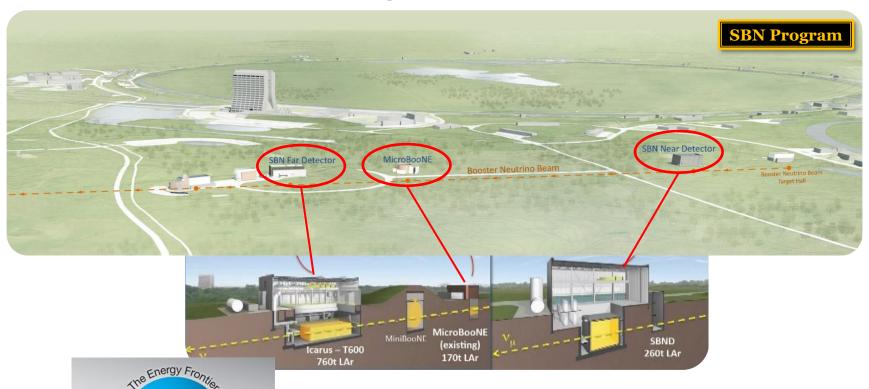
Hunting for Boosted DM

D. Kim, K. Kong, **JCP**, S. Shin, JHEP08 (2018) 155 [arXiv: 1804.07302]

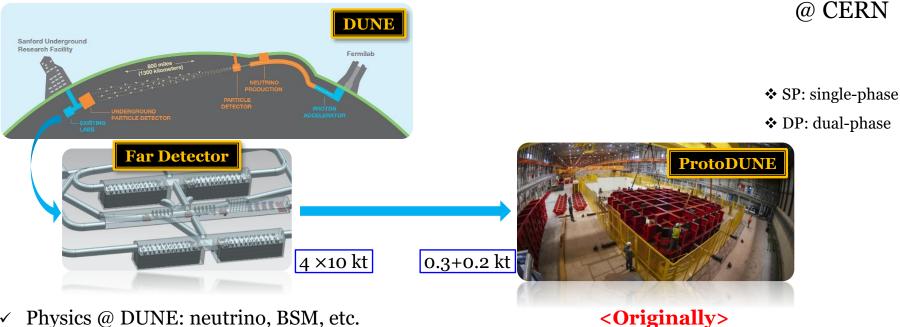
Surface v Detectors

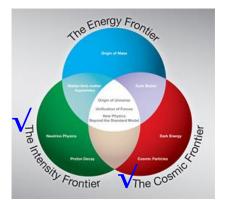

Physics Motivation?

Surface v Detectors: SBN

❖ Short-Baseline Neutrino (SBN) Program @ Fermilab

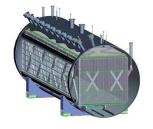
The Cosmic

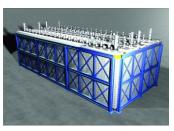

Sity Frontier

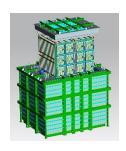

- ✓ Physics @ SBN: ν oscillation, sterile ν , etc.
- ✓ E spectrum & flavor of *v*'s produced by the Booster Neutrino Beam
- Development of the LAr-TPC technology for DUNE

Surface v Detectors: ProtoDUNE

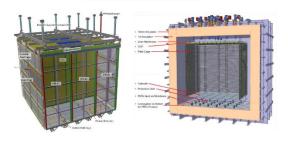
❖ ProtoDUNE: a prototype of the Deep Underground Neutrino Experiment (DUNE)


Physics @ DUNE: neutrino, BSM, etc.




- To test the long-term stability & operation
- To calibrate beam & cosmic-ray responses

Surface v Detectors: Features & Status


SBN Program

ProtoDUNE

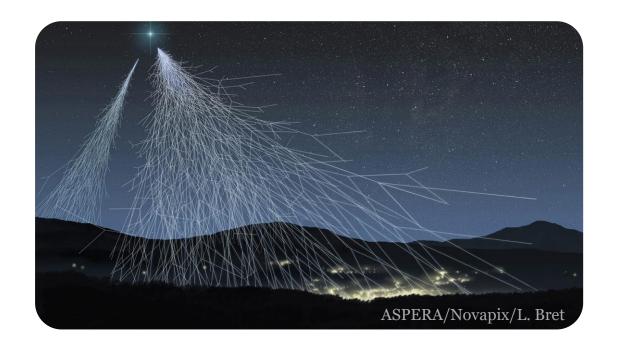
Detector	Target material	Active volum $w \times h \times l \text{ [m}^3\text{]}$	e mass [kt]	Fiducial volume mass [kt]	Depth	$E_{ m th}$ [MeV]	$ heta_{ m res}$
MicroBooNE	LArTPC	$2.56 \times 2.33 \times 10.37$	0.089	0.055	~ 6 m underground	$\mathcal{O}(10)$	
						\ /	$\mathcal{O}(1^{\circ})$
ICARUS	LArTPC	$2.96 \times 3.2 \times 18 \; (\times 2)$	0.476	~ 0.3	~ 6 m underground	$\mathcal{O}(10)$	$\mathcal{O}(1^\circ)$
SBND	LArTPC	$4 \times 4 \times 5$	0.112	~ 0.07	$\sim 6~\mathrm{m}$ underground	$\mathcal{O}(10)$	$\mathcal{O}(1^\circ)$
ProtoDUNE SP	LArTPC	$3.6 \times 6 \times 7 \ (\times 2)$	~ 0.42	~ 0.3	on the ground	~ 30	$\sim 1^{\circ}$
ProtoDUNE DP	LArTPC	$6 \times 6 \times 6$	~ 0.3	~ 0.21	on the ground	~ 30	$\sim 1^{\circ}$

- ✓ MicroBooNE: on-going since July 2015 (BNB: operational since October 2015)
- ✓ ICARUS: planned to start of operation in 2019
- ✓ SBND: planned to start of operation in 2019/2020
- ✓ ProtoDUNE: operation from September 2018 & now planned to take cosmic-origin data for new physics searches (~2 year)

Surface v Detectors

Other Physics Motivation?

Any physics potential with the SBN/ProtoDUNE detectors, especially BSM physics?

