Conversion of dark radiation (DR) to photon in early universe and 21 cm signal

Takeo Moroi (Tokyo)

Ref:
TM, Nakayama, Tang, PLB 783 ('18) 301 [1804.10378]

1. Introduction

21 cm photon:
Transition between spin singlet and triplet of 1 s hydrogen

Rich information is imprinted in cosmic 21 cm spectrum

- EDGES collaboration announced their result
- There are up-coming experiments

21 cm photons are absorbed / emitted in the early universe

Differential brightness temperature against CMB

$$
\begin{aligned}
& \delta T_{b}(z)=\frac{T_{b}(z)-T_{\gamma}(z)}{1+z} \simeq 23 \mathrm{mK} \times x_{H I}(z)\left[\frac{1+z}{10}\right]^{1 / 2}\left[1-\frac{T_{\gamma}(z)}{T_{S}(z)}\right] \\
& T_{S}: \text { spin temperature } \Leftrightarrow \frac{n_{S=1}(z)}{n_{S=0}(z)} \equiv 3 e^{-E_{10} / T_{S}(z)}
\end{aligned}
$$

EDGES result on δT_{b} (for $50 \lesssim \nu \lesssim 100 \mathrm{MHz}$)
[EDGES Collaboration ('18)]
$\Leftrightarrow 21 \mathrm{~cm}$ hyperfine line produced at $14 \lesssim 1+z \lesssim 28$

- The absorption at $\nu \sim 78 \mathrm{MHz}$ is consistent with the 21 cm signal due to early star formation
- The absorption is factor of ~ 2 larger than the largest prediction

Possible explanations
[EDGES Collaboration ('18)]

- The primordial gas was cooler than expected
- The CMB flux at the Rayleigh-Jeans (RJ) tail was larger than expected

Here, I discuss the possibility to heat up the RJ tail

Outline

1. Introduction
2. DR-Photon Conversion
3. Implications to EDGES Anomaly
4. Summary

2. DR-Photon Conversion

Comment on a naive scenario:
Radiative decay of a scalar field φ to heat up the RJ tail
For example:

$$
\mathcal{L}_{\text {int }}=-\frac{1}{4} g_{\varphi} \varphi F^{\mu \nu} \widetilde{F}_{\mu \nu} \Rightarrow \Gamma_{\varphi \rightarrow \gamma \gamma}=\frac{1}{32 \pi} g_{\varphi}^{2} m_{\varphi}^{3}
$$

To heat up the photons in the EDGES frequency range:

$$
\begin{aligned}
& E_{\text {now }} \sim m_{\varphi}\left(1+z_{d}\right)^{-1} \\
& z_{d}=\text { redshift at the decay } \Leftrightarrow H\left(z_{d}\right) \sim \Gamma_{\varphi}
\end{aligned}
$$

Enormously large g_{a} is required:

$$
g_{\varphi}^{-1} \sim 10 \mathrm{GeV} \times\left(\frac{E_{\text {now }}}{\omega_{\text {EDGES }}}\right)^{3 / 2}\left(\frac{1+z_{\mathrm{d}}}{1000}\right)^{3 / 4}
$$

We consider conversion of DR to photon in early epoch

1. DR production (maybe by the decay of heavier particle)
2. DR is converted to photon (before $z \sim 20$)

$$
\frac{d n_{\gamma}}{d E}=\left[\frac{d n_{\gamma}}{d E}\right]_{\text {Black Body }}+\frac{d n_{\mathrm{DR}}}{d E} \times(\text { Conversion Probability })
$$

The case of dark photon γ^{\prime}
[Pospelov, Pradler, Ruderman \& Urbano ('18)]

$$
\mathcal{L}_{\gamma^{\prime}}=-\frac{\epsilon}{2} F^{\mu \nu} F_{\mu \nu}^{\prime}+\frac{1}{2} m_{\gamma^{\prime}}^{2} A_{\mu}^{\prime} A^{\prime \mu}
$$

