Cosmological phase transitions with hidden scale invariance

Cyril Lagger

S. Arunasalam, A. Kobakhidze, CL, S. Liang, A. Zhou, PLB 776 (2018) 48-53 S. Arunasalam, A. Kobakhidze, CL, in preparation

22nd Conference on Particle Physics and Cosmology - Daejeon August 28, 2018

Motivation and overview

o Approach: exploring particle physics from cosmological considerations

Motivation and overview

- o Approach: exploring particle physics from cosmological considerations
- Cosmology provides
 - evidences for the incompleteness of the Standard Model
 - o potential new signatures of BSM (phase transitions, gravitational waves,...)

Motivation and overview

- Approach: exploring particle physics from cosmological considerations
- Cosmology provides
 - evidences for the incompleteness of the Standard Model
 - o potential new signatures of BSM (phase transitions, gravitational waves,...)

This talk: a study of the electroweak and chiral phase transitions in an extension of the Standard Model with classical scale invariance.

• Scale invariant models are attractive to address the hierarchy problem

e.g.: [K. Meissner, H. Nicolai, PLB 648 (2007) 312] [R. Foot et al., PRD 77 (2008) 035006] [S. Iso et al., PLB 676 (2009) 81]

- Scale invariant models are attractive to address the hierarchy problem
 - e.g.: [K. Meissner, H. Nicolai, PLB 648 (2007) 312] [R. Foot et al., PRD 77 (2008) 035006] [S. Iso et al., PLB 676 (2009) 81]
- o Assume existence of a UV complete scale invariant model

- Scale invariant models are attractive to address the hierarchy problem
 e.g.: [K. Meissner, H. Nicolai, PLB 648 (2007) 312] [R. Foot et al., PRD 77 (2008) 035006] [S. Iso et al., PLB 676 (2009) 81]
- Assume existence of a UV complete scale invariant model
- Focus on low-energy effective field theory:
 - Standard Model Higgs potential at UV scale Λ

$$V(\phi^{\dagger}\phi) = V_0(\Lambda) + \lambda(\Lambda) \left[\phi^{\dagger}\phi - v_{ew}^2(\Lambda)\right]^2 + ...$$

 \circ spontaneously broken scale invariance manifests through dilaton field χ

$$\begin{split} & \Lambda \to \Lambda \frac{\chi}{f_\chi} \equiv \alpha \chi \\ & v_{ew}^2(\Lambda) \to \frac{v_{ew}^2(\alpha \chi)}{f_\chi^2} \chi^2 \equiv \frac{\xi(\alpha \chi)}{2} \chi^2 \\ & V_0(\Lambda) \to \frac{V_0(\alpha \chi)}{f_\chi^4} \chi^4 \equiv \frac{\rho(\alpha \chi)}{4} \chi^4 \end{split}$$

- Scale invariant models are attractive to address the hierarchy problem
 e.g.: [K. Meissner, H. Nicolai, PLB 648 (2007) 312] [R. Foot et al., PRD 77 (2008) 035006] [S. Iso et al., PLB 676 (2009) 81]
- Assume existence of a UV complete scale invariant model
- Focus on low-energy effective field theory:
 - Standard Model Higgs potential at UV scale Λ

$$V(\phi^{\dagger}\phi) = V_0(\Lambda) + \lambda(\Lambda) \left[\phi^{\dagger}\phi - v_{ew}^2(\Lambda)\right]^2 + ...$$

 \circ spontaneously broken scale invariance manifests through dilaton field χ

$$\begin{split} & \Lambda \to \Lambda \frac{\chi}{f_\chi} \equiv \alpha \chi \\ & v_{ew}^2(\Lambda) \to \frac{v_{ew}^2(\alpha \chi)}{f_\chi^2} \chi^2 \equiv \frac{\xi(\alpha \chi)}{2} \chi^2 \\ & V_0(\Lambda) \to \frac{V_0(\alpha \chi)}{f_\chi^4} \chi^4 \equiv \frac{\rho(\alpha \chi)}{4} \chi^4 \end{split}$$

