The no-boundary proposal in loop quantum cosmology

Suddhasattwa Brahma

Asia Pacific Center for Theoretical Physics

(with Dong-han Yeom) arXiv:1808.01744 (with Martin Bojowald) arXiv:1809.XXXXX

Aug 30, 2018

apctp

<□▶ </2> <注意 <注意 </2> </2>

990

Why quantum cosmology?

"... it appears that quantum theory would have to modify not only Maxwellian electrodynamics, but also the new theory of gravitation." – Albert Einstein, 1916.

 \rightarrow Need to look for indirect probes for quantum gravity in early universe cosmology when very high energy scales were naturally reached \Rightarrow Quantum cosmology.

B N A B N

 \rightarrow Quantum cosmology entails treating the universe as a quantum system.

- \rightarrow Two parts of the final theory:
 - The Hamiltonian (or action) determines the dynamics ⇒ Corrections from quantum gravity?
 - The quantum state of the universe ⇒ Initial conditions Set by some 'topological' principle?

1 B F 1 B F

 \rightarrow Quantum cosmology entails treating the universe as a quantum system.

- \rightarrow Two parts of the final theory:
 - The Hamiltonian (or action) determines the dynamics ⇒ Corrections from quantum gravity?
 - The quantum state of the universe ⇒ Initial conditions Set by some 'topological' principle?

4 15 14 15 14

 \rightarrow Quantum cosmology entails treating the universe as a quantum system.

- \rightarrow Two parts of the final theory:
 - The Hamiltonian (or action) determines the dynamics ⇒ Corrections from quantum gravity?
 - The quantum state of the universe ⇒ Initial conditions Set by some 'topological' principle?

4 15 16 16 16 16

 \rightarrow Quantum cosmology entails treating the universe as a quantum system.

- \rightarrow Two parts of the final theory:
 - The Hamiltonian (or action) determines the dynamics ⇒ Corrections from quantum gravity?
 - The quantum state of the universe ⇒ Initial conditions Set by some 'topological' principle?

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

→ Wavefunction specified by the value of the 3–metric and spatial field configuration on a final spacelike surface $\Sigma \Rightarrow \Psi = \Psi[h_{ab}, \chi]$

 $ightarrow {
m Saddle-point}$ approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx e^{-S_{\rm ext}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

 \rightarrow Quantum completion for inflation \Rightarrow Principle for setting initial conditions for cosmological perturbations.

 \rightarrow For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\phi}(0) = 0$. (Regularity at the South Pole)

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

 \rightarrow Wavefunction specified by the value of the 3–metric and spatial field configuration on a final spacelike surface $\Sigma \Rightarrow \Psi = \Psi[h_{ab}, \chi]$

 $ightarrow {
m Saddle-point}$ approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx e^{-S_{\rm ext}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

 \rightarrow Quantum completion for inflation \Rightarrow Principle for setting initial conditions for cosmological perturbations.

 \rightarrow For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\varphi}(0) = 0$. (Regularity at the South Pole)

5 N 4 5 N

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

→ Wavefunction specified by the value of the 3–metric and spatial field configuration on a final spacelike surface $\Sigma \Rightarrow \Psi = \Psi[h_{ab}, \chi]$

 \rightarrow Saddle-point approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx e^{-S_{\text{ext}}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

 \rightarrow Quantum completion for inflation \Rightarrow Principle for setting initial conditions for cosmological perturbations.

 \rightarrow For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\varphi}(0) = 0$. (Regularity at the South Pole)

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

→ Wavefunction specified by the value of the 3–metric and spatial field configuration on a final spacelike surface $\Sigma \Rightarrow \Psi = \Psi[h_{ab}, \chi]$

 \rightarrow Saddle-point approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx e^{-S_{\text{ext}}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

 \rightarrow Quantum completion for inflation \Rightarrow Principle for setting initial conditions for cosmological perturbations.

 \rightarrow For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\varphi}(0) = 0$. (Regularity at the South Pole)

 \rightarrow Restrict to minisuperspace, spatially closed cosmologies with a cosmological constant or a single scalar field.

