Distinctive Properties of Cosmic Positrons and Electrons Measured by AMS on ISS

Electrons and Positrons in the Cosmos

- Electrons are produced and accelerated in SNR together with proton, Helium. They are primary cosmic rays that travel through the galaxy and detected by AMS.
- These particles interact with the interstellar matter and produce secondary source of anti-particle: positrons etc. They are much less abundant in astrophysics process.
- New physics sources like Dark Matter produce both particles and antiparticles.

M. Turner and F. Wilczek, Phys. Rev. D42 (1990) 1001; J. Ellis, 26th ICRC (1999)

Measuring antiparticles are much more sensitive to Dark Matter

AMS: a unique TeV precision, magnetic spectrometer in space

TRD: Identify e⁺, e⁻, Z

Particles and nuclei are defined by their charge (Z) and energy (E or P)

TRD

TOF

5-6

7-8

TOF RICH

TOF: Z, E

Silicon Tracker: Z, P

Magnet: ±Z

ECAL: E of e⁺, e⁻

are measured independently by the Tracker, RICH, TOF and ECAL

RICH: Z, E

Positron identification in AMS

Proton rejection 10³ to 10⁴
with TRD

Proton rejection is above
10⁴ with ECAL and tracker

 TRD and ECAL is separated by magnet, they have independent proton rejection

Calibration of the AMS Detector

Test beam at CERN SPS: p, e^{\pm} , π^{\pm} , 10–400 GeV

2000 positions

12,000 CPU cores at CERN

Computer simulation: Interactions, Materials, Electronics

The measurement of electrons and positrons in AMS

Primary cosmic ray particle:

E>1.2·max cutoff

TOF:

- Down-going particle β >0.8
- Charge |Z|=1 particle

TRD:

Provide proton rejection

tracker and magnet:

- Provide accurate momentum measurement
- Charge |Z|=1 particle

ECAL:

- Provide accurate energy measurement.
- Provide proton rejection with 3D shower shape

Analysis method to determine the number of e⁺

- ECAL selection to remove bulk of the proton background.
- For each bin, fit templates to positive data sample in $(\Lambda_{TRD} \Lambda_{CC})$ plane
- Positron signal template from data using electrons
- Proton background template from proton data
- Charge confusion electron template from electron MC

With 28.1 million electrons and 1.9 million positrons, the study of systematic errors is crucial

- 1. Charge confusion
- 2. Template selection
- 3. Template statistical fluctuation
- 4. Acceptance(cancelled for positron fraction analysis)
 - 1) Data/MC efficiency correction
 - 2) ECAL selection efficiency

Statistical errors dominates above 60 GeV for positron flux

Positron and electron fluxes before AMS

The origin of cosmic electrons

The AMS accurate data can not be explained by current models

The origin of cosmic positrons

The AMS positron flux exceeds the prediction from collision of cosmic rays, requiring a new source of high energy positrons

Models to explain the AMS Positron Flux

- 1) Particle origin: Dark Matter
- 2) Modified Propagation of Cosmic Rays
- 3) Astrophysics origin: Pulsars, SNRs

AMS data appears to be in excellent agreement with the predictions from a 1.2 TeV Dark Matter model (J. Kopp, Phys. Rev. D 88, 076013 (2013))

Positron excess also can be expressed in terms of the positron fraction

Alternative Models to explain the AMS Measurements

Modified Propagation of cosmic Rays

Examples:

R. Cowsik *et al.*, Ap. J. 786 (2014) 124, (pink band) Explaining the AMS positron fraction(grey circle) as propagation effects.

This requires a specific energy dependence of the B/C ratio ruled out by AMS B/C measurement

The observed features of the AMS data cannot be explained by propagation effects

Alternative Models to explain the AMS Measurements New Astrophysical sources (Supernova Remnants)

HAWC rules out that the positron excess is from nearby pulsars

In addition, AMS Measurement of positron, electron anisotropy will distinguish and constrain Pulsar origin of high energy e[±]

Positron spectrum beyond the turning point $\Phi_{e^+}E^3[m^{-2}sr^{-1}s^{-1}GeV^2]$ 1.9 million positrons **20** Preliminary data. Please 2-sigma refer to the forthcoming publication in PRL **15 Dark Matter** + Collision of **Cosmic Rays** Collision of Cosmic Rays 5 **Energy** [GeV]

Combining last 3 points (E > 370 GeV), 2-sigma deviation from $\Phi \propto E^{-3}$

10

 10^2

Positron spectrum beyond the turning point

By 2024, we will extend the measurements to 2 TeV and reach 5 sigma significance

Conclusion

- The individual positron and electron fluxes are measured to 1 TeV with 28.1 million electrons and 1.9 million positrons.
- Both the amplitude and energy dependence are distinctly different between positron flux and electron flux.

- Positron flux hardens from 20 GeV and exhibits a cutoff at high energy.
- Above 370 GeV, Positron flux deviates from $\Phi \propto E^{-3}$ with 2 sigma significance. By 2024 we will reach 5 sigma.

Complex energy dependence of positron and electron fluxes

The spectral indices and their energy dependence are distinctly different between positrons and electrons