We get an effective scale invariant potential:

$$V(\phi^{\dagger}\phi,\chi) = \lambda(\alpha\chi) \left[\phi^{\dagger}\phi - \frac{\xi(\alpha\chi)}{2}\chi^{2}\right]^{2} + \frac{\rho(\alpha\chi)}{4}\chi^{4}$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln (\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2 (\alpha \chi/\mu) + \dots$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln (\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2 (\alpha \chi/\mu) + \dots$$

Minimisation conditions and vanishing vacuum energy density:

$$\left.\frac{\partial V}{\partial \chi}\right|_{\phi=v_{ew},\chi=v_\chi}=0,\quad \left.\frac{\partial V}{\partial \phi}\right|_{\phi=v_{ew},\chi=v_\chi}=0,\quad V(v_{ew},v_\chi)=0$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln (\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2 (\alpha \chi/\mu) + \dots$$

o Minimisation conditions and vanishing vacuum energy density:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\phi = v_{ew}, \chi = v_{\chi}} = 0, \quad \left. \frac{\partial V}{\partial \phi} \right|_{\phi = v_{ew}, \chi = v_{\chi}} = 0, \quad V(v_{ew}, v_{\chi}) = 0$$

 \circ We obtain dimensional transmutation and hierarchy of VEVs ($\Lambda \sim v_\chi$):

$$ho(v_\chi)=0,\quad eta_
ho(v_\chi)=0,\quad \xi(v_\chi)=rac{v_{ew}^2}{v_\chi^2}$$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln (\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2 (\alpha \chi/\mu) + \dots$$

Minimisation conditions and vanishing vacuum energy density:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\phi = v_{ew}, \chi = v_{\chi}} = 0, \quad \left. \frac{\partial V}{\partial \phi} \right|_{\phi = v_{ew}, \chi = v_{\chi}} = 0, \quad V(v_{ew}, v_{\chi}) = 0$$

 \circ We obtain dimensional transmutation and hierarchy of VEVs ($\Lambda \sim v_\chi$):

$$ho(v_\chi)=0,\quad eta_
ho(v_\chi)=0,\quad \xi(v_\chi)=rac{v_{ew}^2}{v_\chi^2}$$

 $\circ \xi(v_{\chi})$ can be hierarchically small (technical naturalness)

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln(\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2(\alpha \chi/\mu) + \dots$$

Minimisation conditions and vanishing vacuum energy density:

$$\left.\frac{\partial V}{\partial \chi}\right|_{\phi=v_{ew},\chi=v_\chi}=0,\quad \left.\frac{\partial V}{\partial \phi}\right|_{\phi=v_{ew},\chi=v_\chi}=0,\quad V(v_{ew},v_\chi)=0$$

 \circ We obtain dimensional transmutation and hierarchy of VEVs ($\Lambda \sim v_\chi$):

$$ho(v_\chi)=0,\quad eta_
ho(v_\chi)=0,\quad \xi(v_\chi)=rac{v_{ew}^2}{v_\chi^2}$$

- \circ $\xi(v_\chi)$ can be hierarchically small (technical naturalness)
- Prediction of a light dilaton: $m_\chi^2 \simeq \frac{\beta_\rho'(v_\chi)}{4\bar{\xi}(v_\nu)} v_{ew}^2$ $\frac{m_\chi}{m_b} \sim \sqrt{\bar{\xi}}$

Scale invariance is broken by quantum effects:

$$\lambda^{(i)}(\alpha \chi) = \lambda^{(i)}(\mu) + \beta_{\lambda^{(i)}}(\mu) \ln(\alpha \chi/\mu) + \beta'_{\lambda^{(i)}}(\mu) \ln^2(\alpha \chi/\mu) + \dots$$