→ Wavefunction specified by the value of the 3–metric and spatial field configuration on a final spacelike surface $\Sigma \Rightarrow \Psi = \Psi[h_{ab}, \chi]$

 \rightarrow Saddle-point approximation [J. Hartle & S. Hawking, 1983]

$$\Psi[h_{ab},\chi] := \int^{(h,\chi)} \mathcal{D}[g] \mathcal{D}[\varphi] e^{-S[g,\varphi]/\hbar} \approx e^{-S_{\text{ext}}[h_{ab},\chi]/\hbar}$$

 \rightarrow No-boundary saddle-points: Extrema of the action (generally complex but Euclidean for the simplest cases), with (h_{ab}, χ) on the boundary at late times and are regular everywhere else.

 \rightarrow Quantum completion for inflation \Rightarrow Principle for setting initial conditions for cosmological perturbations.

→ For minisuperspace models, this implies the boundary conditions a(0) = 0, $\dot{\phi}(0) = 0$. (Regularity at the South Pole)

Loop quantum gravity corrections

→ Basic continuum quantities of spatial geometry, such as areas and volumes, are represented by operators with discrete spectra. An infinitesimal change of these quantities in time — or, more geometrically, the extrinsic curvature of space — no longer has a linear and local expression in space but is instead exponentiated and extended one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, T. Thiemann ...]

 \rightarrow For a cosmological model, they imply two main corrections:

• Holonomy modifications: No operator for extrinsic curvature \dot{a} or the Hubble parameter $\dot{a}/a \Rightarrow$ Well-defined operators only for SU(2) holonomy matrix elements, which are periodic functions such as $\dot{a} \rightarrow \sin(\ell(a)\dot{a})/\ell(a)$ with $\ell(a) \sim I_P/a$.

• Inverse-volume corrections: Using $\hat{h}^{-1}[\hat{h}, \sqrt{\hat{a}}] = -\frac{1}{2}\hbar \widehat{\ell a^{-1/2}}$ (where $\hat{h} = \exp(i\ell p_a)$) to get $a^{-1} = f(a)/a$ with f(a) some quantum correction function which goes to 1 for large a. The small-*a* behaviour eliminates the divergence of a direct inverse at a = 0.

Loop quantum gravity corrections

→ Basic continuum quantities of spatial geometry, such as areas and volumes, are represented by operators with discrete spectra. An infinitesimal change of these quantities in time — or, more geometrically, the extrinsic curvature of space — no longer has a linear and local expression in space but is instead exponentiated and extended one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, T. Thiemann ...]

- \rightarrow For a cosmological model, they imply two main corrections:
 - Holonomy modifications: No operator for extrinsic curvature \dot{a} or the Hubble parameter $\dot{a}/a \Rightarrow$ Well-defined operators only for SU(2) holonomy matrix elements, which are periodic functions such as $\dot{a} \rightarrow \sin(\ell(a)\dot{a})/\ell(a)$ with $\ell(a) \sim l_P/a$.
 - Inverse-volume corrections: Using $\hat{h}^{-1}[\hat{h},\sqrt{\hat{a}}] = -\frac{1}{2}\hbar \ell \widehat{a^{-1/2}}$ (where

 $\hat{h} = \exp(i\ell p_a))$ to get $a^{-1} = f(a)/a$ with f(a) some quantum correction function which goes to 1 for large a. The small-*a* behaviour eliminates the divergence of a direct inverse at a = 0.

B N A B N

Loop quantum gravity corrections

→ Basic continuum quantities of spatial geometry, such as areas and volumes, are represented by operators with discrete spectra. An infinitesimal change of these quantities in time — or, more geometrically, the extrinsic curvature of space — no longer has a linear and local expression in space but is instead exponentiated and extended one-dimensionally, along an eponymous loop.[A. Ashtekar, M. Bojowald, T. Thiemann ...]

- \rightarrow For a cosmological model, they imply two main corrections:
 - Holonomy modifications: No operator for extrinsic curvature \dot{a} or the Hubble parameter $\dot{a}/a \Rightarrow$ Well-defined operators only for SU(2) holonomy matrix elements, which are periodic functions such as $\dot{a} \rightarrow \sin(\ell(a)\dot{a})/\ell(a)$ with $\ell(a) \sim l_P/a$.
 - Inverse-volume corrections: Using $\hat{h}^{-1}[\hat{h}, \sqrt{\hat{a}}] = -\frac{1}{2}\hbar \hat{\ell a^{-1/2}}$ (where $\hat{h} = \widehat{\exp(i\ell p_a)}$) to get $a^{-1} = f(a)/a$ with f(a) some quantum correction function which goes to 1 for large a. The small-*a* behaviour eliminates the divergence of a direct inverse at a = 0.

