constant parameters are v0 = 2 and

ζ = 1

August 30, 2018 COSMO-18, Korea



Cosmological Parameters 8

Using Eqs.(10) and (11), we can get

ρeff + peff =
4(1 + ω)

1− 3ω
V (z) +

4v0ζ(1 + ω)

(1− 3ω)(3− ε)
(1 + z)ε + (1 + z)3. (14)

The plot of ρeff + peff versus redshift parameter is shown in Figure 2 which exhibits the

quintessence as well as vacuum behavior of the universe (∵ 0 ≤ ρeff + peff ≤ 0.7 which

leads to −1 ≤ ωeff ≤ −1
3
).
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Figure 2: Plot of ρeff + peff versus z.
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Cosmological Parameters 9

The expression for deceleration parameter q is given by

q = −1− Ḣ

H2
. (15)

By inserting the corresponding values in above equations, we obtain

q = −1 +
3

2

((
4(1 + ω)

1− 3ω
V (z) +

4v0ζ(1 + ω)

(1− 3ω)(3− ε)
(1 + z)ε + (1 + z)3

)

(
1− 2

ρ1

(
4

1− 3ω
v0(1 + z)ε +

4v0ζ(1 + ω)

(1− 3ω)(3− ε)
(1 + z)ε + (1 + z)3

)))

((
4

1− 3ω
v0(1 + z)ε +

4v0ζ(1 + ω)

(1− 3ω)(3− ε)
(1 + z)ε + (1 + z)3

)

(
1− 1

ρ1

(
4

1− 3ω
v0(1 + z)ε +

4v0ζ(1 + ω)

(1− 3ω)(3− ε)
(1 + z)ε + (1 + z)3

)))−1

.

(16)

The plot of deceleration parameter with respect to redshift variable z is given by Figure 3.

Recent observations (Riess et al. AJ 1998, Linder PRL 2003) verified that the present

universe is experiencing accelerated phase of expansion and the value lies in between

−1 ≤ q ≤ 0.
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Cosmological Parameters 10

In our case, q remains negative for all values of ω i.e. ω = −0.9, ω = −0.8, z = −0.7.

This means q represents accelerated expansion of universe for this choice of EoS parameter.
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Figure 3: Plot of deceleration parameter q versus z.
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Cosmological Parameters 11

Variable EoS Parameter:

We consider Chevallier-Polarski-Linder (CPL) parametrization of EoS parameter which is

defined as (Chevallier and Polarski 2001)

ω(z) = ω0 + ωa
z

1 + z
. (17)

Using Eq.(5), we can get the value of V (z) as follow

V (z) = v0e
ωa(3+ζ)(1+z)−1

(1 + z)α, (18)

here α = (3 + ζ)(1 + ω0 + ωa).

The energy density and pressure components take the following form

ρφ =
4v0

1− 3(ω0 + ωa
z

1+z
)
eωa(3+ζ)(1+z)−1

(1 + z)α, (19)

pφ =
4(ω0 + ωa

z
1+z

)v0

1− 3(ω0 + ωa
z

1+z
)
eωa(3+ζ)(1+z)−1

(1 + z)α. (20)
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Cosmological Parameters 12

The value of ρm can be calculated by making use of Eq.(5) as given below

ρm = 4v0ζ(1 + z)3

(
(1 + ω0 + ωa)(1 + z)−3+α

(3− α)(1− 3(ω0 + ωa))
2F1

(
3− α, 1, 4− α,

−3ωa(1 + z)−1

1− 3(ω0 + ωa)

)

+
ωa(3 + ζ)(1 + ω0 + ωa)(1 + z)−4+α

(4− α)(1− 3(ω0 + ωa))
2F1

(
4− α, 1; 5− α;

−3ωa(1 + z)−1

1− 3(ω0 + ωa)

)

− ωa(1 + z)−4+α

(4− α)(1− 3(ω0 + ωa))
2F1

(
4− α, 1; 5− α;

