Axion limit from the Cooling Neutron Star in Cassiopeia A

Jiaming Zheng University of Tokyo

Base on K. Hamaguchi, N. Nagata, K. Yanagi, J. Zheng, 1806.07151

> COSMO-18 2018

> > ◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Minimal cooling model of Neutron Star

Cooling of Cas A NS

Axion limit from cooling of the Cas A NS

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Minimal Cooling Scenario

$$C\frac{dT}{dt} = -L_{\nu} - L_{\gamma}$$

$$L_{
u} \gg L_{\gamma}$$
 for $t < 10^5$ yr

Neutrino emission L_{ν} in a hot NS:

- Direct URCA:
 - $n \rightarrow p + e^- + \bar{\nu}$ $p + e^- \rightarrow n + \nu$

 $\sim T^6,$ Highly suppressed if $M < 2 M_{\odot}$

Modified URCA:

 $\begin{array}{l} N+n\rightarrow N+p+e^-+\bar{\nu}\\ N+p+e^-\rightarrow N+n+\nu \end{array}$

 $\sim T^8$

Review c.f. Page et. al, 2004; Yakovlev et. al, 2004;

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Pairing effect

Nucleons form cooper-pairs at low temperature

$$T_c \sim \Delta(T=0) \sim \mathcal{O}(1 \text{ MeV})$$

- Pair-breaking-formation process(PBF) $N + N' \rightarrow [NN'] + \nu + \bar{\nu} \sim T^7$ Rapid cooling during phase transition
- Suppression of emissions by energy gap: $\sim \exp(-\Delta(T)/T)$

Pairing in NS:

- $n n^{3}P_{2}$ pairing (core) Theoretically Highly Uncertain
- $p p {}^{1}S_{0}$ pairing (core)
- $n n {}^{1}S_{0}$ pairing (crust)
- Only relevent to relaxation

Envelope model

$$L_{\gamma} \equiv 4\pi R^2 \sigma_{SB} T_e^4$$

- T_e : effective temperature
- T_b : Interior T below envelope.

 $\eta \sim \Delta M/M$

 ΔM : Mass of light element in the envelope(H/He/C)

Te-Tb relation from Potekhin, Yakovlev, 2001

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Cas A NS

- NS x-ray found by Chandra at in 1999
- SN exploded in 1681 ± 19, estimated from remnant expansion

Image from apod 2017.5.1

Heinke & Ho, 2010: Cooling by $2 \sim 4\%/10$ yrs $M = 1.4 \pm 0.3 M_{\odot}$

For comparison, $(dT/dt)_{
m MURCA} \sim 0.3\%/10~
m yrs$

Rapid cooling needed. (pbf?)

Minimal cooling model vs Cas A NS

Page, Prakash, Lattimer, Steiner, 2011

Suppress MURCA by early proton-pairing

• n^3P_2 pairing triggered recently(tuned) for rapid cooling

Axion emission in NS

Axion nucleon coupling:

$$\mathcal{L}_{\mathsf{int}} = \sum_{N=p,n} rac{C_N}{2f_a} ar{N} \gamma^\mu \gamma_5 N \partial_\mu a$$

KSVZ axion (This talk)

$$C_p = -0.47(3), C_n = -0.02(3)$$

DFSZ axion

$$C_p = -0.182(25) - 0.435 \sin^2 \beta,$$

$$C_n = -0.160(25) + 0.414 \sin^2 \beta$$

Emission processes

- PBF $N+N' \rightarrow [NN'] + a \sim T^5$
- Bremsstrahlung $N + N \rightarrow N + N + a \sim T^6$
- Sedrakian, 2015 Iwamoto, 1984

(ロ) (同) (三) (三) (三) (○) (○)

Some technical detail

We modified public code *NSCool* to implement axion cooling in addition to minimal cooling model

To be conservative on axion limit:

 $n^{3}P_{2}$ energy gap function is taken as free parameters

 $p^{1}S_{0}$ energy gap is chosen from theoretical models with highest $T_{c}(\text{CCDK})$, for maximal suppression of axion emission from proton

The result is not sensitive to the following choices: APR EOS, $M = 1.4M_{\odot}$, SFB n^1S_0 gap.

Axion luminosity in KSVZ model

Proton pbf emission dominates *L*_a.

 T_{core} from cooling model at $t_{\text{obs}} = 2001$ vs F_a , without n³ P_2 pairing.

・ロト・西・・川田・・田・ 日・ ろんの

Fit of Cas A NS cooling data with axion emission included

For KSVZ, $C_n \sim 0$, neutron ${}^{3}P_2$ pbf mainly emits ν

Large $\eta \rightarrow$ smaller $T_b^{\gamma} \nu$ pbf emission \rightarrow Cannot fit the slope!

However, the constraint on DFSZ at high η is much weaker because of axion n^3P_2 pbf emission

Summarizing the limit

- Tight constraint for KSVZ model: $\eta \gtrsim 10^{-10}$, $F_a \gtrsim 5 \times 10^8$ GeV
- Large uncertainty set by η for DFSZ case. When $\tan \beta = 10$, for minimal η , $F_a \gtrsim 6 \times 10^8$; For maximal η , $F_a \gtrsim 1.1 \times 10^8$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Similar things can be done with other light dark matter scenario.

Backup

