Conversion of dark radiation (DR) to photon in early universe and 21cm signal

Takeo Moroi (Tokyo)

Ref:

TM, Nakayama, Tang, PLB 783 ('18) 301 [1804.10378]

1. Introduction

21cm photon:

Transition between spin singlet and triplet of 1s hydrogen

Rich information is imprinted in cosmic 21cm spectrum

- EDGES collaboration announced their result
- There are up-coming experiments

21cm photons are absorbed / emitted in the early universe

Differential brightness temperature against CMB

$$\delta T_b(z) = \frac{T_b(z) - T_\gamma(z)}{1+z} \simeq 23 \text{ mK} \times x_{\text{HI}}(z) \left[\frac{1+z}{10}\right]^{1/2} \left[1 - \frac{T_\gamma(z)}{T_S(z)}\right]$$
$$T_S: \text{ spin temperature } \Leftrightarrow \frac{n_{S=1}(z)}{n_{S=0}(z)} \equiv 3e^{-E_{10}/T_S(z)}$$

EDGES result on δT_b (for $50 \lesssim \nu \lesssim 100 \text{ MHz}$)

[EDGES Collaboration ('18)]

 \Leftrightarrow 21cm hyperfine line produced at $14 \lesssim 1 + z \lesssim 28$

- The absorption at $\nu\sim78\,{\rm MHz}$ is consistent with the 21cm signal due to early star formation
- \bullet The absorption is factor of ~ 2 larger than the largest prediction

Possible explanations

[EDGES Collaboration ('18)]

- The primordial gas was cooler than expected
- The CMB flux at the Rayleigh-Jeans (RJ) tail was larger than expected

Here, I discuss the possibility to heat up the RJ tail

Outline

- 1. Introduction
- 2. DR-Photon Conversion
- 3. Implications to EDGES Anomaly
- 4. Summary

2. DR-Photon Conversion

Comment on a naive scenario:

Radiative decay of a scalar field φ to heat up the RJ tail

For example:

$$\mathcal{L}_{\rm int} = -\frac{1}{4} g_{\varphi} \varphi F^{\mu\nu} \widetilde{F}_{\mu\nu} \quad \Rightarrow \quad \Gamma_{\varphi \to \gamma\gamma} = \frac{1}{32\pi} g_{\varphi}^2 m_{\varphi}^3$$

To heat up the photons in the EDGES frequency range:

$$E_{\rm now} \sim m_{\varphi} (1+z_d)^{-1}$$

 $z_d = \text{redshift}$ at the decay $\Leftrightarrow H(z_d) \sim \Gamma_{\varphi}$

Enormously large g_a is required:

$$g_{\varphi}^{-1} \sim 10 \text{ GeV} \times \left(\frac{E_{\text{now}}}{\omega_{\text{EDGES}}}\right)^{3/2} \left(\frac{1+z_{\text{d}}}{1000}\right)^{3/4}$$

We consider conversion of DR to photon in early epoch

- 1. DR production (maybe by the decay of heavier particle)
- 2. DR is converted to photon (before $z \sim 20$)

 $\frac{dn_{\gamma}}{dE} = \left[\frac{dn_{\gamma}}{dE}\right]_{\text{Black Body}} + \frac{dn_{\text{DR}}}{dE} \times (\text{Conversion Probability})$

The case of dark photon γ'

[Pospelov, Pradler, Ruderman & Urbano ('18)]

$$\mathcal{L}_{\gamma'} = -\frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{\gamma'}^2 A'_{\mu} A'^{\mu}$$

Effective mass matrix (for $k^2 = m_{\gamma'}^2$)

$$\mathcal{M}^2 = \begin{pmatrix} m_{\gamma'}^2 & \epsilon \, m_{\gamma'}^2 \\ \epsilon \, m_{\gamma'}^2 & \omega_p^2 \end{pmatrix}$$

 ω_p : Plasma frequency

$$\omega_p(z) = \sqrt{\frac{4\pi\alpha n_e(z)}{m_e}} \simeq 1.9 \times 10^{-14} \text{ eV} \times (1+z)^{3/2} X_e^{1/2}$$

 X_e : Ionization fraction

The case of axion-like particle (ALP) [TM, Nakayama & Tang ('18)]

$$\mathcal{L}_{int} = -\frac{1}{4} g_a a F^{\mu\nu} \widetilde{F}_{\mu\nu} \rightarrow g_a \epsilon_{ijk} k_i B_j A_k a$$

$$g_a: \text{ ALP-photon coupling constant}$$

$$g_a \lesssim 6.6 \times 10^{-11} \text{ GeV}^{-1} \text{ (CAST / HB stars)}$$

Effective mass matrix with magnetic field:

$$\mathcal{M}^2 = \begin{pmatrix} m_a^2 & Eg_a B_\perp \\ Eg_a B_\perp & \omega_p^2 \end{pmatrix}$$

E: energy of photon (or ALP)