.

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC \Rightarrow Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in **deformed gauge transformations**. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in **dynamical** signature change.

→ South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow$ LQC: a(0) = 0, $\dot{a}(0) = 0$

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC ⇒ Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in **deformed gauge transformations**. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in **dynamical** signature change.

→ South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow$ LQC: a(0) = 0, $\dot{a}(0) = 0$

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC ⇒ Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in deformed gauge transformations. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in dynamical signature change.

→ South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow$ LQC: a(0) = 0, $\dot{a}(0) = 0$

 \rightarrow In the path integral form for the no-boundary proposal, this implies replacing the Einstein-Hilbert action by an effective LQC action, which includes the said corrections.

→ In the canonical picture, instead of solving the standard WDW operator, one solves a "difference" equation in LQC ⇒ Quantum geometry corrections imply a modified Hamiltonian constraint in $\hat{\mathcal{H}}_{LQC} \Psi = 0$. Still need boundary conditions for specific solutions. Naturally, the Friedmann equation is also modified in LQC as a result.

→ The role played by modified constraints crucial in LQG ⇒ They result in deformed gauge transformations. Since background is modified, covariant perturbatons imply an effective line-element $ds_{\beta}^2 = -\beta N^2 dt^2 + a(t)^2 d\Omega_k$ where $\beta(a, \dot{a})$ changes sign at large curvature resulting in dynamical signature change.

→ South-Pole regularity conditions modified for LQC – EH: a(0) = 0, $\dot{a}(0) = 1 \Leftrightarrow$ LQC: a(0) = 0, $\dot{a}(0) = 0$

5 N A 5

Hartle-Hawking proposal

 \rightarrow For minisuperspace cosmologies, in the saddle-point approximation, the no-boundary wavefunction simplifies

$$\Psi^{\rm HH}[\tilde{a},\chi] \approx e^{-S_{\rm E}^{\rm EH}[\tilde{a},\chi]/\hbar}$$

 \rightarrow For simplest models, say with only a cosmological constant, our (Lorentzian) universe tunnels from nothing via an Euclidean region.

The nucleation probability of a universe $\mathcal{P} \simeq e^{-2S_{\rm E}^{\rm LQC}}$.

7/12

Pure de Sitter

[S.B. & D.-h. Yeom, 2018]

$$-\dot{a}^2 = \mathcal{V} := \frac{8\pi a^2}{3} f^2(a) \left[\frac{\rho}{f(a)} - \rho_1\right] \left[\frac{\rho_2 - \frac{\rho}{f(a)}}{\rho_c}\right]$$

 \rightarrow A typical solution $a(\tau)$ for some numerical values of $\wedge \& I_{PI}$.

 $ightarrow -2S_{
m E}^{
m LQC} \simeq rac{\mathcal{A}}{4} + c + d\log\mathcal{A}, \quad d>0 \ {
m where} \ \mathcal{A} = 4\pi \tilde{a}^2$

 \rightarrow LQC correction rather small \Rightarrow There is a potential barrier for both EH $(-\dot{a}^2 \sim -1 + \Lambda a^2)$ and LQC scenarios.

Pure de Sitter

[S.B. & D.-h. Yeom, 2018]

$$-\dot{a}^2 = \mathcal{V} := \frac{8\pi a^2}{3} f^2(a) \left[\frac{\rho}{f(a)} - \rho_1\right] \left[\frac{\rho_2 - \frac{\rho}{f(a)}}{\rho_c}\right]$$

 \rightarrow A typical solution $a(\tau)$ for some numerical values of $\wedge \& I_{Pl}$.

 $ightarrow -2S_{
m E}^{
m LQC} \simeq rac{\mathcal{A}}{4} + c + d\log\mathcal{A}, \quad d > 0 \ {
m where} \ \mathcal{A} = 4\pi \tilde{a}^2$

→ LQC correction rather small ⇒ There is a potential barrier for both EH $(-\dot{a}^2 \sim -1 + \Lambda a^2)$ and LQC scenarios.