Effective mass matrix (for $k^{2}=m_{\gamma^{\prime}}^{2}$)

$$
\mathcal{M}^{2}=\left(\begin{array}{cc}
m_{\gamma^{\prime}}^{2} & \epsilon m_{\gamma^{\prime}}^{2} \\
\epsilon m_{\gamma^{\prime}}^{2} & \omega_{p}^{2}
\end{array}\right)
$$

ω_{p} : Plasma frequency
$\omega_{p}(z)=\sqrt{\frac{4 \pi \alpha n_{e}(z)}{m_{e}}} \simeq 1.9 \times 10^{-14} \mathrm{eV} \times(1+z)^{3 / 2} X_{e}^{1 / 2}$
X_{e} : Ionization fraction

The case of axion-like particle (ALP)
[TM, Nakayama \& Tang ('18)]

$$
\begin{aligned}
\mathcal{L}_{\text {int }} & =-\frac{1}{4} g_{a} a F^{\mu \nu} \widetilde{F}_{\mu \nu} \rightarrow g_{a} \epsilon_{i j k} k_{i} B_{j} A_{k} a \\
g_{a} & : \text { ALP-photon coupling constant } \\
g_{a} & \lesssim 6.6 \times 10^{-11} \mathrm{GeV}^{-1} \text { (CAST / HB stars) }
\end{aligned}
$$

Effective mass matrix with magnetic field:

$$
\mathcal{M}^{2}=\left(\begin{array}{cc}
m_{a}^{2} & E g_{a} B_{\perp} \\
E g_{a} B_{\perp} & \omega_{p}^{2}
\end{array}\right)
$$

E: energy of photon (or ALP)

Equation for DR $\leftrightarrow \gamma$ oscillation

$$
i \frac{d}{d t}\binom{|\mathrm{DR}\rangle}{|\gamma\rangle}=\frac{1}{2 E}\left(\begin{array}{cc}
m_{\mathrm{DR}}^{2} & \Delta_{\mathrm{DR}} \\
\Delta_{\mathrm{DR}} & \omega_{p}^{2}
\end{array}\right)\binom{|\mathrm{DR}\rangle}{|\gamma\rangle} \text { with }\left\{\begin{array}{l}
\Delta_{\gamma^{\prime}}=\epsilon m_{\gamma^{\prime}}^{2} \\
\Delta_{a}=E g_{a} B_{\perp}
\end{array}\right.
$$

In the case of our interest, adiabaticity does not hold $\Rightarrow P_{\mathrm{DR} \leftrightarrow \gamma} \ll 1$

We expand ω_{p}^{2} around $\omega_{p}^{2} \simeq m_{\mathrm{DR}}^{2}$ as:

$$
\begin{aligned}
& \omega_{p}^{2} \simeq m_{\mathrm{DR}}^{2}\left[1+r^{-1}\left(t-t_{*}\right)+\cdots\right] \\
& r^{-1} \equiv \frac{d \ln \omega_{p}^{2}}{d t} \text { and } \omega_{p}^{2}\left(t_{*}\right)=m_{\mathrm{DR}}^{2}
\end{aligned}
$$

Approximated oscillation equation:

$$
i \frac{d}{d t}\binom{|\mathrm{DR}\rangle}{|\gamma\rangle} \simeq \frac{1}{2 E}\left(\begin{array}{cc}
m_{\mathrm{DR}}^{2} & \Delta_{\mathrm{DR}} \\
\Delta_{\mathrm{DR}} & m_{\mathrm{DR}}^{2}\left[1+r^{-1}\left(t-t_{*}\right)\right]
\end{array}\right)\binom{|\mathrm{DR}\rangle}{|\gamma\rangle}
$$

Treating the off-diagonal element as perturbation:
[Parke ('86); Mirizzi, Redondo \& Sigl ('09)]

$$
\left.P_{\mathrm{DR} \leftrightarrow \gamma}(E) \simeq \frac{\pi \Delta_{\mathrm{DR}}^{2}}{m_{\mathrm{DR}}^{2} E}\left(\frac{d \ln \omega_{p}^{2}}{d t}\right)^{-1}\right|_{t=t_{*}}
$$

