Back-Reaction of Gravitational waves revisited

Tomo Takahashi (Saga University)

Collaborator: Robert Brandenberger (McGill)

Based on: 1805.02424, JCAP

28 August, 2018 Cosmo 2018, IBS, Daejeon

Gravitational waves as a probe of the early Universe

 Various sources of GWs in the early Universe (e.g., inflation) can be probed (constrained) from:

- Interferometer
- CMB
- pulsar timing
- BBN

•

BBN constraint on GWs

ullet BBN can constrain the amount of extra radiation (or effective extra degrees of freedom N_{eff})

$$N_{
m eff} = 2.85 \pm 0.28 ~ (1\sigma {
m C.L.})$$
 [Cyburt et al., 1505.01076]

- GWs behave as radiation (inside the horizon) and hence can be considered as extra radiation component.
- Fractional energy density can be constrained as:

$$\Omega_{\rm GW} h^2 \le 5.6 \times 10^{-6} (N_{\rm eff}^{\rm (upper\ bound)} - 3)$$

 GWs (as extra radiation) can be considered as back-reaction of 2nd order tensor perturbations to the background.

Back-reaction of gravitational waves

• Tensor perturbations:

$$ds^{2} = -a^{2}d\tau^{2} + a^{2} \left[\gamma_{ij} + h_{ij} \right] dx^{i} dx^{j}$$

We can calculate the "spatially averaged" Einstein tensor as

$$\langle G^{\mu}_{\ \nu} \rangle = \left\langle G^{(0)\mu}_{\ \nu} \right\rangle + \left\langle \delta G^{(1)\mu}_{\ \nu} \right\rangle + \left\langle \delta G^{(2)\mu}_{\ \nu} \right\rangle$$
back-reaction

(Spatially average is given by:
$$\langle A \rangle \equiv \frac{1}{V} \lim_{V \to \infty} \int A dV$$

over constant time hypersurfaces.)

 $\bullet \left\langle G^{(2)\mu}_{\ \ \, \nu}\right\rangle$ can be regarded as "effective energy momentum tensor" in the background

Einstein tensor at 2nd order (tensor perturbations)

2nd Einstein tensor (after spatial average)

$$\begin{split} \left\langle \delta^{(2)}G^{0}_{0} \right\rangle &= \frac{1}{a^{2}} \left[\mathcal{H} \left\langle h^{km}h^{'}_{km} \right\rangle + \frac{1}{8} \left\langle h^{'km}h^{'}_{km} \right\rangle + \frac{1}{8} \left\langle h^{km,j}h_{km,j} \right\rangle \right], \\ \left\langle \delta^{(2)}G^{0}_{i} \right\rangle &= \frac{1}{a^{2}} \left[\left\langle h^{mk}h^{'}_{k[i,m]} \right\rangle - \frac{1}{4} \left\langle h^{'mk}h_{mk,i} \right\rangle \right], \\ \left\langle \delta^{(2)}G^{i}_{0} \right\rangle &= \frac{1}{a^{2}} \left[\frac{1}{4} \left\langle h^{'}_{jk}h^{jk,i} \right\rangle - \left\langle h_{jk}h^{'k[i,j]} \right\rangle \right], \\ \left\langle \delta^{(2)}G^{i}_{j} \right\rangle &= \frac{1}{a^{2}} \delta^{i}_{j} \left[\frac{3}{8} \left\langle h^{'}_{km}h^{'km} \right\rangle - \frac{3}{8} \left\langle h^{km,n}h_{km,n} \right\rangle \right] \\ &+ \frac{1}{a^{2}} \left[-\frac{1}{2} \left\langle h^{'ik}h^{'}_{kj} \right\rangle - \frac{1}{4} \left\langle h^{km,i}h_{km,j} \right\rangle + \frac{1}{2} \left\langle h^{ik,m}h_{kj,m} \right\rangle \right], \end{split}$$