Minimisation conditions and vanishing vacuum energy density:

$$\left. \frac{\partial V}{\partial \chi} \right|_{\phi = v_{ew}, \chi = v_{\chi}} = 0, \quad \left. \frac{\partial V}{\partial \phi} \right|_{\phi = v_{ew}, \chi = v_{\chi}} = 0, \quad V(v_{ew}, v_{\chi}) = 0$$

 \circ We obtain dimensional transmutation and hierarchy of VEVs ($\Lambda \sim v_\chi$):

$$ho(v_\chi)=0,\quad eta_
ho(v_\chi)=0,\quad \xi(v_\chi)=rac{v_{ew}^2}{v_\chi^2}$$

- \circ $\xi(v_\chi)$ can be hierarchically small (technical naturalness)
- Prediction of a light dilaton: $m_\chi^2 \simeq \frac{\beta_\rho'(v_\chi)}{4\xi(v_\chi)} v_{ew}^2 \qquad \frac{m_\chi}{m_h} \sim \sqrt{\xi}$
- o Approximate dilaton mass: for $v_\chi \sim M_P$, $m_\chi(v_{ew}) \sim 10^{-8}$ eV

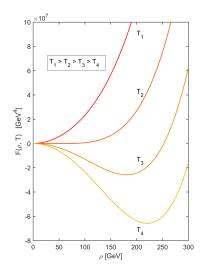
Early universe phase transitions

Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- o scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho,T)$
- dynamics depend on the underlying particle physics model

2nd-order transition / crossover:

- o smooth dynamics
- no particular signatures



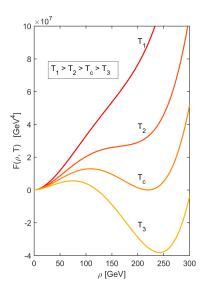
Early universe phase transitions

Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- dynamics depend on the underlying particle physics model

1st-order transition:

- bubble nucleation/collision
- stochastic GW background



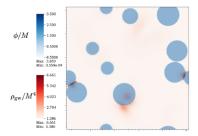
Early universe phase transitions

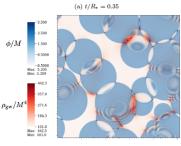
Hot Big Bang scenario:

- early Universe \sim hot plasma (high T)
- scalar field(s) behaviour dictated by their free energy density $\mathcal{F}(\rho, T)$
- dynamics depend on the underlying particle physics model

1st-order transition:

- bubble nucleation/collision
- o stochastic GW background





[D. Cutting, M. Hindmarsh, D. Weir, arXiv:1802.05712]

(b) $t/R_* = 0.66$

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

⇒ no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

- o flat direction in the Higgs-dilaton potential at tree level
- \circ vacua are degenerate \Rightarrow no EWPT until $T \ll T_{EW}$

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

 \Rightarrow no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

- o flat direction in the Higgs-dilaton potential at tree level
- \circ vacua are degenerate \Rightarrow no EWPT until $T \ll T_{EW}$

- supercooling until $T \sim T_{OCD}$
- \circ at T_{OCD} : chiral phase transition with 6 massless quarks
- o quark condensates reduce the barrier in the Higgs potential ⇒ EWPT
 [E. Witten Nucl.Pys.B177 (1981) 477]

In the Standard Model, both electroweak and QCD PTs are crossover

[K. Kajantie et al., Phys. Rev. Lett. 77 (1996) 2887] [Y. Aoki et al, Nature 443 (2006) 675]

 \Rightarrow no stochastic GW background predicted in the SM

In the model with hidden scale invariance:

- o flat direction in the Higgs-dilaton potential at tree level
- \circ vacua are degenerate \Rightarrow no EWPT until $T \ll T_{EW}$

QCD-induced electroweak phase transition:

- \circ supercooling until $T \sim T_{QCD}$
- \circ at T_{QCD} : chiral phase transition with 6 massless quarks
- o quark condensates reduce the barrier in the Higgs potential ⇒ EWPT
 [E. Witten Nucl.Pys.B177 (1981) 477]