−3ωa(1 + z)−1

1− 3(ω0 + ωa)

)

(21)

− (ωa)
2(3 + ζ)(1 + z)−5+α

(5− α)(1− 3(ω0 + ωa))
2F1

(
5− α, 1; 6− α;

−3ωa(1 + z)−1

1− 3(ω0 + ωa)

))
+ (1 + z)3.
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Cosmological Parameters 13

By inserting the corresponding values of this EoS parameter case in Eq.(12), we can get

the squared speed of sound for this case. The C2
s remains positive which exhibits the

stability of this model.
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Figure 4: Plot of C2
s for variable EoS parameter.In this plot, we have chosen the values

of ωa and ω0 as suggested in the literature, i.e., ωa = −1.58(1 + ω0) (Bennet et al. AJS

2003) and ω0 = −0.95,−0.85,−0.75 with −1 < ω0 < −0.7 (Linder PRD 2015).
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ρeff + peff :
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Figure 5: Plot of ρeff + peff for variable EoS parameter.

In this case, the behavior of ρeff + peff shown in Figure 5 which exhibits the quintessence

as well as vacuum-like behavior of the universe

(∵ 0 ≤ ρeff + peff ≤ 0.7 which leads to −1 ≤ ωeff ≤ −1
3
).
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Cosmological Parameters 15

Deceleration Parameter:

From Figure 6, it can be observed that plot of deceleration parameter remains positive in

case of ω0 = −0.75. This exhibits the decelerated (q > 0) phase of the universe in this

case. For ω0 = −0.85 and ω0 = −0.95, we can see transition from decelerated phase

towards accelerated phase of expansion of universe.
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Figure 6: Plot of deceleration parameter q for variable EoS parameter.

August 30, 2018 COSMO-18, Korea



Thermodynamics Analysis 16

Inspired by BH thermodynamics (Hawking CTP 1975), it was realized that there should be

a connection between gravity and thermodynamics. For this purpose, Jacobson (PRL

1996) derived a relation between thermodynamics and the Einstein field equations on the

basis of entropy-horizon area proportionality relation along with first law of

thermodynamics dQ = TdS. Here dQ, T and dS indicate the exchange in energy,

temperature and entropy change for a given system.

It was found that the field equations can be expressed as follows

TdS = dE + pdV, (22)

Here, E = EA = ρeffVA, p = peff and V = VA = 4
3
πR3

A represent the internal energy,

pressure and volume of the spherical system for any spherically symmetric spacetime in any

horizon.
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Thermodynamics Analysis 17

We discuss the thermodynamics at apparent horizon which is defined as (Cai and Wang

JCAP 2005)

RA =
1

H
, ṘA =

Ḣ

H2
. (23)

Also, the temperature can be defined on apparent horizon as (Cai and Wang JCAP 2005)

TA =
1

2πRA

(
1− ṘA

2HRA

)
=

RA

4π

(
Ḣ + 2H2

)
. (24)

The rate of change of internal entropy function can be obtained as

TAṠI = 4πR2
A(ṘA −HRA)(ρ

eff
+ p

eff
). (25)
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Thermodynamics Analysis 18

Now we discuss the GSLT for a cosmological system which is the generalization of GSLT

for a system containing BH as proposed by Bakenstein (PRD 1973). Bakenstein argued

that the common entropy in the BH exterior plus the BH entropy never decreases. This

statement is based on the proportionality relation between entropy of BH horizon and

horizon area.
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Thermodynamics Analysis 19

Thus GSLT can be described as follows

dStot

dt
≥ 0. (26)

Here Stot = S + SBH , S represents the entropy of matter (body) outside a BH and SBH

is the entropy of BH. This proposal has been generalized towards the cosmological system

where it can be defined as the sum of all entropies of the constituents (mainly DM and

DE) and entropy of boundary (either it is Hubble or apparent or event horizon) of the

universe can never decrease.