Massless scalar field

 \rightarrow Usual KG equation $\ddot{\varphi} + 3H\dot{\varphi} = 0 \Rightarrow \dot{\varphi} = 0$ and non-dynamical solution. In EH theory, no way to get interesting solutions.

 \rightarrow Modified equations of motion [S.B. & D.-h. Yeom, 2018]

$$\mathcal{V} = \frac{8\pi G}{3} a^2 f^2(a) \left[\frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) - \rho_1 \right] \left[\frac{1}{\rho_c} \left(\rho_2 - \frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) \right) \right]$$

 $\ddot{\varphi} - \left(rac{B(a)}{B(a)}
ight)\dot{\varphi} = 0$ Classically, $B(a) \sim a^{-3}$ & $B(a) \sim a^{12}$ in QG regime

 \rightarrow New instantonic solutions for NBWF \Leftrightarrow New physical interpretations for LQC

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Massless scalar field

 \rightarrow Usual KG equation $\ddot{\varphi} + 3H\dot{\varphi} = 0 \Rightarrow \dot{\varphi} = 0$ and non-dynamical solution. In EH theory, no way to get interesting solutions.

 \rightarrow Modified equations of motion [S.B. & D.-h. Yeom, 2018]

$$\begin{split} \mathcal{V} &= \frac{8\pi G}{3} a^2 f^2(a) \left[\frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) - \rho_1 \right] \left[\frac{1}{\rho_c} \left(\rho_2 - \frac{a^6 \pi}{4\sqrt{3}\gamma^3 l_{Pl}^6} \left(\frac{\rho}{\rho_c} \right) \left(\frac{g(a)}{f(a)} \right) \right) \right] \\ \ddot{\varphi} &- \left(\frac{\dot{B}(a)}{B(a)} \right) \dot{\varphi} = 0 \quad \text{Classically, } B(a) \sim a^{-3} \& \quad B(a) \sim a^{12} \text{ in QG regime} \end{split}$$

 \rightarrow New instantonic solutions for NBWF \Leftrightarrow New physical interpretations for LQC

Loops rescue the no-boundary proposal

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{\emptyset}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h). [HH, 1983; A. Vilenkin, 1982]

→ Euclidean path integral diverges for $\Lambda > 0$ for all contours of the lapse ⇒ Lorentzian path integral can be made well-defined by applying Piecard-Lefshetz theory to yield a convergent integral by deforming the lapse contour.

 \rightarrow Unsuppressed runaway perturbations on the final 3-geometry due to an inverse Gaussian weighting for perturbations \Rightarrow Old problem of the scale factor having wrong-sign kinetic term. [J. Feldbrugge, J.-I. Lehners & N. Turok, 2017]

 \rightarrow Dynamical signature change in makes these inverted Gaussians have the correct sign for having a Bunch-Davies state at the onset of inflation. [M. Bojowald & S.B., 2018]

4 2 5 4 2 5

Loops rescue the no-boundary proposal

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{\emptyset}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h). [HH, 1983; A. Vilenkin, 1982]

→ Euclidean path integral diverges for $\Lambda > 0$ for all contours of the lapse ⇒ Lorentzian path integral can be made well-defined by applying Piecard-Lefshetz theory to yield a convergent integral by deforming the lapse contour.

 \rightarrow Unsuppressed runaway perturbations on the final 3-geometry due to an inverse Gaussian weighting for perturbations \Rightarrow Old problem of the scale factor having wrong-sign kinetic term. [J. Feldbrugge, J.-l. Lehners & N. Turok, 2017]

 \rightarrow Dynamical signature change in makes these inverted Gaussians have the correct sign for having a Bunch-Davies state at the onset of inflation. [M. Bojowald & S.B., 2018]

4 1 1 4 1 4 1 4

Loops rescue the no-boundary proposal

→ Euclidean $\int^{h} \mathcal{D}[g] e^{-S_{E}/\hbar}$ (compact Euclidean 4-geometries bounded by h) vs. Lorentzian $\int_{\emptyset}^{h} \mathcal{D}[g] e^{iS/\hbar}$ (Lorentzian 4-geometries interpolating between a vanishing initial 3-geometries and h). [HH, 1983; A. Vilenkin, 1982]

→ Euclidean path integral diverges for $\Lambda > 0$ for all contours of the lapse ⇒ Lorentzian path integral can be made well-defined by applying Piecard-Lefshetz theory to yield a convergent integral by deforming the lapse contour.