See also: [W. Buchmuller, D. Wyler, PLB 249 (1990) 281] [S. Iso et al., PRL 119 (2017) 141301] [B. von Harling, G. Servant, JHEP 1801 (2018) 159]

 \circ Thermal contributions to the Higgs-dilaton potential \Rightarrow barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

• Thermal contributions to the Higgs-dilaton potential ⇒ barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

Quark-antiquark condensate with N massless quarks [J. Gasser, H. Leutwyler, PLB 184 (1987) 83]

$$\langle \bar{q}q \rangle_T = \langle \bar{q}q \rangle \left[1 - (N^2 - 1) \frac{T^2}{12Nf_{\pi}^2} - \frac{1}{2}(N^2 - 1) \left(\frac{T^2}{12Nf_{\pi}^2} \right)^2 + \ldots \right]$$

Thermal contributions to the Higgs-dilaton potential \Rightarrow barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

Quark-antiquark condensate with N massless quarks [J. Gasser, H. Leutwyler, PLB 184 (1987) 83]

$$\langle \bar{q}q \rangle_T = \langle \bar{q}q \rangle \left[1 - (N^2 - 1) \frac{T^2}{12Nf_{\pi}^2} - \frac{1}{2} (N^2 - 1) \left(\frac{T^2}{12Nf_{\pi}^2} \right)^2 + \ldots \right]$$

• Quark-Higgs Yukawa interactions induce a linear term in the potential:

$$V_T(h) \rightarrow V_T(h) + \frac{y_q}{\sqrt{2}} \langle \bar{q}q \rangle_T h$$

• Thermal contributions to the Higgs-dilaton potential ⇒ barrier along the flat direction:

$$V_T(h,\chi(h)) \approx AT^4 + \frac{1}{48} \left[4\lambda(\Lambda) + 6y_t^2(\Lambda) + \frac{9}{2}g^2(\Lambda) + \frac{3}{2}g'^2(\Lambda) \right] h^2T^2 + \dots$$

Quark-antiquark condensate with N massless quarks [J. Gasser, H. Leutwyler, PLB 184 (1987) 83] :

$$\langle \bar{q}q \rangle_T = \langle \bar{q}q \rangle \left[1 - (N^2 - 1) \frac{T^2}{12Nf_{\pi}^2} - \frac{1}{2} (N^2 - 1) \left(\frac{T^2}{12Nf_{\pi}^2} \right)^2 + \ldots \right]$$

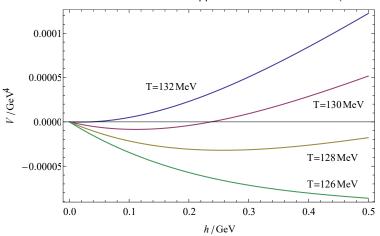
• Quark-Higgs Yukawa interactions induce a linear term in the potential:

$$V_T(h) \rightarrow V_T(h) + \frac{y_q}{\sqrt{2}} \langle \bar{q}q \rangle_T h$$

This linear term dominates over the barrier for small enough T

 \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c pprox 132$ MeV

- \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c pprox 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes



- \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c pprox 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)

- \circ For N=6 and $f_{\pi} \approx 93$ MeV, $\langle \bar{q}q \rangle_{T_c} = 0$ at $T_c \approx 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)
- o However, $SU(6)_R \times SU(6)_L$ chiral symmetry breaking is 1st-order for massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]
 - ⇒ production of Gravitational Waves

- \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle ar q q
 angle_{T_c} = 0$ at $T_c pprox 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)
- However, $SU(6)_R \times SU(6)_L$ chiral symmetry breaking is 1st-order for massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338] \Rightarrow production of Gravitational Waves
- Peak frequency roughly given by duration of the PT: $f_p \approx v R_c^{-1}$