Effective energy density and pressure

Effective energy density and pressure

Effective energy density

$$\rho_{\text{GW}} = \frac{1}{8\pi G} \left\langle \delta G^{(2)0}_{0} \right\rangle = \frac{1}{8\pi G a^2} \left(\frac{1}{8} \left\langle (h'_{ij})^2 \right\rangle + \frac{1}{8} \left\langle (\nabla h_{ij})^2 \right\rangle + \mathcal{H} \left\langle h^{ij} h'_{ij} \right\rangle \right)$$

Effective pressure

$$p_{\text{GW}} = \frac{1}{3} \frac{1}{8\pi G} \left\langle G^{(2)i}{}_{i} \right\rangle + \frac{1}{3\mathcal{H}} \left\langle {}^{(2)}\Gamma^{\alpha}{}_{\alpha 0} \right\rangle (\rho^{(0)} + p^{(0)})$$

$$= \frac{1}{3} \frac{1}{8\pi G a^{2}} \left(-\frac{5}{8} \left\langle (h'_{ij})^{2} \right\rangle + \frac{7}{8} \left\langle (\nabla h_{ij})^{2} \right\rangle \right) + \frac{1}{2} \frac{1}{8\pi G a^{2}} \mathcal{H} \left(1 + w^{(0)} \right) \left\langle h^{ij} h'_{ij} \right\rangle$$

On subhorizon scales, the average of the temporal and spatial gradient terms give the same contribution.

$$\rho_{\text{GW}} = \frac{1}{4 \cdot 8\pi G a^2} \left\langle (\nabla h_{ij})^2 \right\rangle$$
$$p_{\text{GW}} = \frac{1}{3 \cdot 4 \cdot 8\pi G a^2} \left\langle (\nabla h_{ij})^2 \right\rangle$$

$$p_{\rm GW} = \frac{1}{3 \cdot 4 \cdot 8\pi G a^2} \left\langle (\nabla h_{ij})^2 \right\rangle$$

$$p_{\rm GW} = \frac{1}{3}\rho_{\rm GW}$$

[Abramo et al., gr-qc/9704037]

Effective energy density and pressure (super-horizon)

Super-horizon evolutions can be considered separately for:

- de Sitter era

- de Sitter era

- Radiation-dominated (RD) era

- Matter-dominated (MD) era

$$h_{ij}(\tau, x) = \sum_{\lambda = +, \times} \int \frac{dk^3}{(2\pi)^3} \epsilon_{ij}^{\lambda}(k) h_k^{\lambda}(\tau) e^{ik \cdot x},$$

 \bullet By solving the equation of motion $\;h_{{\bf k}}^{''}+2\mathcal{H}h_{{\bf k}}^{'}+k^2h_{{\bf k}}^{-}=0$, we can obtain super-horizon solutions for each era:

$$-h_{\mathbf{k}} = A_k \left(1 + \frac{1}{2} (k\tau)^2 + \cdots \right) \qquad : \text{de Sitter}, \quad \mathcal{H} = -\frac{1}{\tau}$$

$$- h_{\mathbf{k}} = A_k \left(1 - \frac{1}{6} (k\tau)^2 + \cdots \right) : RD, \quad \mathcal{H} = \frac{1}{\tau}$$

-
$$h_k = A_k \left(1 - \frac{1}{10} (k\tau)^2 + \cdots \right)$$
 : MD, $\mathcal{H} = \frac{2}{\tau}$

Effective energy density and pressure (super-horizon)

Effective energy density for each k mode is given by

$$\tilde{\rho}_{\text{GW}}(k) = -\frac{7}{8}k^2 \left\langle |A_k^2| \right\rangle \quad \text{(de Sitter)},$$

$$\tilde{\rho}_{\text{GW}}(k) = -\frac{5}{24}k^2 \left\langle |A_k^2| \right\rangle \quad \text{(RD)},$$

$$\tilde{\rho}_{\text{GW}}(k) = -\frac{11}{40}k^2 \left\langle |A_k^2| \right\rangle \quad \text{(MD)}.$$