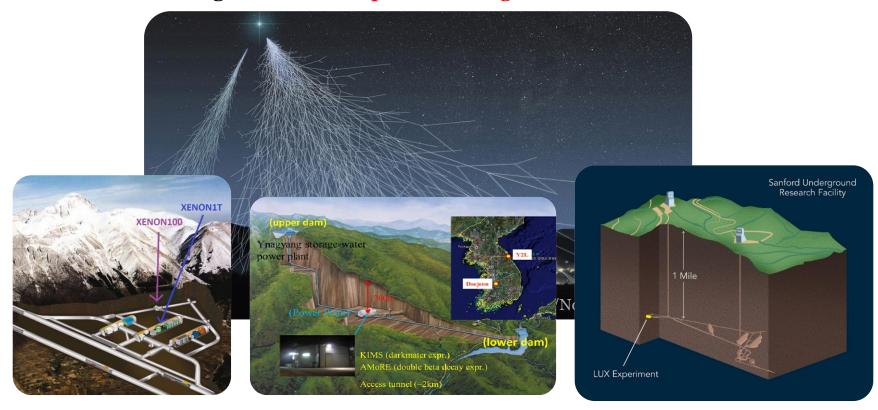

Surface v Detectors

Other Physics ics potential and the convoices

Any physics potential **JOUNE** detectors, physics?

Surface v Detectors: Common Belief

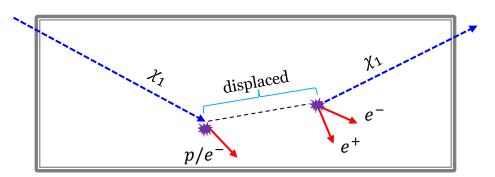
- ❖ Huge amount of backgrounds (mainly) due to their location (almost on the ground)
 - → Signal events would get buried inside the huge cosmic backgrounds.


Surface v Detectors: Common Belief

- ❖ Huge amount of backgrounds (mainly) due to their location (almost on the ground)
 - → Signal events would get buried inside the huge cosmic backgrounds.
 - → Search for cosmic-origin new physics signal @ surface detectors is hopeless.

Surface v Detectors: Common Belief

- ❖ Huge amount of backgrounds (mainly) due to their location (almost on the ground)
 - → Signal events would get buried inside the huge cosmic backgrounds.
 - → Search for cosmic-origin new physics signal @ surface detectors is hopeless.
 - → Solution: Installing detectors deep under the ground!



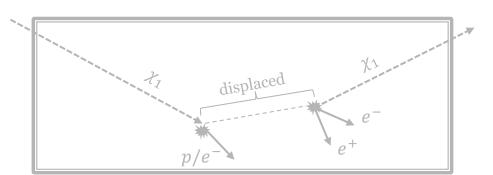
Surface v Detectors: New Approaches

- I. Signals leaving appreciable tracks: the source direction is inferred from the track.
 - → Restricting to events coming through the Earth from the opposite side of the detector location.
 - → Potential backgrounds in that direction are significantly suppressed while signals are intact. (Similar to up-going *v* searches @ SK, IceCube, NOvA, etc)

 Kim, Kong, JCP, Shin [1804.07302]
- II. A signal with many unique features (e.g. *i*BDM): Possible to isolate signal events from cosmic background events efficiently.

(due to good detector performance: positon/angular/energy resolution, etc.)

Chatterjee, **JCP** et al., [1803.03264]


Surface v Detectors: New Approaches

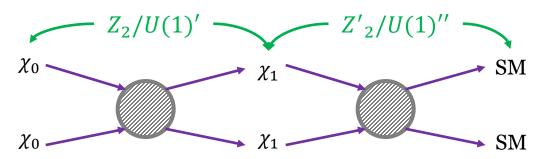
- I. Signals leaving appreciable tracks: the source direction is inferred from the track.
 - → Restricting to events coming through the Earth from the opposite side of the detector location.
 - → Potential backgrounds in that direction are significantly suppressed while signals are intact. (Similar to up-going *v* searches @ SK, IceCube, NOvA, etc)

Kim, Kong, **JCP**, Shin [1804.07302]

II. A signal with many unique features (e.g. *i*BDM): Possible to isolate signal events from cosmic background events efficiently.

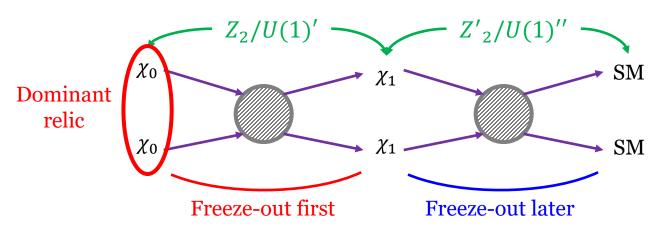
(due to good detector performance: positon/angular/energy resolution, etc.)

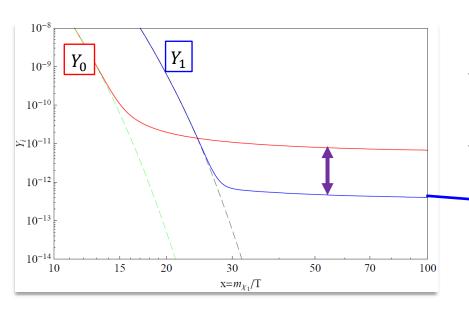
Chatterjee, **JCP** et al., [1803.03264]


Target Approach

Earth Shielding

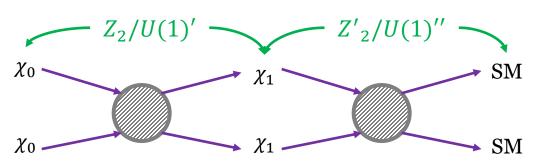
(Benchmark: Boosted DM)


Two-component BDM Scenario


G. Belanger, **JCP** (2011)

Two-component BDM Scenario

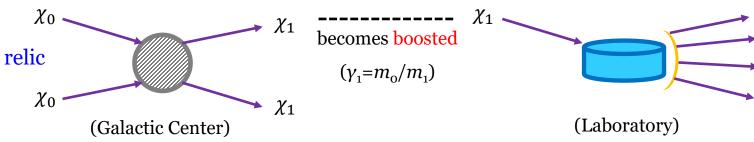
G. Belanger, **JCP** (2011)

