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Gravitational waves as a probe of the early Universe

® Various sources of GWs in the early Universe (e.g., inflation)
can be probed (constrained) from:

- Interferometer

- CMB

- pulsar timing

- BBN
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j BBN constraint on GWs

_—_

® BBN can constrain the amount of extra radiation (or effective
extra degrees of freedom Nef)

Negg = 2.85+0.28 (1o C.L.) [Cyburtetal, 1505.01076]

® GWs behave as radiation (inside the horizon) and hence can be
considered as extra radiation component.

® Fractional energy density can be constrained as:

Qawh? < 5.6 x 1076 apper bound) _ 3

® GWs (as extra radiation) can be considered as
of 2nd order tensor perturbations to the background.



j Back-reaction of gravitational waves

_—_

® Tensor perturbations:

ds® = —a’dr® + a® [y;; + hi;] do'da?

® We can calculate the “spatially averaged” Einstein tensor as

(GH)) = <G(O)“V> 4 <5 uy> 4 <5g(2)uy>

7

(Spatially average is given by: (A) = — lim [ AdV

over constant time hypersurfaces.)

° <G(2)“,,> can be regarded as “effective energy momentum tensor”
in the background



j Einstein tensor at 2nd order (tensor perturbations)

_—_

® 2nd Einstein tensor (after spatial average)

= Effective energy density and pressure



j Effective energy density and pressure

_—_

® Effective energy density

1 1 1 1 ¥
paw = o= <5G(2)0 > a2 (g ((hij)?) + 3 ((Vhi)?) +H (h Jh/ij>)

® Effective pressure
1 1 ; )
Paw = 3o~ <G(2) 7,> ey <(2)F > (P +p'?)
1 1

L iy 2 Tiwn 2y )+ O /3ii
_387TGa2( 8<(hij)> 8<(Vhw) >)+287rGa2H<1+w ><h]hij>

, the average of the temporal and spatial
gradient terms give the same contribution.

1
PaW = 1 grgaz (Vi) 1

- 1 P W = 3 PCW

— .. 2
PaW = 31 grgaz ((VRia))

[Abramo et al., gr-qc/9704037]



j Effective energy density and pressure (super-horizon)

_—

® Super-horizon evolutions can be considered separately for:

- de Sitter era

- Radiation-dominated (RD) era

: k> .
- Matter-dominated (MD) era hij (7, @) = / s o (R,

® By solving the equation of motion h, + 2Hh, + k*h, =0,
we can obtain super-horizon solutions for each era:

1, . 1

'hk:Ak<1‘|‘§(kT) +) . de Sitter, 7—[2—;

(k7)2+---> : RD, 7-[:1

T

| =

= A (1~

- hi = A (1——(%7)%---) MD, H="
.



j Effective energy density and pressure (super-horizon)

_—_

® Effective energy density for each k mode is given by

paw (k) = — gkz (|4;])  (de Sitter),
paw(k) = — oK (|43])  (RD)
pow(k) = — 1K (|43])  (MD).

® |n all these cases, the pressure is given by

[Abramo et al., gr-qc/9704037]



j Total (effective) energy density

_—_
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Sub-horizon mode during RD

® During RD, sub-horizon contribution of back-reaction is given by

sub—horizon 1 A k* kmax
G 1) = o) o () (for nr =)

g 8 khor
1 AT(k*) kmax nr khor nr
= —pc(t — f
goe(t) 0| (B ) (B} fton g 20)
(Primordial GW spectrum)
k3 E\
Pocim (k) = —2A>‘2:AT]<:* n 2 L I I L
() ;w Al ( )(k*) 15 L [Brandenberger, TT, 1805.02424] |
By adopting BBN constraint: Lr l
Q(sub—horizon)hz <56 10—6 N 3 0.5 ]
GW — X ( efft — ) g 0
~ —9
~ 1.5 x 10 05
—p we can obtain the bound on nT. -1
(See also [Stewart, Brandenberger 07114602; -1.5
Kuroyanagi, TT,Yokoyama 1407.4785]) )
10% 107 10° 10 10" 10 10* 10
(We can also derive the constraint from MD case r

by requiring |paw| < p.(t). However, less stringent than BBN.)



j Sub-horizon mode during RD

_—_

® During RD, sub-horizon contribution of back-reaction is given by

sub—horizon 1 A k* kmax

plueterteon) gy _ Ly (AT, (for nz =0),
3 8 khor
1

=0 5,7 () - () ] e

® In fact, kmax (=kr) and knor can also depend on nr:

(if we assume a slow-roll inflation)
Kmax

Assuming a slow-roll relation:

>

—» n71 can also depend through this relation.



j Sub-horizon mode during RD

_—_

® During RD, sub-horizon contribution of back-reaction is given by

sub—horizon 1 A k* kmax
G 1) = o) o () (for nr =)
1

8 khor
A k* kmax r k or nr
:gpc(t) ;iT) [( - ) _ ( ]:* ) ] (for np # 0)

® In fact, kmax (=kr) and knor can also depend on nr:

Values at the time of horizon crossing ('f we assume a slow-roll mﬂat'on)

KR / \
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Y
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p— Y

k* QA H* Uhor TR

1/4
where TR = ( d)) v/ Hr My,

—» n71 can also depend through this relation.



Sub-horizon mode during RD

® During RD, sub-horizon contribution of back-reaction is given by

sub—horizon 1 A k* kmax
plunporison) ) _ L (A2l (for n = 0),
3 8 khor
]- A k* kmax nr k or nr
=0 5 |(5=) - () | wor 0
2 — T T T T * ‘T ' T T T T T
Allowed region where the slow-roll 15 [Brandenbergen TT, 1805.02424]
relation nt = -2¢€ is adopted. 1 F -

- Constrain gets severer.

- We can also constraint a negative nr.

10° 107 10° 10



Super-Hubble mode in de Sitter phase

(super horizon)

® During de Sitter phase, by requiring that |» < peris(t)

we can put constraint on the total number of e-folds during inflation.

super—horizon kmin nT .

(for negative nT)

................................... Amin
(Precise expression) = exp [|n7|(Niot — Ni)]

n n 2 100000 e —
super—horizon c t)7 AT kmin ’ k or ’ kmin [ ]
plsuper—horizon) () :_Pé )§2+nT < . > [(k:l) —~ (khor> ] : [Brandenberger, TT, 1805.02424] |
r=10"2
=—» When nt is negative, the contribution 10000 r=10"%,
becomes larger as we go back to the | |
earlier time. (knor gets smaller and smaller.) =
1000
lpaw| < perit (t)
100 F
0t 0t 10 102 10t 10



j Summary

_—_

® Back-reaction of GWSs behaves as radiation on sub-horizon scale,
on the other hand, as curvature on super-horizon scales.

® We can derive by requiring that the
back-reaction should be subdominant.

® By requiring that the back-reaction should be subdominant, we could
derive the constraint on

(from super-Hubble modes in de Sitter phase.)

® We may should also calculate the back-reaction of GWVs to
(Ist order) perturbations. (work in progress)