- \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle ar q q
 angle_{T_c} = 0$ at $T_c pprox 132$ MeV
- For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)
- o However, $SU(6)_R \times SU(6)_L$ chiral symmetry breaking is 1st-order for massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]
 - ⇒ production of Gravitational Waves
- Peak frequency roughly given by duration of the PT: $f_p \approx v R_c^{-1}$
- Frequency today in the range of PTA or LISA:

$$f_0 = f_p \frac{a(t_c)}{a(t_0)} \approx 1.65 \cdot 10^{-8} \frac{v}{R_c H_c} \frac{T_c}{100 \text{ MeV}} \text{ Hz} \approx 10^{-7} - 10^{-4} \text{ Hz}$$

- \circ For N=6 and $f_\pi pprox 93$ MeV, $\langle ar qq
 angle_{T_c} = 0$ at $T_c pprox 132$ MeV
- \circ For $T \approx 127$ MeV the barrier disappears and the EWPT completes
- The Higgs-dilaton rolls down the potential (smooth transition)
- o However, $SU(6)_R \times SU(6)_L$ chiral symmetry breaking is 1st-order for massless quarks [D. Pisarski, F. Wilczek, PRD 29 (1984) 338]
 - ⇒ production of Gravitational Waves
- \circ Peak frequency roughly given by duration of the PT: $f_ppprox v\,R_c^{-1}$
- Frequency today in the range of PTA or LISA:

$$f_0 = f_p \frac{a(t_c)}{a(t_0)} \approx 1.65 \cdot 10^{-8} \frac{v}{R_c H_c} \frac{T_c}{100 \text{ MeV}} \text{ Hz} \approx 10^{-7} - 10^{-4} \text{ Hz}$$

o A refined analysis currently under investigation from linear sigma model

o
$$U(N_f) \times U(N_f)$$
 linear sigma model for the pions: $\Phi = T_a(\sigma_a + i\pi_a)$:

$$\mathcal{L}_{\mathsf{pions}} = \mathsf{Tr} \left(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \right) - m^2 \Phi^{\dagger} \Phi - \lambda_1 \left[\mathsf{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 - \lambda_2 \mathsf{Tr} \left(\Phi^{\dagger} \Phi \right)^2$$

$$\circ~U(N_f) imes U(N_f)$$
 linear sigma model for the pions: $\Phi = T_a(\sigma_a + i\pi_a)$:

$$\mathcal{L}_{\mathsf{pions}} = \mathsf{Tr} \left(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \right) - \mathit{m}^2 \Phi^{\dagger} \Phi - \lambda_1 \left[\mathsf{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 - \lambda_2 \mathsf{Tr} \left(\Phi^{\dagger} \Phi \right)^2$$

• Explicit breaking term (non-zero quark masses): $\mathcal{L}_{\mathsf{BR}} = \mathsf{Tr}\left[F\left(\Phi + \Phi^{\dagger}\right)\right]$

 $\circ~U(N_f) \times U(N_f)$ linear sigma model for the pions: $\Phi = T_a(\sigma_a + i\pi_a)$:

$$\mathcal{L}_{\mathsf{pions}} = \mathsf{Tr} \left(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \right) - \mathit{m}^2 \Phi^{\dagger} \Phi - \lambda_1 \left[\mathsf{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 - \lambda_2 \mathsf{Tr} \left(\Phi^{\dagger} \Phi \right)^2$$

- \circ Explicit breaking term (non-zero quark masses): $\mathcal{L}_{\mathsf{BR}} = \mathsf{Tr}\left[F\left(\Phi + \Phi^\dagger
 ight)
 ight]$
- Parameters λ_1 , λ_2 , m inferred from meson masses

 $\circ~U(N_f) \times U(N_f)$ linear sigma model for the pions: $\Phi = T_a(\sigma_a + i\pi_a)$:

$$\mathcal{L}_{\mathsf{pions}} = \mathsf{Tr} \left(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \right) - \mathit{m}^2 \Phi^{\dagger} \Phi - \lambda_1 \left[\mathsf{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 - \lambda_2 \mathsf{Tr} \left(\Phi^{\dagger} \Phi \right)^2$$