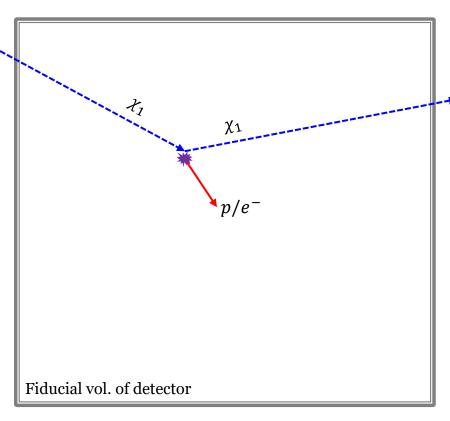


"Assisted Freeze-out" Mechanism

- ✓ Lighter relic χ_1 : hard to detect it due to small relic
 - $\star \chi_1$: Negligible, Non-relativistic relic

Two-component BDM Scenario


G. Belanger, **JCP** (2011)


 $\chi_0 \chi_0 \rightarrow \chi_1 \chi_1$ (current universe): **Relativistic!!** ($\gamma_1 = m_0/m_1$)

(Note that relic χ_1 is non-relativistic.)

[Agashe, Cui, Necib, Thaler (2014)]

Expected Signatures

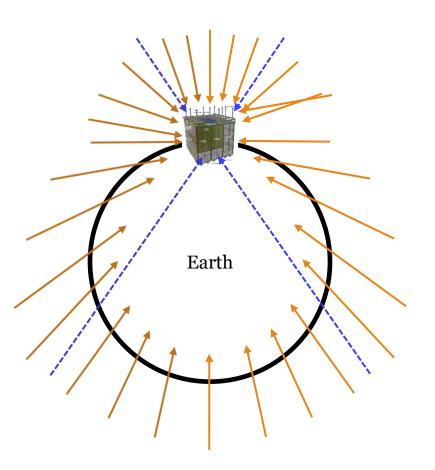
- ❖ Ordinary elastic scattering (eBDM): only
 electron/proton recoil → single track
- **❖** Tracks will **pop-up** inside the fiducial volume.
- ❖ Focus on e-recoil. But, Straightforwardly applicable to p-recoil (up to form factor, DIS, etc.)

Flux of BDM & its Detection

 \star Flux of boosted χ_1 around the Earth

$$\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from the number density of DM χ_0 , $n_0 = \rho_0 / m_0$

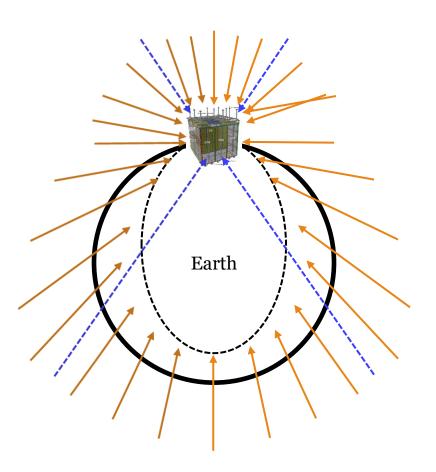
❖ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1}$ & assuming NFW DM halo profile,


$$\mathcal{F}_{\chi_1} = \frac{\mathcal{O}(10^{-1} \sim 10^{-6}) \text{cm}^{-2} \text{s}^{-1}}{\text{for } m_0} = \sim 30 \text{ MeV to } \sim 10 \text{ GeV}$$

- ✓ Not small enough for small-volume (~1 ton) detectors to have signal sensitivity (e.g., conventional WIMP detectors: Xenon1T, LZ, COSINE-100(+2 ton LS), ...)
 - Big enough for sub-kton (e.g. ProtoDUNE, SBN) to observe signal events (better position/angle/vertex resolution & particle identification, lower $E_{\rm th}$ compared to Super-Kamiokande)

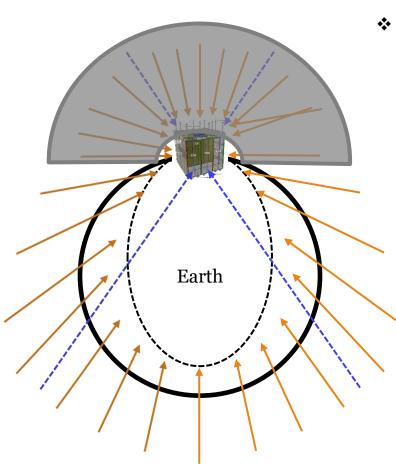
Earth Shielding

BG: Cosmic muons
Signal: Boosted DM


- ✓ Background and signal events are coming from everywhere.
- ✓ Half of them travel through the Earth.

Earth Shielding

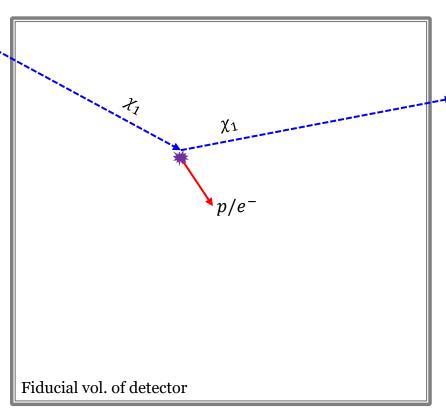
BG: Cosmic muons
Signal: Boosted DM


- ✓ Background and signal events are coming from everywhere.
- ✓ Half of them travel through the Earth.
- ✓ Backgrounds cannot penetrate the Earth while signals can!