 \rightarrow Unsuppressed runaway perturbations on the final 3-geometry due to an inverse Gaussian weighting for perturbations \Rightarrow Old problem of the scale factor having wrong-sign kinetic term. [J. Feldbrugge, J.-l. Lehners & N. Turok, 2017]

 \rightarrow Dynamical signature change in makes these inverted Gaussians have the correct sign for having a Bunch-Davies state at the onset of inflation. [M. Bojowald & S.B., 2018]

Timeless stability of perturbations

 $\begin{array}{l} \rightarrow \text{ The mode equation} \\ \ddot{v} \approx \frac{1}{4} \left((n-2\epsilon)(n+2) + \epsilon(\epsilon+2) - \beta \frac{N^2 \ell(\ell+2)}{c^2} \right) \frac{v}{t^2}, \\ \text{and its solution is } v_+ = v_1 t^{\frac{1}{2}(1+\gamma)} \text{ where} \end{array}$

$$\gamma = \sqrt{1 + n(n+2) - \beta \frac{\ell(\ell+2)N^2}{c^2}}$$

 \rightarrow For EH, $\beta = 1, n = 0, \gamma$ and the solutions v_{\pm} have branch cuts on the real *N*-axis \Rightarrow The action evaluated on the regular solution v_{+} is equal to $S_{+}(v_{1}) = \frac{1}{4}N^{-1}(\gamma - 1)v_{1}^{2}$ and has a negative imaginary part above the branch cut. This result leads to a Gaussian with positive exponent in the path integral of perturbations.

 \rightarrow With dynamical signature change, that is $\beta < 0$, γ is always real for real *N*. Its branch cuts in the complex plane are now on the imaginary *N*-axis where they do not affect the Lorentzian path integral \Rightarrow The action S_+ is always real and finite and does not lead to unbounded contributions to the path integral.

Timeless stability of perturbations

 $\begin{array}{l} \rightarrow \mbox{ The mode equation} \\ \ddot{v} \approx \frac{1}{4} \left((n-2\epsilon)(n+2) + \epsilon(\epsilon+2) - \beta \frac{N^2 \ell(\ell+2)}{c^2} \right) \frac{v}{t^2}, \\ \mbox{ and its solution is } v_+ = v_1 t^{\frac{1}{2}(1+\gamma)} \mbox{ where} \end{array}$

$$\gamma = \sqrt{1 + n(n+2) - \beta \frac{\ell(\ell+2)N^2}{c^2}}$$

→ For EH, $\beta = 1$, n = 0, γ and the solutions v_{\pm} have branch cuts on the real *N*-axis ⇒ The action evaluated on the regular solution v_{+} is equal to $S_{+}(v_{1}) = \frac{1}{4}N^{-1}(\gamma - 1)v_{1}^{2}$ and has a negative imaginary part above the branch cut. This result leads to a Gaussian with positive exponent in the path integral of perturbations.

 \rightarrow With dynamical signature change, that is $\beta < 0$, γ is always real for real N. Its branch cuts in the complex plane are now on the imaginary N-axis where they do not affect the Lorentzian path integral \Rightarrow The action S_+ is always real and finite and does not lead to unbounded contributions to the path integral.

B N A B N

Timeless stability of perturbations

 $\begin{array}{l} \rightarrow \mbox{ The mode equation} \\ \ddot{v} \approx \frac{1}{4} \left((n-2\epsilon)(n+2) + \epsilon(\epsilon+2) - \beta \frac{N^2 \ell(\ell+2)}{c^2} \right) \frac{v}{t^2}, \\ \mbox{ and its solution is } v_+ = v_1 t^{\frac{1}{2}(1+\gamma)} \mbox{ where} \end{array}$

$$\gamma = \sqrt{1 + n(n+2) - \beta \frac{\ell(\ell+2)N^2}{c^2}}$$

→ For EH, $\beta = 1$, n = 0, γ and the solutions v_{\pm} have branch cuts on the real *N*-axis ⇒ The action evaluated on the regular solution v_{+} is equal to $S_{+}(v_{1}) = \frac{1}{4}N^{-1}(\gamma - 1)v_{1}^{2}$ and has a negative imaginary part above the branch cut. This result leads to a Gaussian with positive exponent in the path integral of perturbations.