Conversion probability (for $E_{\text {now }}=0.3 \mu \mathrm{eV}$) and DR mass

\Leftrightarrow Our formula of the conversion is valid when $P_{\mathrm{DR} \leftrightarrow \gamma} \ll 1$

- $1+z_{*} \gtrsim 20$
- $1+z_{*} \lesssim 1700$ in order not to thermalize the converted γ [Chluba ('15)]
$\Rightarrow 10^{-14} \mathrm{eV} \lesssim m_{\mathrm{DR}} \lesssim 10^{-9} \mathrm{eV}$

3. ALP to photon conversion for EDGES anomaly

For $m_{a} \sim \omega^{(\text {EDGES })}\left(1+z_{\mathrm{d}}\right)$

$$
\frac{\Delta \rho_{\gamma}^{(\mathrm{DR})}}{\Delta \rho_{\gamma}^{(\text {Black Body })}} \simeq 1 \times\left(\frac{P_{a \leftrightarrow \gamma}\left(\omega^{(\mathrm{EDGES})}\right)}{10^{-8}}\right)\left(\frac{\Delta N_{\mathrm{eff}}^{(\mathrm{DR})}}{0.3}\right)
$$

$$
\Delta \rho_{\gamma}=\int_{E_{\gamma} \sim \omega(\text { EDGES })} d E_{\gamma} \frac{d \rho_{\gamma}}{d E_{\gamma}}
$$

- $\Delta N_{\text {eff }}^{(\mathrm{ALP})}=0.3$
- $P_{a \leftrightarrow \gamma}(0.3 \mu \mathrm{eV})=10^{-8}$
$P_{\mathrm{DR} \leftrightarrow \gamma}$ depends on energy of photon
- Dark photon: $P_{\gamma^{\prime} \leftrightarrow \gamma} \propto E^{-1}$ (because $\Delta_{\gamma^{\prime}}$ is constant)
- ALP: $P_{a \leftrightarrow \gamma} \propto E$ (because $\Delta_{\text {ALP }} \propto E$)

ALP scenario is severely constrained by CMB distortion [Mirizzi, Redondo \& Sigl ('09)]

- $P_{a \leftrightarrow \gamma} \propto E \Rightarrow P_{a \leftrightarrow \gamma}\left(E^{(3 \mathrm{~K})}\right) \sim 10^{3} P_{a \leftrightarrow \gamma}\left(E^{\text {(EDGES) })}\right)$
- $P_{a \leftrightarrow \gamma}\left(E^{(\text {EDGES })}\right) \lesssim 10^{-6}-10^{-8}$
- For the case with γ^{\prime}, the constraint is much weaker

To enhance the photon flux by the factor of ~ 2 :

$$
\Rightarrow P_{a \leftrightarrow \gamma}\left(E^{(\text {EDGES })}\right) \gtrsim 10^{-8}, \text { if } \Delta N_{\text {eff }} \lesssim 0.3
$$

The constraint from the CMB distortion may be improved PIXIE, PRISM

Primordial magnetic field?

- Origin is an open question $\Leftrightarrow B_{0} \gtrsim 10^{-3} \mathrm{nG}$ is suggested (or $10^{-4} \mathrm{nG}$, if $\Delta N_{\text {eff }} \gg 0.3$)
- Here, I assume it was somehow generated

Primordial magnetic field may heat up the gas if $B_{0} \sim \operatorname{subnG}$ [Sethi \& Subramanian; Schleicher et al.]

- Ambipolar diffusion
- Decay of turbulence
\Rightarrow In order not heat up the gas so much, $B_{0} \ll$ subnG

4. Summary

I discussed a scenario to explain the EDGES anomaly

- Heating up the RJ tail by converting DR to photon

Candidates of the DR:

- Dark photon
- ALP

The scenario may be tested by

- CMB spectral distortion (PIXIE, PRISM)
- $\Delta N_{\text {eff }}$
- For the case of ALP, future axion helioscope (IAXO)

Backup

Spectrum observed by EDGES experiment

Spectrum after removing the foreground

Spectrum (after removing the foreground and 21 cm models)