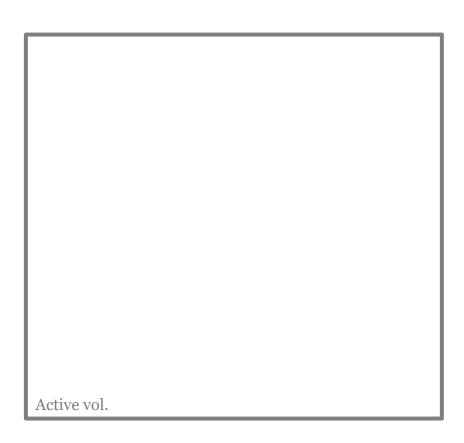
Earth Shielding

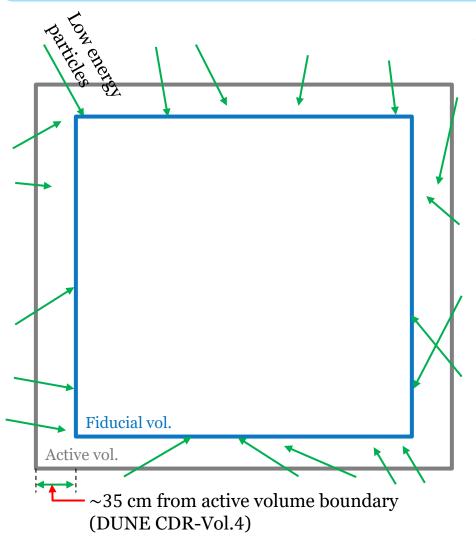
BG: Cosmic muons
Signal: Boosted DM

- ✓ Background and signal events are coming from everywhere.
- ✓ Half of them travel through the Earth.
- ✓ Backgrounds cannot penetrate the Earth while signals can!

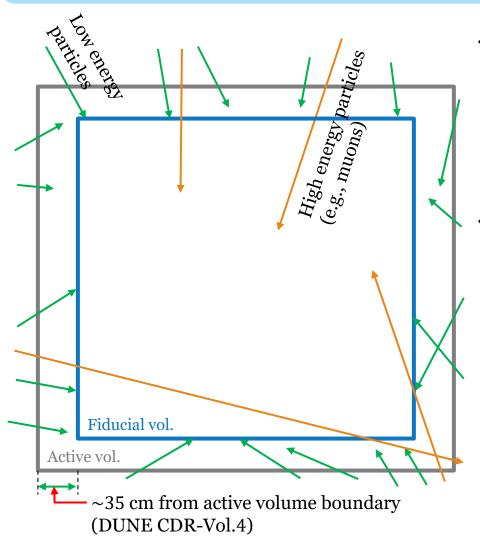


Accept only events traveling
through the Earth
(i.e., coming out of the bottom
surface) at the price of half
statistics (for a cumulatively
isotropic signal);
direction inferred from recoil

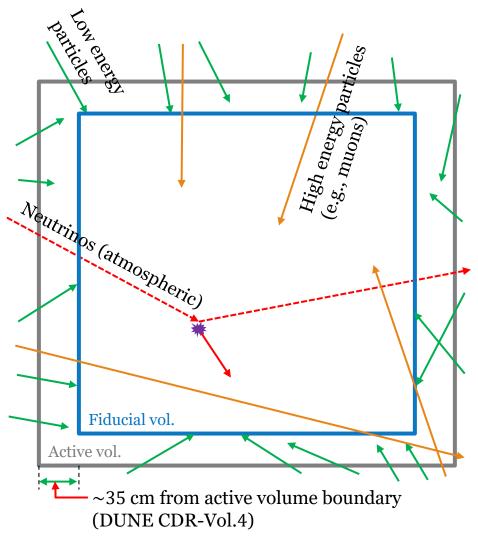

track

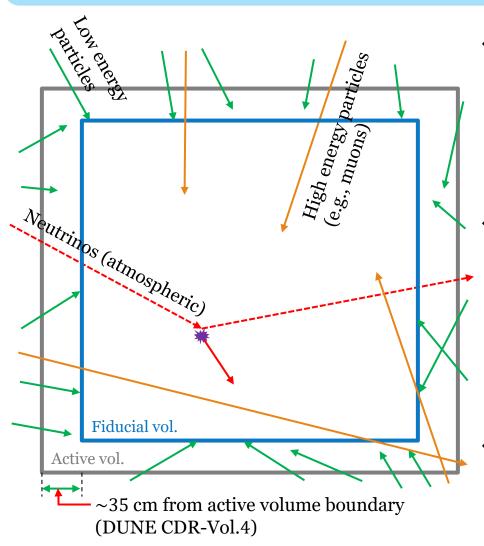

→ Essentially, no cosmicorigin BGs except Atm neutrino BG (cf. observation of upward-muons induced by muon neutrinos created by DM annihilation [NOvA Collaboration , in progress])

Expected Signatures (Reminder)

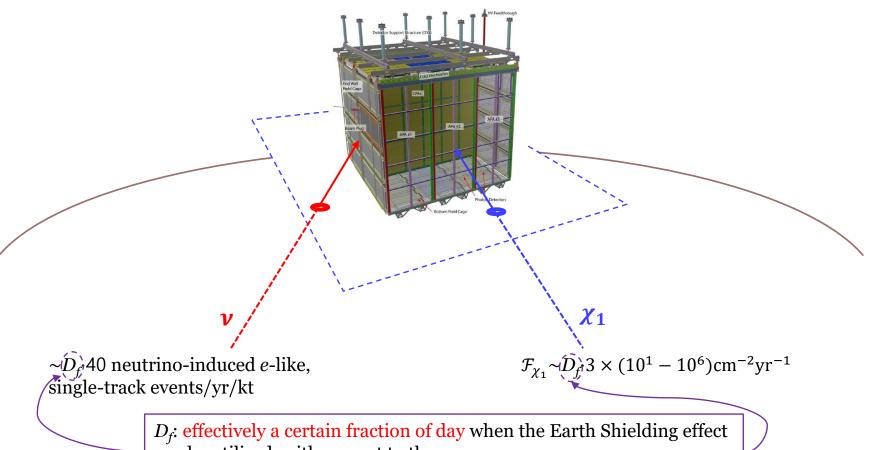


- ❖ Ordinary elastic scattering (eBDM): only
 electron/proton recoil → single track
- **❖** Tracks will **pop-up** inside the fiducial volume.
- ❖ Focus on e-recoil. But, Straightforwardly applicable to p-recoil (up to form factor, DIS, etc.)




Low E particles (≤ 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP)

- Low E particles (≤ 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP)
- High E particles (e.g., muon) create tracks incoming outside the fiducial vol., which can be rejected by a trigger and the post-analysis.
 - → A large flux is expected for the detectors placed on the ground, e.g., ProtoDUNE, SBN.



