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Why quantum cosmology?
“... it appears that quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new theory of gravitation.”
– Albert Einstein, 1916.

→ Need to look for indirect probes for quantum gravity in early
universe cosmology when very high energy scales were naturally
reached ⇒ Quantum cosmology.

Suddhasattwa Brahma The no-boundary proposal in LQC 2/12



Ingredients for quantum cosmology
→ Quantum cosmology entails treating the universe as a quantum
system.

→ Two parts of the final theory:

The Hamiltonian (or action) determines the dynamics ⇒
Corrections from quantum gravity?

The quantum state of the universe ⇒ Initial conditions Set by
some ‘topological’ principle?
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The no-boundary proposal

→ Restrict to minisuperspace, spatially closed cosmologies with a
cosmological constant or a single scalar field.

→ Wavefunction specified by the value of the 3−metric and spatial
field configuration on a final spacelike surface Σ ⇒ Ψ = Ψ[hab, χ]

→ Saddle-point approximation [J. Hartle & S. Hawking, 1983]

Ψ[hab, χ] :=

∫ (h,χ)

D[g ]D[ϕ]e−S[g ,ϕ]/~ ≈ e−Sext[hab,χ]/~

→ No-boundary saddle-points: Extrema of the action (generally
complex but Euclidean for the simplest cases), with (hab, χ) on the
boundary at late times and are regular everywhere else.

→ Quantum completion for inflation ⇒ Principle for setting initial
conditions for cosmological perturbations.

→ For minisuperspace models, this implies the boundary conditions
a(0) = 0, ϕ̇(0) = 0. (Regularity at the South Pole)
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Loop quantum gravity corrections

→ Basic continuum quantities of spatial geometry, such as areas and
volumes, are represented by operators with discrete spectra.
An infinitesimal change of these quantities in time — or, more
geometrically, the extrinsic curvature of space — no longer has a linear and
local expression in space but is instead exponentiated and extended
one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, T.

Thiemann . . . ]

→ For a cosmological model, they imply two main corrections:

Holonomy modifications: No operator for extrinsic curvature ȧ or the
Hubble parameter ȧ/a ⇒ Well-defined operators only for SU(2)
holonomy matrix elements, which are periodic functions such as
ȧ→ sin(`(a)ȧ)/`(a) with `(a) ∼ lP/a.

Inverse-volume corrections: Using ĥ−1[ĥ,
√
â] = − 1

2
~`â−1/2 (where

ĥ = ̂exp(i`pa)) to get a−1 = f (a)/a with f (a) some quantum correction
function which goes to 1 for large a. The small-a behaviour eliminates
the divergence of a direct inverse at a = 0.
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Loop corrections in the no-boundary proposal

→ In the path integral form for the no-boundary proposal, this implies
replacing the Einstein-Hilbert action by an effective LQC action, which
includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator,
one solves a “difference” equation in LQC ⇒ Quantum geometry
corrections imply a modified Hamiltonian constraint in ĤLQC Ψ = 0. Still
need boundary conditions for specific solutions.
Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result
in deformed gauge transformations. Since background is modified, covariant
perturbatons imply an effective line-element ds2β = −βN2dt2 + a(t)2dΩk

where β(a, ȧ) changes sign at large curvature resulting in dynamical
signature change.

→ South-Pole regularity conditions modified for LQC –
EH: a(0) = 0, ȧ(0) = 1 ⇔ LQC: a(0) = 0, ȧ(0) = 0
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Hartle-Hawking proposal
→ For minisuperspace cosmologies, in the saddle-point
approximation, the no-boundary wavefunction simplifies

ΨHH[ã, χ] ≈ e−SEH
E [ã,χ]/~

→ For simplest models, say with only a cosmological constant, our
(Lorentzian) universe tunnels from nothing via an Euclidean region.

→ Friedmann equation: ȧ2 = −V(a) and on-shell action

SEH
E = − 3π

2

∫ ã

0
a
√
|V(a)|.