Equation for $\mathsf{DR} \leftrightarrow \gamma$ oscillation

$$i\frac{d}{dt} \begin{pmatrix} |\mathsf{DR}\rangle \\ |\gamma\rangle \end{pmatrix} = \frac{1}{2E} \begin{pmatrix} m_{\mathsf{DR}}^2 \ \Delta_{\mathsf{DR}} \\ \Delta_{\mathsf{DR}} \ \omega_p^2 \end{pmatrix} \begin{pmatrix} |\mathsf{DR}\rangle \\ |\gamma\rangle \end{pmatrix} \text{ with } \begin{cases} \Delta_{\gamma'} = \epsilon m_{\gamma'}^2 \\ \Delta_a = Eg_a B_\perp \end{cases}$$

In the case of our interest, adiabaticity does not hold

 $\Rightarrow P_{\mathsf{DR}\leftrightarrow\gamma} \ll 1$

We expand ω_p^2 around $\omega_p^2 \simeq m_{\rm DR}^2$ as:

$$\omega_p^2 \simeq m_{\rm DR}^2 \left[1 + r^{-1}(t - t_*) + \cdots \right]$$
$$r^{-1} \equiv \frac{d \ln \omega_p^2}{dt} \text{ and } \omega_p^2(t_*) = m_{\rm DR}^2$$

Approximated oscillation equation:

$$i\frac{d}{dt} \begin{pmatrix} |\mathsf{DR}\rangle \\ |\gamma\rangle \end{pmatrix} \simeq \frac{1}{2E} \begin{pmatrix} m_{\mathsf{DR}}^2 & \Delta_{\mathsf{DR}} \\ \Delta_{\mathsf{DR}} & m_{\mathsf{DR}}^2 \left[1 + r^{-1}(t - t_*)\right] \end{pmatrix} \begin{pmatrix} |\mathsf{DR}\rangle \\ |\gamma\rangle \end{pmatrix}$$

Treating the off-diagonal element as perturbation: [Parke ('86); Mirizzi, Redondo & Sigl ('09)]

$$P_{\mathsf{DR}\leftrightarrow\gamma}(E) \simeq \left. \frac{\pi \Delta_{\mathsf{DR}}^2}{m_{\mathsf{DR}}^2 E} \left(\frac{d\ln \omega_p^2}{dt} \right)^{-1} \right|_{t=t_*}$$

Conversion probability (for $E_{now} = 0.3 \ \mu eV$) and DR mass \Leftrightarrow Our formula of the conversion is valid when $P_{DR\leftrightarrow\gamma} \ll 1$

•
$$1+z_* \gtrsim 20$$

• $1 + z_* \lesssim 1700$ in order not to thermalize the converted γ [Chluba ('15)]

 $\Rightarrow 10^{-14} \text{ eV} \lesssim m_{\text{DR}} \lesssim 10^{-9} \text{ eV}$

3. ALP to photon conversion for EDGES anomaly

For $m_a \sim \omega^{(\text{EDGES})}(1 + z_d)$ $\frac{\Delta \rho_{\gamma}^{(\text{DR})}}{\Delta \rho_{\gamma}^{(\text{Black Body})}} \simeq 1 \times \left(\frac{P_{a \leftrightarrow \gamma}(\omega^{(\text{EDGES})})}{10^{-8}}\right) \left(\frac{\Delta N_{\text{eff}}^{(\text{DR})}}{0.3}\right)$ $\Delta \rho_{\gamma} = \int_{E_{\gamma} \sim \omega^{(\text{EDGES})}} dE_{\gamma} \frac{d\rho_{\gamma}}{dE_{\gamma}}$

• $\Delta N_{\rm eff}^{\rm (ALP)}=0.3$

•
$$P_{a\leftrightarrow\gamma}(0.3\,\mu\mathrm{eV}) = 10^{-8}$$

 $P_{\mathrm{DR}\leftrightarrow\gamma}$ depends on energy of photon

- Dark photon: $P_{\gamma'\leftrightarrow\gamma}\propto E^{-1}$ (because $\Delta_{\gamma'}$ is constant)
- ALP: $P_{a\leftrightarrow\gamma}\propto E$ (because $\Delta_{\text{ALP}}\propto E$)

ALP scenario is severely constrained by CMB distortion [Mirizzi, Redondo & Sigl ('09)]

- $P_{a\leftrightarrow\gamma} \propto E \implies P_{a\leftrightarrow\gamma}(E^{(3K)}) \sim 10^3 P_{a\leftrightarrow\gamma}(E^{(\text{EDGES})})$
- $P_{a\leftrightarrow\gamma}(E^{(\mathrm{EDGES})}) \lesssim 10^{-6} 10^{-8}$
- \bullet For the case with $\gamma',$ the constraint is much weaker

To enhance the photon flux by the factor of ~ 2: $\Rightarrow P_{a\leftrightarrow\gamma}(E^{(\text{EDGES})}) \gtrsim 10^{-8}, \text{ if } \Delta N_{\text{eff}} \lesssim 0.3$

The constraint from the CMB distortion may be improved PIXIE, PRISM

Primordial magnetic field?