 \rightarrow With dynamical signature change, that is $\beta < 0$, γ is always real for real *N*. Its branch cuts in the complex plane are now on the imaginary *N*-axis where they do not affect the Lorentzian path integral \Rightarrow The action S_+ is always real and finite and does not lead to unbounded contributions to the path integral.

 \rightarrow Conclusions: Fruitful confluence between different approaches to quantum cosmology.

- Loops provide necessary quantum geometry corrections which expands the solution space for the no-boundary proposal.
- The no-boundary wave function is necessary to discover new physical phenomenon in loops which cannot be probed otherwise.
- Remarkable similarity in dynamical signature-change coming loops and the Euclidean (generally, complex) phase in the Hartle-Hawking proposal.

 \rightarrow Looking ahead:

- Implications for LQC corrections in other type of models of the NB proposal Hawking-Turok instanton? Perhaps some of the divergences of the instantonic solutions ameliorated by loops?
- No-boundary state made compatible with dynamical signature-change ⇒ New route towards dS/CFT? [Hartle, Hertog, Hawking ...]

A = A

 \rightarrow Conclusions: Fruitful confluence between different approaches to quantum cosmology.

- Loops provide necessary quantum geometry corrections which expands the solution space for the no-boundary proposal.
- The no-boundary wave function is necessary to discover new physical phenomenon in loops which cannot be probed otherwise.
- Remarkable similarity in dynamical signature-change coming loops and the Euclidean (generally, complex) phase in the Hartle-Hawking proposal.

\rightarrow Looking ahead:

- Implications for LQC corrections in other type of models of the NB proposal Hawking-Turok instanton? Perhaps some of the divergences of the instantonic solutions ameliorated by loops?
- No-boundary state made compatible with dynamical signature-change ⇒ New route towards dS/CFT? [Hartle, Hertog, Hawking ...]

- - - - -

 \rightarrow Conclusions: Fruitful confluence between different approaches to quantum cosmology.

- Loops provide necessary quantum geometry corrections which expands the solution space for the no-boundary proposal.
- The no-boundary wave function is necessary to discover new physical phenomenon in loops which cannot be probed otherwise.
- Remarkable similarity in dynamical signature-change coming loops and the Euclidean (generally, complex) phase in the Hartle-Hawking proposal.

\rightarrow Looking ahead:

- Implications for LQC corrections in other type of models of the NB proposal Hawking-Turok instanton? Perhaps some of the divergences of the instantonic solutions ameliorated by loops?
- No-boundary state made compatible with dynamical signature-change ⇒ New route towards dS/CFT? [Hartle, Hertog, Hawking ...]

 \rightarrow Conclusions: Fruitful confluence between different approaches to quantum cosmology.

- Loops provide necessary quantum geometry corrections which expands the solution space for the no-boundary proposal.
- The no-boundary wave function is necessary to discover new physical phenomenon in loops which cannot be probed otherwise.
- Remarkable similarity in dynamical signature-change coming loops and the Euclidean (generally, complex) phase in the Hartle-Hawking proposal.

 \rightarrow Looking ahead:

- Implications for LQC corrections in other type of models of the NB proposal Hawking-Turok instanton? Perhaps some of the divergences of the instantonic solutions ameliorated by loops?
- No-boundary state made compatible with dynamical signature-change ⇒ New route towards dS/CFT? [Hartle, Hertog, Hawking ...]

 \rightarrow Conclusions: Fruitful confluence between different approaches to quantum cosmology.

- Loops provide necessary quantum geometry corrections which expands the solution space for the no-boundary proposal.
- The no-boundary wave function is necessary to discover new physical phenomenon in loops which cannot be probed otherwise.
- Remarkable similarity in dynamical signature-change coming loops and the Euclidean (generally, complex) phase in the Hartle-Hawking proposal.

 \rightarrow Looking ahead:

- Implications for LQC corrections in other type of models of the NB proposal Hawking-Turok instanton? Perhaps some of the divergences of the instantonic solutions ameliorated by loops?
- No-boundary state made compatible with dynamical signature-change ⇒ New route towards dS/CFT? [Hartle, Hertog, Hawking ...]