- Low E particles (≤ 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP)
- High E particles (e.g., muon) create tracks incoming outside the fiducial vol., which can be rejected by a trigger and the post-analysis.
 - → A large flux is expected for the detectors placed on the ground, e.g., ProtoDUNE, SBN.
- (Atmospheric) neutrinos are (potentially) irreducible.
 - → ~40 single-track *e*-like events/yr/kt

- Low E particles (≤ 30 MeV) can be removed/suppressed by taking a fiducial vol. smaller than the active vol. (Fiducial vol.: e.g. ~170 t/300 t for ProtoDUNE DP/SP)
- * High E particles (e.g., muon) create incoming outside the shielding incoming outside the shielding be rejected by Farth Shielding incoming outside the sh
- (Atmospheric) neutrinos are (potentially) irreducible.
 - → ~40 single-track *e*-like events/yr/kt

Effective Data Collection for 1yr-Run

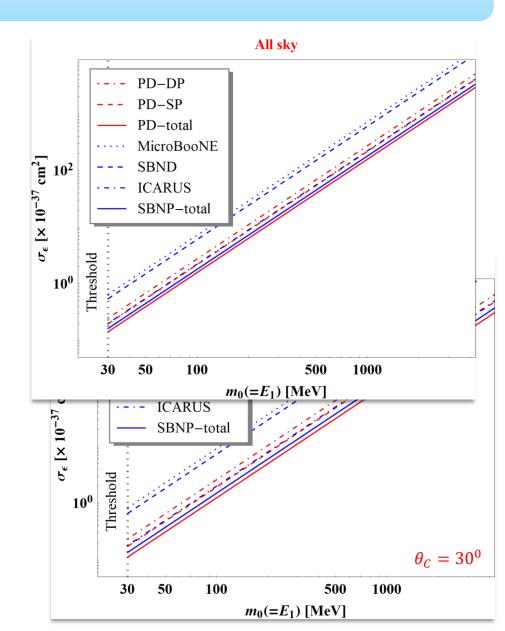
can be utilized, with respect to the source core.

(e.g. for Sun: effectively, half year for one year run $\rightarrow D_f=1/2$)

Number of Signal Events

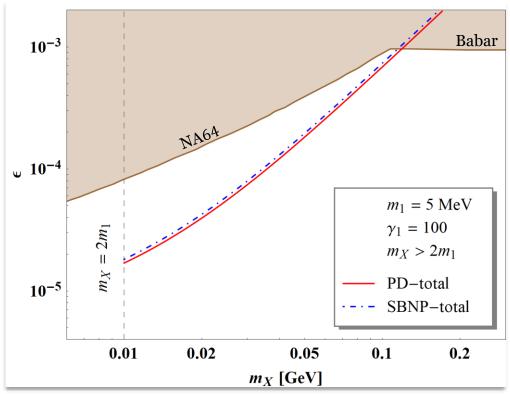
ightharpoonup Number of signal events N_{sig} is

$$N_{\mathrm{sig}} = \sigma_{\epsilon} \cdot D_f \cdot \mathcal{F} \cdot t_{\mathrm{exp}} \cdot N_T$$


- \checkmark σ_{ϵ} : scattering cross section between χ_1 (BDM) and electron (target)
- ✓ D_f : data collection fraction of day
- ✓ \mathcal{F} : flux of incoming (boosted) χ_1
- ✓ t_{exp} : exposure time
- ✓ N_e : total number of target electrons

Controllable! (once a detector is determined)

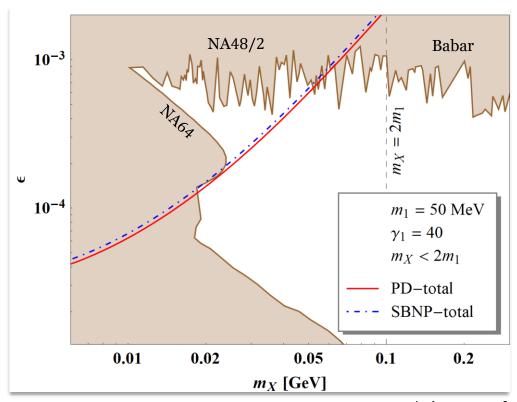
Realistic experimental effects such as cuts, $E_{\rm th}$ are absorbed into σ_{ϵ} .


Model-Independent Reach

- * 1-year exposure: effectively half-year data collection ($D_f = 1/2$) is assumed.
- ❖ The limits from all-sky data: DM halo model-independent (up to total flux) and obtained w/o any particular model assumption to describe the interaction between SM particles & BDM.
- Angular cuts improve the experimental sensitivities at the cost of DM halo model-dependence (optimal θ_C values differ detector-by-detector & run time).

Dark X Parameter Space: Invisible X Decay

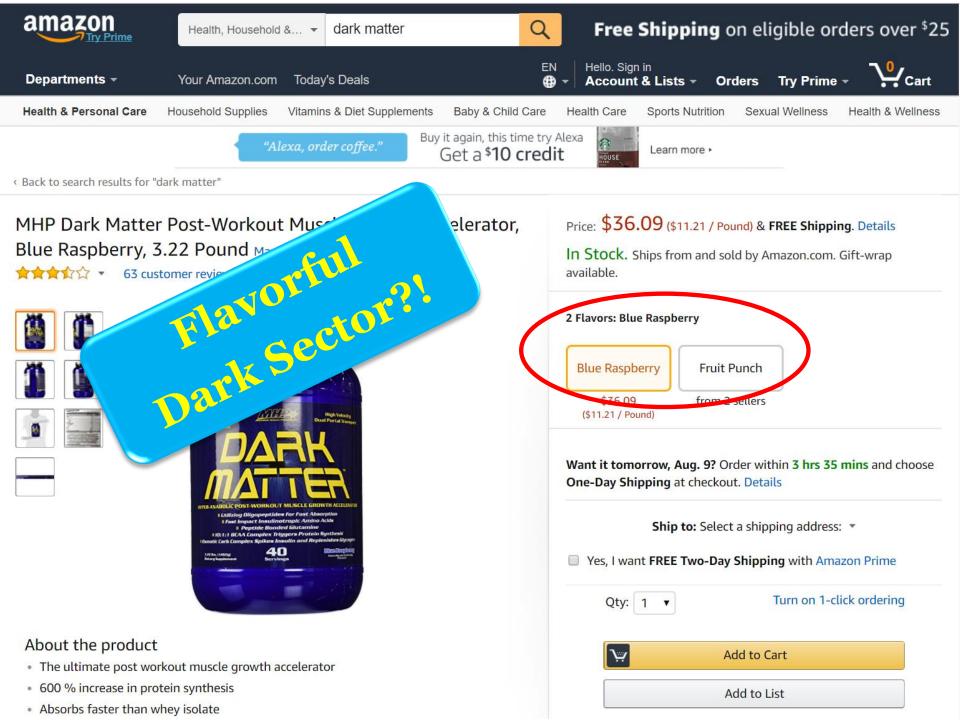
- * Mass spectra: dark photon decays into DM pairs, i.e., $m_X > 2m_1$
- ❖ 1-year data collection from the entire sky and $g_{11} = 1$ are assumed.
- ❖ A wide range of unexplored parameter space can be probed even with surface-based detectors.