• In all these cases, the pressure is given by

$$\tilde{p}_{\rm GW}(k) = -\frac{1}{3}\tilde{\rho}_{\rm GW}(k) \quad \left(\tilde{\rho}_{\rm GW}(k) \propto a^{-2}\right)$$

Back-reaction of GWs on superhorizon scales behaves like the curvature. [Abramo et al., gr-qc/9704037]

Total (effective) energy density

$$\text{Total energy density:} \begin{cases} \rho_{\text{GW}}^{(\text{super-horizon})} = \frac{1}{8\pi G a^2} \int_{k_{\text{min}}}^{k_{\text{hor}}} \frac{dk}{k} \frac{\tilde{\rho}_{\text{GW}}(k)}{|A_k|^2} \mathcal{P}_{\text{prim}}(k) \\ \rho_{\text{GW}}^{(\text{sub-horizon})} = \frac{1}{8\pi G a^2} \int_{k_{\text{hor}}}^{k_{\text{max}}} \frac{dk}{k} \frac{\tilde{\rho}_{\text{GW}}(k)}{|A_k|^2} \mathcal{P}_{\text{prim}}(k) \end{cases}$$

During RD, <u>sub-horizon</u> contribution of back-reaction is given by

$$\rho_{\text{GW}}^{(\text{sub-horizon})}(t) = \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8} \log\left(\frac{k_{\text{max}}}{k_{\text{hor}}}\right) \text{ (for } n_T = 0),
= \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8n_T} \left[\left(\frac{k_{\text{max}}}{k_*}\right)^{n_T} - \left(\frac{k_{\text{hor}}}{k_*}\right)^{n_T}\right] \text{ (for } n_T \neq 0)$$

(Primordial GW spectrum)

$$\mathcal{P}_{\text{prim}}(k) = \sum_{\lambda} \frac{k^3}{\pi^2} |A_k^{\lambda}|^2 = A_T(k_*) \left(\frac{k}{k_*}\right)^{n_T}$$

By adopting BBN constraint:

$$\Omega_{\text{GW}}^{(\text{sub-horizon})} h^2 \le 5.6 \times 10^{-6} (N_{\text{eff}} - 3)$$

$$\simeq 1.5 \times 10^{-5}$$

we can obtain the bound on nT.

(See also [Stewart, Brandenberger 07114602; Kuroyanagi, TT, Yokoyama 1407.4785])

r

(We can also derive the constraint from MD case by requiring $|\rho_{\rm GW}| < \rho_c(t)$. However, less stringent than BBN.)

• During RD, sub-horizon contribution of back-reaction is given by

$$\rho_{\text{GW}}^{(\text{sub-horizon})}(t) = \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8} \log\left(\frac{k_{\text{max}}}{k_{\text{hor}}}\right) \text{ (for } n_T = 0),
= \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8n_T} \left[\left(\frac{k_{\text{max}}}{k_*}\right)^{n_T} - \left(\frac{k_{\text{hor}}}{k_*}\right)^{n_T}\right] \text{ (for } n_T \neq 0)$$

• In fact, k_{max} (= k_R) and k_{hor} can also depend on n_T :

(if we assume a slow-roll inflation)

k_{max}:

$$\frac{k_{\text{max}}}{k_*} = \frac{k_R}{k_*} = \frac{a_R H_R}{a_* H_*} = e^{N_*} \frac{H_R}{H_*}$$

Assuming a slow-roll relation: $n_T = -2\epsilon = 2\frac{H}{H^2} = 2\frac{1}{H}\frac{dH}{dN}$

$$\longrightarrow H_R = H_* \exp\left[\frac{n_T}{2}N_*\right]$$

→ n_T can also depend through this relation.