- Explicit breaking term (non-zero quark masses): $\mathcal{L}_{\mathsf{BR}} = \mathsf{Tr}\left[F\left(\Phi + \Phi^{\dagger}\right)\right]$
- Parameters λ_1 , λ_2 , m inferred from meson masses
- Thermal effective potential computed in the CJT formalism
 [J. Cornwall, R. Jackiw, E. Tomboulis, PRD 10, 2428 (1974)] [D. Roder, J. Ruppert, D. Rischke, PRD 68, 016003 (2003)]

4□ > 4Ē > 4Ē > ₹ 9Q@

Linear sigma model of chiral symmetry breaking

 $\circ~U(N_f) imes U(N_f)$ linear sigma model for the pions: $\Phi = T_a(\sigma_a + i\pi_a)$:

$$\mathcal{L}_{\mathsf{pions}} = \mathsf{Tr} \left(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi \right) - \mathit{m}^2 \Phi^{\dagger} \Phi - \lambda_1 \left[\mathsf{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2 - \lambda_2 \mathsf{Tr} \left(\Phi^{\dagger} \Phi \right)^2$$

- \circ Explicit breaking term (non-zero quark masses): $\mathcal{L}_{\mathsf{BR}} = \mathsf{Tr}\left[F\left(\Phi + \Phi^\dagger
 ight)
 ight]$
- Parameters λ_1 , λ_2 , m inferred from meson masses
- Thermal effective potential computed in the CJT formalism
 [J. Cornwall, R. Jackiw, E. Tomboulis, PRD 10, 2428 (1974)] [D. Roder, J. Ruppert, D. Rischke, PRD 68, 016003 (2003)]
- Confirm 1st-order PT for $N_f \ge 3$ and massless quarks

Modify the previous model to incorporate scale invariance explicitly:

$$V(h,\chi,\Phi) = V(h,\chi) + \lambda_m \chi^2 \Phi^{\dagger} \Phi + \lambda_1 \left[\text{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2$$
$$+ \lambda_2 \text{Tr} \left(\Phi^{\dagger} \Phi \right)^2 + \chi^2 \text{Tr} \left[H_Y \Phi^{\dagger} + H_Y^{\dagger} \Phi \right]$$

Modify the previous model to incorporate scale invariance explicitly:

$$V(h,\chi,\Phi) = V(h,\chi) + \lambda_m \chi^2 \Phi^{\dagger} \Phi + \lambda_1 \left[\text{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2$$
$$+ \lambda_2 \text{Tr} \left(\Phi^{\dagger} \Phi \right)^2 + \chi^2 \text{Tr} \left[H_Y \Phi^{\dagger} + H_Y^{\dagger} \Phi \right]$$

 \circ Expected to be valid below Λ_{QCD}

Modify the previous model to incorporate scale invariance explicitly:

$$V(h,\chi,\Phi) = V(h,\chi) + \lambda_m \chi^2 \Phi^{\dagger} \Phi + \lambda_1 \left[\text{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2$$
$$+ \lambda_2 \text{Tr} \left(\Phi^{\dagger} \Phi \right)^2 + \chi^2 \text{Tr} \left[H_Y \Phi^{\dagger} + H_Y^{\dagger} \Phi \right]$$

- \circ Expected to be valid below Λ_{QCD}
- Potential of the form $V = \sum_{i,j,k,l} \lambda_{ijkl} \varphi_i \varphi_j \varphi_k \varphi_l$ can be written along one direction φ in field space. At one-loop (Coleman-Weinberg mechanism):

$$V = \frac{1}{4}(\lambda_{\varphi} + \delta\lambda_{\varphi}) + A \varphi^{4} + B \varphi^{4} \ln \frac{\varphi}{\mu}$$