 $D_f = 1/2$ is assumed.

$$\mathcal{L}_{\rm int} \ni \left(-\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} \right) + g_{11} \bar{\chi}_1 \gamma^{\mu} \chi_1 X_{\mu} + g_{12} \bar{\chi}_2 \gamma^{\mu} \chi_1 X_{\mu} + h.c.$$

Based on
Assisted FO set-up
[Belanger, JCP (2011)]

Dark X Parameter Space: Visible X Decay

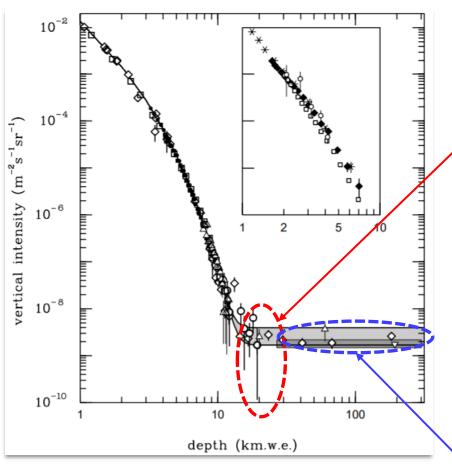

- ❖ Mass spectra: dark photon decays into SM pairs, i.e., $m_X < 2m_1$
- ❖ 1-year data collection from the entire sky and $g_{11} = 1$ are assumed.
- ❖ A wide range of unexplored parameter space can be probed even with surface-based detectors.

 D_f =1/2 is assumed.

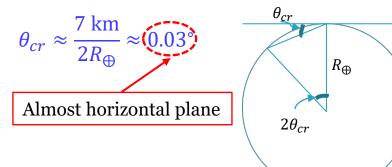
$$\mathcal{L}_{\mathrm{int}} \ni \left(-\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} \right) + g_{11} \bar{\chi}_1 \gamma^\mu \chi_1 X_\mu + g_{12} \bar{\chi}_2 \gamma^\mu \chi_1 X_\mu + h. c.$$

Based on
Assisted FO set-up
[Belanger, JCP (2011)]

Conclusion

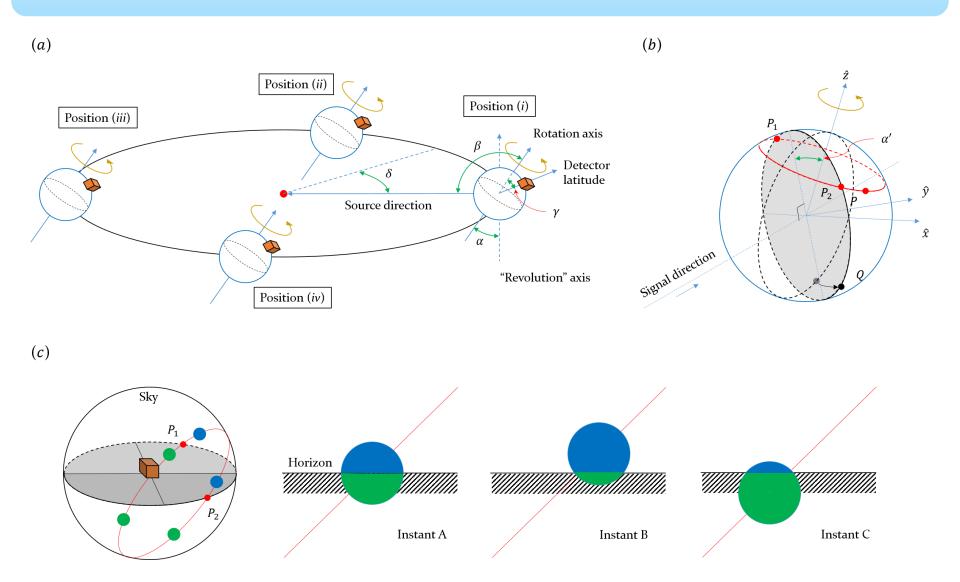

$v_{ m DM}$	$egin{aligned} oldsymbol{non ext{-relativistic}} \ oldsymbol{(v_{ ext{DM}} \ll c)} \end{aligned}$	relativistic $(v_{ m DM}{ extsf{ iny c}})$	
elastic	Direct detection	Boosted DM (eBDM)	→ Focus of this talk!
inelastic	inelastic DM (<i>i</i> DM)	inelastic BDM (<i>i</i> BDM)	

- > (light) BDM search is promising & provides a new direction to study DM phenomenology.
- ➤ Huge cosmic-ray BG can be well controlled with the "Earth Shielding" effect.
- > Surface detectors possesses excellent sensitivities to a wide range of (light) BDM
 - → allows a deeper understanding in non-minimal dark sector physics.
- > Surface detectors can provide **alternative avenue** to probe dark photon parameter space.



Back-Up

Muon Flux inside the Earth


- * N_{μ} at sea level is ~100 m⁻²s⁻¹sr⁻¹ = 3 × 10^9 m⁻²yr⁻¹sr⁻¹. [Particle Data Group (2015)]
- * N_{μ} at 20 km.w.e. \approx 7 km below sea level is $\sim 10^{-9}$ m⁻²s⁻¹sr⁻¹, i.e., suppressed by a factor of $\sim 10^{11}$.
 - → (Potential) muon-induced BG is negligible for muons incident at $\theta > \theta_{cr}$.