During RD, <u>sub-horizon</u> contribution of back-reaction is given by

$$\rho_{\text{GW}}^{(\text{sub-horizon})}(t) = \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8} \log\left(\frac{k_{\text{max}}}{k_{\text{hor}}}\right) \text{ (for } n_T = 0),
= \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8n_T} \left[\left(\frac{k_{\text{max}}}{k_*}\right)^{n_T} - \left(\frac{k_{\text{hor}}}{k_*}\right)^{n_T}\right] \text{ (for } n_T \neq 0)$$

• In fact, k_{max} (= k_R) and k_{hor} can also depend on n_T :

Values at the time of horizon crossing

(if we assume a slow-roll inflation)

k_R:

$$rac{k_{
m hor}}{k_*} = rac{a_{
m hor}H_{
m hor}}{a_*H_*} \sim rac{a_*}{a_{
m hor}} \sim rac{T_{
m hor}}{T_R} \qquad ext{where} \quad T_{
m R} = \left(rac{90}{\pi^2 g_*(t_{
m end})}
ight)^{1/4} \sqrt{H_R M_{
m pl}}$$

From the slow-roll equation:
$$H_R = H_* \exp\left[\frac{n_T}{2}N_*\right]$$

→ n_T can also depend through this relation.

• During RD, sub-horizon contribution of back-reaction is given by

$$\rho_{\text{GW}}^{(\text{sub-horizon})}(t) = \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8} \log\left(\frac{k_{\text{max}}}{k_{\text{hor}}}\right) \text{ (for } n_T = 0),
= \frac{1}{3}\rho_c(t) \frac{A_T(k_*)}{8n_T} \left[\left(\frac{k_{\text{max}}}{k_*}\right)^{n_T} - \left(\frac{k_{\text{hor}}}{k_*}\right)^{n_T}\right] \text{ (for } n_T \neq 0)$$

Allowed region where the slow-roll relation $n_T = -2\varepsilon$ is adopted.

- Constrain gets severer.
- We can also constraint a negative n_{T.}

Super-Hubble mode in de Sitter phase

• During de Sitter phase, by requiring that $\left| \rho_{\mathrm{GW}}^{(\mathrm{super-horizon})} \right| < \rho_{\mathrm{crit}}(t)$, we can put constraint on the total number of e-folds during inflation.

$$ho_{ ext{GW}}^{ ext{(super-horizon)}}(t) \sim A_T(k_*)
ho_{ ext{crit}}(t) \left(rac{k_{ ext{min}}}{k_*}
ight)^{n_T}
ightharpoonup \sim \left(rac{a_*}{a_{ ext{min}}}
ight)^{-|n_T|} ext{(for negative n_T)}$$

(Precise expression)

$$\rho_{\text{GW}}^{(\text{super-horizon})}(t) = -\frac{\rho_c(t)}{3} \frac{7}{8} \frac{A_T}{2 + n_T} \left(\frac{k_{\text{min}}}{k_*}\right)^{n_T} \left[\left(\frac{k_{\text{hor}}}{k_{\text{min}}}\right)^{n_T} - \left(\frac{k_{\text{min}}}{k_{\text{hor}}}\right)^2 \right]$$

- When n_T is negative, the contribution becomes larger as we go back to the earlier time. (khor gets smaller and smaller.)
- Constraint on the total number of e-folds during inflation.

(e.g., for $n_T \sim O(-0.01)$, $N_{tot} < O(1000)$)

Summary

- Back-reaction of GWs behaves as radiation on sub-horizon scale, on the other hand, as curvature on super-horizon scales.
- We can derive the constraint on n_T by requiring that the back-reaction should be subdominant.

- By requiring that the back-reaction should be subdominant, we could derive the constraint on the total number of e-folds during inflation.
 (from super-Hubble modes in de Sitter phase.)
- We may should also calculate the back-reaction of GWs to (1st order) perturbations. (work in progress)