Modify the previous model to incorporate scale invariance explicitly:

$$V(h,\chi,\Phi) = V(h,\chi) + \lambda_m \chi^2 \Phi^{\dagger} \Phi + \lambda_1 \left[\text{Tr} \left(\Phi^{\dagger} \Phi \right) \right]^2$$
$$+ \lambda_2 \text{Tr} \left(\Phi^{\dagger} \Phi \right)^2 + \chi^2 \text{Tr} \left[H_Y \Phi^{\dagger} + H_Y^{\dagger} \Phi \right]$$

- Expected to be valid below Λ_{QCD}
- Potential of the form $V = \sum_{i,j,k,l} \lambda_{ijkl} \varphi_i \varphi_j \varphi_k \varphi_l$ can be written along one direction φ in field space. At one-loop (Coleman-Weinberg mechanism):

$$V = \frac{1}{4}(\lambda_{\varphi} + \delta\lambda_{\varphi}) + A \varphi^{4} + B \varphi^{4} \ln \frac{\varphi}{\mu}$$

Next steps: compute thermal corrections, dynamics of the PT and GW spectrum

o Scale invariant extensions of the SM motivated by the hierarchy problem

- o Scale invariant extensions of the SM motivated by the hierarchy problem
- Low energy effective formulation with a dilaton field

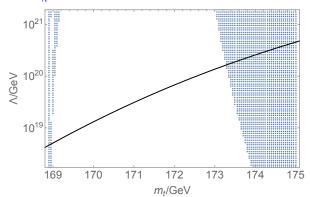
- Scale invariant extensions of the SM motivated by the hierarchy problem
- Low energy effective formulation with a dilaton field
- Interesting predictions:
 - o small dilaton mass: $m_\chi \approx 10^{-8} \text{ eV}$
 - o low temperature QCD-induced electroweak transition
 - GW production from 1st order phase transition

- Scale invariant extensions of the SM motivated by the hierarchy problem
- Low energy effective formulation with a dilaton field
- Interesting predictions:
 - o small dilaton mass: $m_\chi \approx 10^{-8} \text{ eV}$
 - o low temperature QCD-induced electroweak transition
 - GW production from 1st order phase transition
- Under investigation:
 - o joint dynamics of the Higgs, dilaton and pions
 - o precise computation of the GW frequency and amplitude
 - o production of primordial black holes

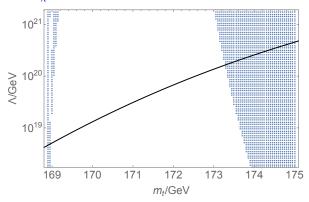
Backup slides

 $\circ\,$ Consider the running of parameters between v_{ew} and $v_{\chi} \sim \Lambda$

- \circ Consider the running of parameters between v_{ew} and $v_\chi \sim \Lambda$
- Require that $m_\chi^2(v_{ew}) > 0$

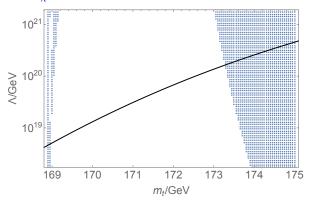


- \circ Consider the running of parameters between v_{ew} and $v_\chi \sim \Lambda$
- Require that $m_{\chi}^2(v_{ew}) > 0$



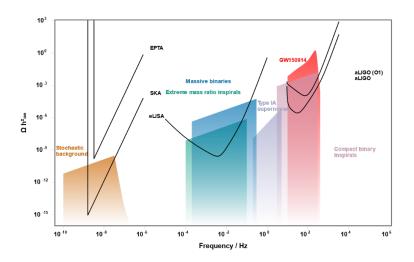
o Dilaton mass at $v_\chi \sim \Lambda \sim M_P$: $m_\chi \sim 10^{-8}$ eV

- \circ Consider the running of parameters between v_{ew} and $v_\chi \sim \Lambda$
- Require that $m_{\chi}^2(v_{ew}) > 0$



- \circ Dilaton mass at $v_\chi \sim \Lambda \sim M_P$: $m_\chi \sim 10^{-8}$ eV
- Indicative only and requires higher-loop corrections

Gravitational Waves



[From rhcole.com/apps/GWplotter/]