In the present scenario, we check the validity of GSLT taking into account apparent

horizon as the boundary of universe
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Thermodynamics Analysis 20

It is suggested that the horizon entropy is directly proportional to surface area of its

horizon which is defined as

SA =
A

4G
,

where A = 4πR2
A is the surface area and RA is the radius of apparent horizon.

The rate of change of entropy of horizon on the apparent horizon leads to (Cai and Wang

JCAP 2005; Davis et al. AJ 2007; Bhattacharya et al. CJP 2011)

TAṠA = 4πR3
AH(p

eff
+ ρ

eff
), (27)

Using Eqs.(25) and (27), the total time rate of change of entropy function becomes

TAṠtot = 4πR2
AH(p

eff
+ ρ

eff
)ṘA. (28)

Inserting all the corresponding values in Eq.(28), we get the GSLT as

dStot

dz
=

16π2

H4(1 + z)(Ḣ + 2H2)

(
Ḣ(Ḣ + 2H2) + (ρeff + peff )(Ḣ + H2)

)
. (29)
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Thermodynamics Analysis 21

In order to examine the thermodynamic equilibrium, we have to require the following

expression

d2Stot

dz2
= 16π2

((
− 4

H5(1 + z)

dH

dz
− 1

H4(1 + z)2

)(
Ḣ +

(ρeff + peff )(Ḣ + H2)

Ḣ + 2H2

)

+
1

H4(1 + z)

(
dḢ

dz
− (ρeff + peff )(Ḣ + H2)

(Ḣ + 2H2)2

(dḢ

dz
+ 4H

dH

dz

)
+

(Ḣ + H2)

(Ḣ + 2H2)2

(
dρeff

dz
+

peff

dz

)
+

(ρeff + peff )

(Ḣ + 2H2)2

(dḢ

dz
+ 2H

dH

dz

)))
. (30)
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Thermodynamics Analysis 22

Constant EoS Parameter:
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Figure 7: Plot of dStot

dz
.

Figure 7 shows the behavior of dStot

dz
versus redshift z. For ω = −0.9, dStot

dz
remains

positive before and after z = 0.6. This means that GSLT holds everywhere excluding

neighborhood of z = 0.6. For ω = −0.8, dStot

dz
remains positive except for 0.6 ≤ z ≤ 0.65

and hence GSLT holds excluding described values of z. The trajectory of dStot

dz
exhibits

August 30, 2018 COSMO-18, Korea



Thermodynamics Analysis 23

positive behavior except for 0.55 ≤ z ≤ 0.6 in case of ω = −0.7 and hence GSLT holds

everywhere excluding the range 0.55 ≤ z ≤ 0.6.
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Figure 8: Plot of X = d2Stot

dz2 .

It is quite obvious from Figure 8 that X = d2Stot

dz2 remains negative when plotted versus red

shift parameter z in the range 1 ≤ z ≤ 3 for ω = −0.9 and ω = −0.8. This shows the

fulfillment of thermodynamic equilibrium condition.
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Variable EoS Parameter:
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Figure 9: Plot of dStot

dz
.

It can be observed from Figure 9 that for ω0 = −0.95, dStot

dz
> 0 excluding neighborhood of

z = 0.4. In case of ω0 = −0.85, dStot

dz
< 0 only when −0.01 < z < 1 otherwise it remains

positive. When we take ω0 = −0.75, dStot

dz
remains positive everywhere. Hence GSLT is

satisfied everywhere excluding some points described in case of ω0 = −0.95 and ω0 = −0.85.
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Figure 10: Plot of dS2
tot

dz2 .

As far as thermodynamic equilibrium is concerned, it is verified from Figure 10 that model

under consideration is in thermodynamic equilibrium for variable EoS in case of Bekenstein

entropy acting as entropy of horizon.
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Concluding Remarks 27

• The squared speed of sound exhibits the stability of current model in both cases of

EoS parameter.

• The deceleration parameter also favor the current cosmic acceleration.

• GSLT also remains valid.

• Thermal equilibrium condition is also preserved.
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