Above +21 cm model

Free electron in the early universe:
Ionization fraction X_{e}

Plasma frequency

$$
\omega_{p}(z)=\sqrt{\frac{4 \pi \alpha n_{e}(z)}{m_{e}}} \simeq 1.9 \times 10^{-14} \mathrm{eV} \times(1+z)^{3 / 2} X_{e}^{1 / 2}
$$

Photons in the RJ tail should not be thermalized

\Leftrightarrow Optical depth of the photon in the early universe

$$
x=\left.\frac{E_{\gamma}}{T}\right|_{i}
$$

[Chluba ('15)]
\Rightarrow For $x \sim 10^{-3}, z \lesssim 1700$ is needed to realize $\tau \lesssim 1$
$\Rightarrow m_{\mathrm{DR}} \lesssim 10^{-9} \mathrm{eV}$

Oscillation length

$$
\ell_{\text {osc }} \sim \frac{\sqrt{E r}}{m_{a}} \sim 10^{28} \mathrm{eV}^{-1}\left(\frac{10^{-14} \mathrm{eV}}{m_{a}}\right)^{-1}\left(\frac{E_{0}}{1 \mu \mathrm{eV}}\right)^{1 / 2}\left(1+z_{*}\right)^{-1 / 4}
$$

Coherent length of the magnetic field
[Durrer \& Neronov ('13)]

$$
\ell_{B} \sim 1 \mathrm{Mpc}(1+z)^{-1} \sim 10^{29} \mathrm{eV}^{-1}(1+z)^{-1}
$$

Mean free path of the photon

$$
\ell_{\gamma} \sim\left(\sigma_{\top} n_{e}\right)^{-1} \sim 10^{35} \mathrm{eV}^{-1}(1+z)^{-3} X_{e}^{-1}
$$

Oscillation length for adiabatic conversion

$$
\ell_{\mathrm{adi}} \sim\left(g_{a} B_{\perp}\right)^{-1} \quad \Leftrightarrow \quad P_{a \leftrightarrow \gamma} \sim \frac{\ell_{\mathrm{osc}}^{2}}{\ell_{\mathrm{adi}}^{2}}
$$

For the validity of our calculation, we need

- $\ell_{\text {osc }} \ll \ell_{\gamma}\left(\ell_{\gamma}=\right.$ mean free path of photon $)$
- $\ell_{\text {osc }} \ll \ell_{B}$ ($\ell_{B}=$ coherent length of magnetic field)

Production of ALP (via the decay of a scalar field ϕ)

We may consider a scenario in which

- a : NG boson in supersymmetric model
- ϕ : Real part of the complex scalar field containing a f : breaking scale of the $U(1)$ symmetry

For the case of where ϕ decays before the inflaton decay

$$
H\left(T_{\mathrm{R}}\right) \lesssim \Gamma_{\phi \rightarrow 2 a} \sim \frac{1}{64 \pi} \frac{m_{\phi}^{3}}{f^{2}}
$$

Relation between m_{ϕ} and the present energy of ALP

$$
m_{\phi} \sim 4 \times 10^{3} \mathrm{GeV} \times\left(\frac{f}{10^{8} \mathrm{GeV}}\right)^{2}\left(\frac{1 \mu \mathrm{eV}}{E_{\text {now }}}\right)^{2}
$$

Energy density of ALP (DR)

$$
\Delta N_{\text {eff }}^{(\mathrm{ALP})} \sim 0.1 \times\left(\frac{T_{\mathrm{R}}}{10^{3} \mathrm{GeV}}\right)^{4 / 3}\left(\frac{f}{10^{8} \mathrm{GeV}}\right)^{4 / 3}\left(\frac{m_{\phi}}{10^{3} \mathrm{GeV}}\right)^{-2}\left(\frac{\phi_{i}}{M_{\mathrm{PI}}}\right)^{2}
$$

One choice to realize $N_{\text {eff }}^{(\mathrm{ALP})} \sim 0.1$:

$$
m_{\phi} \sim 10^{3} \mathrm{GeV}, f \sim 10^{8} \mathrm{GeV}, \phi_{i} \sim M_{\mathrm{PI}}, T_{\mathrm{R}} \sim 10^{3} \mathrm{GeV}
$$