[Particle Data Group (2015)]

Flattened by neutrino-genic muons

Effect of Earth's Rotation

Benchmark Model

$$\mathcal{L}_{\rm int} \equiv \left(-\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu}\right) + \left(g_{11} \bar{\chi}_1 \gamma^{\mu} \chi_1 X_{\mu}\right) + \left(g_{12} \bar{\chi}_2 \gamma^{\mu} \chi_1 X_{\mu}\right) + h.c.$$

Based on
Assisted FO set-up
[Belanger, JCP (2011)]

- ❖ Vector portal (kinetic mixing) [Holdom (1986)]
- Fermionic DM
 - \checkmark χ_2 : a heavier (unstable) dark-sector state
 - ✓ Flavor-conserving → elastic scattering (eBDM)
 - ✓ Flavor-changing → inelastic scattering (*i*BDM)

 $X \sim \chi_1(\chi_2)$ $g_{12}(g_{12})$ χ_1

- **❖ Various models** conceiving BDM signatures
 - ✓ BDM source: GC, Sun (capture), dwarf galaxies/assisted freeze-out, semi-annihilation, decaying, etc.
 - ✓ Portal: vector portal, scalar portal, etc.
 - ✓ DM spin: fermionic DM, scalar DM, etc.
 - ✓ iBDM-inducing operators: two chiral fermions, two real scalars, dipole moment interactions, etc.

Potential BGs: Neutrinos

Table 4.3: Atmospheric neutrino event rates including oscillations in $350\,\mathrm{kt}\cdot\mathrm{year}$ with a LArTPC, fully or partially contained in the detector fiducial volume.

Sample	Event Rate
fully contained electron-like sample	14,053
fully contained muon-like sample	20,853
partially contained muon-like sample	6,871

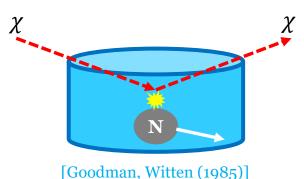
~40.2/yr/kt: may contain multi-track events

[DUNE CDR-Vol.2 (2015)]

	SI	K-I	SI	K-II	SK	-III	SK	I-IV
	Data	MC	Data	MC	Data	MC	Data	MC
FC sub-GeV								
single-ring								
e-like								
0-decay	2992	2705.4	1573	1445.4	1092	945.3	2098	1934.9
1-decay	301	248.1	172	138.9	118	85.3	243	198.4
π^0 -like	176	160.0	111	96.3	58	53.8	116	96.2
μ -like								
0-decay	1025	893.7	561	501.9	336	311.8	405	366.3
1-decay	2012	1883.0	1037	1006.7	742	664.1	1833	1654.1
2-decay	147	130.4	86	71.3	61	46.6	174	132.2
2-ring π^0 -like	524	492.8	266	259.8	182	172.2	380	355.9
C multi-GeV								
single-ring								
ν_e -like	191	152.8	79	78.4	68	54.9	156	135.9
$\overline{\nu}_e$ -like	665	656.2	317	349.5	206	231.6	423	432.8
μ -like	712	775.3	400	415.7	238	266.4	420	554.8
multi-ring								
$ u_e$ -like	216	224.7	143	121.9	65	81.8	175	161.9
$\overline{ u}_e$ -like	227	219.7	134	121.1	80	72.4	212	179.1
μ -like	603	640.1	337	337.0	228	231.4	479	499.0

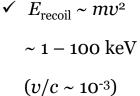
[Super-Kamiokande (2012)]

Single-track candidates: 32.4 + 8.8 = 41.2 / yr/kt, while total e-like events are 49.9 / yr/kt. (Note that SK takes e-like e vents with $E > \sim 10 \text{ MeV}$.)

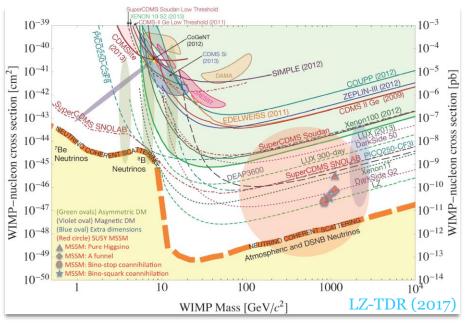

⇒ Potential BGs for elastic scattering signal (eBDM) events

Multi-track candidates: 5.2 /yr/kt

- ⇒ Most extra tracks come from mesons which can be identified at LArTPC.
- ⇒ Very likely to be background-free for inelastic scattering signal (*i*BDM) events

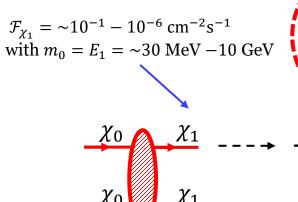

Typical DM Direct Search

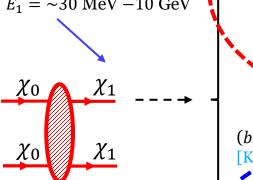
❖ (Mainly) focusing on "*Non*-relativistic" weakly interacting massive particles (WIMPs) search



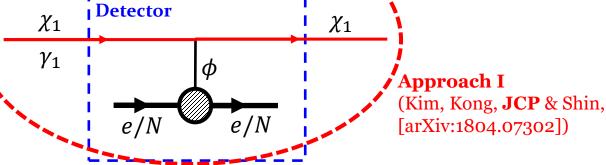
- (in)Elastic scattering of
- ✓ Non-relativistic

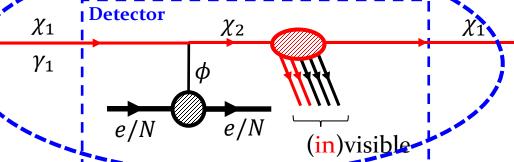
 Other
- ✓ Weak-scale DM
- ✓ with nuclei or electron


Detectorsdesigned to besensitive tothis E range


- ✓ No solid observation of WIMP signals
- ✓ A wide parameter respace already excluded
- ✓ Close to the neutrino "floor"
- ✓ Need new ideas!