• Origin is an open question

 $\Leftrightarrow B_0 \gtrsim 10^{-3} \,\mathrm{nG}$ is suggested (or $10^{-4} \,\mathrm{nG}$, if $\Delta N_{\mathrm{eff}} \gg 0.3$)

• Here, I assume it was somehow generated

Primordial magnetic field may heat up the gas if $B_0 \sim \text{subnG}$ [Sethi & Subramanian; Schleicher et al.]

- Ambipolar diffusion
- Decay of turbulence

 \Rightarrow In order not heat up the gas so much, $B_0 \ll \text{sub}\,\text{nG}$

4. Summary

I discussed a scenario to explain the EDGES anomaly

• Heating up the RJ tail by converting DR to photon

Candidates of the DR:

- Dark photon
- ALP

The scenario may be tested by

- CMB spectral distortion (PIXIE, PRISM)
- $\Delta N_{\rm eff}$
- For the case of ALP, future axion helioscope (IAXO)

Backup

Spectrum observed by EDGES experiment

Spectrum after removing the foreground

Spectrum (after removing the foreground and 21cm models)

Above + 21cm model

Free electron in the early universe:

Ionization fraction X_e

Plasma frequency

$$\omega_p(z) = \sqrt{\frac{4\pi\alpha n_e(z)}{m_e}} \simeq 1.9 \times 10^{-14} \text{ eV} \times (1+z)^{3/2} X_e^{1/2}$$

Photons in the RJ tail should not be thermalized

 \Leftrightarrow Optical depth of the photon in the early universe

 \Rightarrow For $x \sim 10^{-3}$, $z \lesssim 1700$ is needed to realize $\tau \lesssim 1$ $\Rightarrow m_{\rm DR} \lesssim 10^{-9} \text{ eV}$ Oscillation length

$$\ell_{\rm osc} \sim \frac{\sqrt{Er}}{m_a} \sim 10^{28} \,\mathrm{eV}^{-1} \left(\frac{10^{-14} \,\mathrm{eV}}{m_a}\right)^{-1} \left(\frac{E_0}{1 \,\mu\mathrm{eV}}\right)^{1/2} (1+z_*)^{-1/4}$$

Coherent length of the magnetic field [Durrer & Neronov ('13)]

$$\ell_B \sim 1 \operatorname{Mpc} (1+z)^{-1} \sim 10^{29} \operatorname{eV}^{-1} (1+z)^{-1}$$

Mean free path of the photon

$$\ell_{\gamma} \sim (\sigma_{\rm T} n_e)^{-1} \sim 10^{35} \, {\rm eV}^{-1} (1+z)^{-3} X_e^{-1}$$

Oscillation length for adiabatic conversion

$$\ell_{\rm adi} \sim (g_a B_\perp)^{-1} \quad \Leftrightarrow \quad P_{a \leftrightarrow \gamma} \sim \frac{\ell_{\rm osc}^2}{\ell_{\rm adi}^2}$$

For the validity of our calculation, we need

- $\ell_{\rm osc} \ll \ell_{\gamma}$ (ℓ_{γ} = mean free path of photon)
- $\ell_{osc} \ll \ell_B$ (ℓ_B = coherent length of magnetic field)

Production of ALP (via the decay of a scalar field ϕ)

We may consider a scenario in which

- *a*: NG boson in supersymmetric model
- ϕ : Real part of the complex scalar field containing a

f: breaking scale of the U(1) symmetry

For the case of where ϕ decays before the inflaton decay

$$H(T_{\mathsf{R}}) \lesssim \Gamma_{\phi \to 2a} \sim \frac{1}{64\pi} \frac{m_{\phi}^3}{f^2}$$

Relation between m_{ϕ} and the present energy of ALP

$$m_{\phi} \sim 4 \times 10^{3} \,\mathrm{GeV} \times \left(\frac{f}{10^{8}\,\mathrm{GeV}}\right)^{2} \left(\frac{1\,\mu\mathrm{eV}}{E_{\mathrm{now}}}\right)^{2}$$

Energy density of ALP (DR)

$$\Delta N_{\rm eff}^{\rm (ALP)} \sim 0.1 \times \left(\frac{T_{\rm R}}{10^3 \,{\rm GeV}}\right)^{4/3} \left(\frac{f}{10^8 \,{\rm GeV}}\right)^{4/3} \left(\frac{m_{\phi}}{10^3 \,{\rm GeV}}\right)^{-2} \left(\frac{\phi_i}{M_{\rm PI}}\right)^2$$

One choice to realize $N_{\rm eff}^{\rm (ALP)} \sim 0.1$:

 $m_{\phi} \sim 10^3 \, {\rm GeV}$, $f \sim 10^8 \, {\rm GeV}$, $\phi_i \sim M_{\rm Pl}$, $T_{\rm R} \sim 10^3 \, {\rm GeV}$