The nucleation probability of a universe P ' e−2SLQC
E .
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Pure de Sitter
[S.B. & D.-h. Yeom, 2018]

−ȧ2 = V :=
8πa2

3
f 2(a)

[
ρ

f (a)
− ρ1

] [
ρ2 − ρ

f (a)

ρc

]

-4 -3 -2 -1
Τ

0.5

1.0

1.5

aHΤL

4.0 4.5 5.0 5.5 6.0
log ALQC

3.5

4.0

4.5

-2SE
LQC
-ALQC�4

→ A typical solution a(τ) for some numerical values of Λ & lPl .

→−2SLQC
E ' A

4
+ c + d logA, d > 0 where A = 4πã2

→ LQC correction rather small ⇒ There is a potential barrier for both EH
(−ȧ2 ∼ −1 + Λa2) and LQC scenarios.
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Massless scalar field
→ Usual KG equation ϕ̈+ 3Hϕ̇ = 0 ⇒ ϕ̇ = 0 and non-dynamical solution.
In EH theory, no way to get interesting solutions.

→ Modified equations of motion [S.B. & D.-h. Yeom, 2018]

V =
8πG

3
a2f 2(a)

[
a6π

4
√
3γ3 l6

Pl

(
ρ

ρc

)(
g(a)

f (a)

)
− ρ1

] [
1

ρc

(
ρ2 −

a6π

4
√

3γ3 l6
Pl

(
ρ

ρc

)(
g(a)

f (a)

))]

ϕ̈−
(

Ḃ(a)

B(a)

)
ϕ̇ = 0 Classically, B(a) ∼ a−3 & B(a) ∼ a12 in QG regime

→ New instantonic solutions for NBWF ⇔ New physical interpretations for
LQC
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Loops rescue the no-boundary proposal
→ Euclidean

∫ hD[g ]e−SE/~ (compact Euclidean 4-geometries bounded by

h) vs. Lorentzian
∫ h

∅ D[g ]e iS/~ (Lorentzian 4-geometries interpolating
between a vanishing initial 3-geometries and h). [HH, 1983; A. Vilenkin, 1982]

→ Euclidean path integral diverges for Λ > 0 for all contours of the lapse ⇒
Lorentzian path integral can be made well-defined by applying
Piecard-Lefshetz theory to yield a convergent integral by deforming the
lapse contour.

→ Unsuppressed runaway perturbations on the final 3-geometry due to an
inverse Gaussian weighting for perturbations ⇒ Old problem of the scale
factor having wrong-sign kinetic term. [J. Feldbrugge, J.-l. Lehners & N. Turok,

2017]

→ Dynamical signature change in makes these inverted Gaussians have the
correct sign for having a Bunch-Davies state at the onset of inflation. [M.
Bojowald & S.B., 2018]
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Timeless stability of perturbations

→ The mode equation

v̈ ≈ 1
4

(
(n − 2ε)(n + 2) + ε(ε+ 2)− β N2`(`+2)

c2

)
v
t2 ,

and its solution is v+ = v1t
1
2 (1+γ) where

γ =

√
1 + n(n + 2)− β `(`+ 2)N2

c2

→ For EH, β = 1, n = 0, γ and the solutions v± have branch cuts on
the real N-axis ⇒ The action evaluated on the regular solution v+ is
equal to S+(v1) = 1

4N
−1(γ − 1)v2

1 and has a negative imaginary part
above the branch cut. This result leads to a Gaussian with positive
exponent in the path integral of perturbations.

→ With dynamical signature change, that is β < 0, γ is always real
for real N. Its branch cuts in the complex plane are now on the
imaginary N-axis where they do not affect the Lorentzian path
integral ⇒ The action S+ is always real and finite and does not lead
to unbounded contributions to the path integral.
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Summary
→ Conclusions: Fruitful confluence between different approaches to
quantum cosmology.

Loops provide necessary quantum geometry corrections which
expands the solution space for the no-boundary proposal.

The no-boundary wave function is necessary to discover new
physical phenomenon in loops which cannot be probed otherwise.

Remarkable similarity in dynamical signature-change coming
loops and the Euclidean (generally, complex) phase in the
Hartle-Hawking proposal.

→ Looking ahead:

Implications for LQC corrections in other type of models of the
NB proposal – Hawking-Turok instanton? Perhaps some of the
divergences of the instantonic solutions ameliorated by loops?

No-boundary state made compatible with dynamical
signature-change ⇒ New route towards dS/CFT? [Hartle, Hertog,

Hawking . . . ]
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