Boosted DM (BDM) Signatures


(a) Elastic scattering (eBDM) (cf. eBDM at HK/DUNE/PINGU/Xenon1T/... Agashe et al. (2014); Kong, Mohlabeng, JCP (2014); Necib et al. (2016); Alhazmi, Kong, Mohlabeng, **JCP** (2016); Giudice, Kim, **JCP**, Shin (2017); many more])


Galactic Center

- χ_0 : heavier DM • γ_1 : lighter DM
- γ_1 : boost factor of γ_1
- χ_2 : massive unstable dark-sector state
- ϕ : mediator/portal particle

(b) Inelastic scattering (iBDM) (cf. iBDM at HK/DUNE/Xenon1T/... Kim, JCP, Shin (2016); Giudice, Kim, JCP, Shin (2017); Aoki, Toma (2018)])

Approach II

(in collaboration with Chatterjee et al., [arXiv:1803.03264])

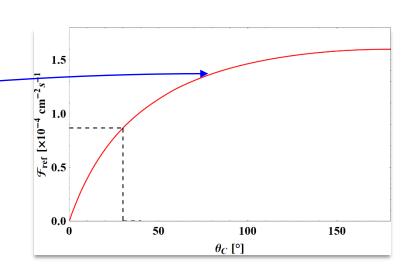
Model-Independent Reach

❖ More familiar parameterization is possible with the below modification.

$$\sigma_{\epsilon}\mathcal{F} \geq rac{N^{90}}{D_f t_{
m exp} N_T}$$
 90% C.L.

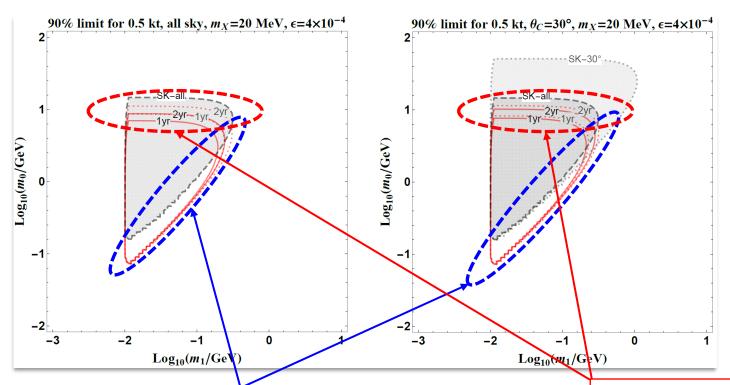
$$\mathcal{F} = \frac{1}{2} \cdot \frac{1}{4\pi} \int d\Omega \int_{\log} ds \langle \sigma v \rangle_{\chi_0 \overline{\chi}_0 \to \chi_1 \overline{\chi}_1} \left(\frac{\rho(s, \theta)}{m_0} \right)^2$$

$$= 1.6 \times 10^{-4} \,\mathrm{cm}^{-2} \mathrm{s}^{-1} \times \left(\frac{\langle \sigma v \rangle_{\chi_0 \overline{\chi}_0 \to \chi_1 \overline{\chi}_1}}{5 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}} \right) \times \left(\frac{\mathrm{GeV}}{m_0} \right)^2$$


$$\equiv \mathcal{F}_{\mathrm{ref}}^{180^{\circ}} \times \left(\frac{\langle \sigma v \rangle_{\chi_0 \overline{\chi}_0 \to \chi_1 \overline{\chi}_1}}{5 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}} \right) \times \left(\frac{\mathrm{GeV}}{m_0} \right)^2$$

$$\sigma_{\epsilon} \geq \frac{N^{90}}{D_{f} t_{\exp} N_{T} \mathcal{F}_{\text{ref}}^{\theta_{C}}} \left(\frac{5 \times 10^{-26} \,\text{cm}^{3} \text{s}^{-1}}{\langle \sigma v \rangle_{\chi_{0} \overline{\chi}_{0} \to \chi_{1} \overline{\chi}_{1}}} \right) \left(\frac{m_{0}}{\text{GeV}} \right)^{2}$$

 σ_{ϵ} VS. m_0 (just like σ vs. m_{DM} in conventional WIMP searches)

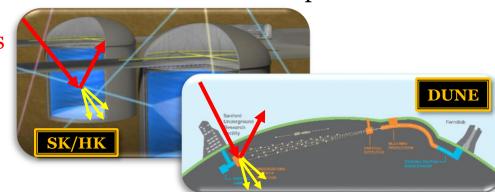

Detector	N^9	0	$N_{ m BG}$	1
Detector	All sky	30°	All sky	30°
ProtoDUNE-DP	4.86	2.67	4.22	0.28
ProtoDUNE-SP	5.50	2.79	6.02	0.40
ProtoDUNE-total	6.69	3.04	10.24	0.69
MicroBooNE	3.34	2.42	1.10	0.074
SBND	3.54	2.44	1.14	0.094
ICARUS	5.50	2.79	6.02	0.40
SBN Program-total	6.24	2.94	8.53	0.57

 $D_f = 1/2$ is assumed.

Expected Experimental Reach

- ❖ A 0.5 kt- V_{fid} detector and $2m_1 > m_X$ (i.e., visibly-decaying X) and $g_{11} = 1$ are assumed.
- Results with 1-year & 2-year (effectively ½-year & 1 year assumed) exposures.

Full ProtoDUNE/SBN can cover the parameter space uncovered by SK! (especially, the region where the relevant recoil E is lower than ~100 MeV.)


The analysis with **an angle cut** allows to probe more parameter space, as expected.

Detection of BDM

• Flux of boosted χ_1 near the earth

$$\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from the number density of DM χ_0 , $n_0 = \rho_0/m_0$

- \star Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \, \mathrm{cm}^3 \mathrm{s}^{-1}$ and assuming the NFW DM halo profile, one can obtain $\mathcal{F}_{\chi_1} \sim 10^{-6 \sim 8} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ for χ_0 of weak-scale mass, $m_0 \sim \mathrm{O}(10\text{-}100 \, \mathrm{GeV})$.
- **❖** Low flux → No sensitivity in conventional DM direct detection experiments
- → Large volume (neutrino) detectors motivated: SK/HK, DUNE, IceCube, ...

Sources

- ✓ GC: Agashe et al. (2014); Necib et al. (2016); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.
- ✓ Sun: Berger et al. (2014); Kong, Mohlabeng, JCP (2014); Alhazmi, Kong, Mohlabeng, JCP (2016); etc.
- ✓ Dwarf galaxies: Necib et al (2016)