

Status of the COSINE-100

Center for Underground Physics (CUP), IBS Sejong University, Seoul, Korea

August 27-31, 2018
IBS Science and Culture Center
Daejeon, Korea

The COSINE collaboration

Joint collaboration between KIMS and DM-Ice to search for dark matter interactions in NaI(TI) scintillating crystals.

¹Department of Physics, Bandung Institute of Technology, Bandung 40132, Indonesia ²Center for Underground Physics, Institute for Basic Science, Daejeon 34047, Korea ³Department of Science Education, Ewha Womans University, Seoul 03760, Korea ⁴Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA ⁵Korea Institue of Science and Technology Information, Daejeon, 34141, Korea ⁶Korea Research Institute of Standards and Science, Daejeon 34113, Korea ⁷Department of Physics, Kyungpook National University, Daegu 41566, Korea ⁸Departamento de Fisica Nuclear, Instituto de Fisica, Universidade de São Paulo, São Paulo 05508-090, Brazil ⁹Department of Physics, Sejong University, Seoul 05006, Korea ¹⁰Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea ¹¹Department of Physics and Astronomy, University of Sheffield, Sheffield S10 2TN, United Kingdom ¹²Department of Physics, Sungkyunkwan University, Seoul 16419, Korea ¹³Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, Madison, 53706, USA ¹⁴Department of Physics, Yale University, New Haven, Connecticut 06520, USA

Dark Matter Modulation

The relative velocity between DM particles in galactic halo and detectors varies over the year.

Approximately sinusoidal modulation for the recoil rate of DM at keVee energies.

Peaks at early June.

Modulation observed by DAMA/LIBRA

Motivation: The DAMA annual modulation signal, to be confirmed with independent measurements by the same NaI(TI) target material ³

COSINE-100 experiment

Shielding Structure

COSINE-100 Construction

Dec. 2015 Jan. 2016 Feb. 2016

Mar. 2016

Apr. 2016

May. 2016 Jun. 2016 Sep. 2016

COSINE-100 operation

Plastics scintillators

Purpose: To tag cosmic ray muon events

 37 panels of plastic scintillator (EJ-200), 3cm thick

Wrapped with diffuse reflector and attached with light guides to

2" PMTs.

Muon rate

Crystal-LS Coincidence Events

Vetoed events in Crystal2

Liquid scintillator Energy spectrum

~70% of ⁴⁰K tag by LS

Low energy noise

The multi-variate analysis:

Boosted decision tree (BDT) techniques are applied to separate noise from the beta/gamma events.

Signal efficiency

Background spectrum

Efficiency Corrected Spectrum

Average count rate at 2-6 keV is "3.5 counts/day/kg/keV" Crystal bkg. generally follows Powder bkg.

Background Assessment

4 Channel (low energy, high energy, single hit, multiple hit) simultaneous fitting

2-6 keV region not used in fitting

Eur.Phys.J. C78 (2018) 490

WIMP Search data

59.5 days of Data

8 single-hit spectra are fit simultaneously with an assumed SHM (Standard Halo Model) WIMP signal as described in C. Savage et al., JCAP 04, 39 (2009).

Crystal-6 fitting results

Spin independent WIMP-nucleon cross section limit

COSINE-100 excludes DAMA/LIBRAphase1's signal as spin independent WIMP with Standard Halo Model in NaI(TI)

Consistent with null results from other direct detection experiments with different target materials

Annual modulation analysis: Preliminary, Blinded

Crystals 1, 5, and 8 are excluded in this analysis due to excessive PMT noise and low light yield

Unblinding soon. Stay tuned!

Other searches

Growing low radioactive NaI(TI) Crystals at CUP

Energy vs Meantime Preliminary

Light Yield: ~ 10.4 p.e./keV,

K-40: ~100 ppb

Summary & Outlook

The COSINE-100 experiment was installed at Y2L and runs smoothly for about two years.

COSINE-100 confirms that DAMA's modulation signal cannot be from standard WIMP & SHM with NaI(TI).

Modulation analysis is on-going.

Much progress made in developing the capabilities to grow and encapsulate radio-pure NaI(TI) crystals at IBS-CUP

Analysis with lower threshold is underway

BACKUP

NaI(TI) crystals

8 crystals with total mass of ~106 kg

Preliminary background values estimated both at R&D and COSINE setup

Crystal	Mass	Size (inches	Powder	α Rate	$^{40}\mathrm{K}$	$^{238}\mathrm{U}$	$^{232}\mathrm{Th}$	Light Yield
	(kg)	diameter×length)		(mBq/kg)	(ppb)	(ppt)	(ppt)	(PEs/keV)
Crystal-1	8.3	5.0×7.0	AS-B	3.20 ± 0.08	34.7 ± 4.7	< 0.02	1.3 ± 0.4	14.9 ± 1.5
Crystal-2	9.2	4.2×11.0	AS-C	2.06 ± 0.06	60.6 ± 4.7	< 0.12	< 0.6	14.6 ± 1.5
Crystal-3	9.2	4.2×11.0	AS-WSII	0.76 ± 0.02	34.3 ± 3.1	< 0.04	0.4 ± 0.2	15.5 ± 1.6
Crystal-4	18.0	5.0×15.3	AS-WSII	0.74 ± 0.02	33.3 ± 3.5		< 0.3	14.9 ± 1.5
Crystal-5	18.3	5.0×15.5	AS-C	2.06 ± 0.05	82.3 ± 5.5		2.4 ± 0.3	7.3 ± 0.7
Crystal-6	12.5	4.8×11.8	AS-WSIII	1.52 ± 0.04	16.8 ± 2.5	< 0.02	0.6 ± 0.2	14.6 ± 1.5
Crystal-7	12.5	4.8×11.8	AS-WSIII	1.54 ± 0.04	18.7 ± 2.8		< 0.6	14.0 ± 1.4
Crystal-8	18.3	5.0×15.5	AS-C	2.05 ± 0.05	54.3 ± 3.8		<1.4	3.5 ± 0.3
DAMA				< 0.5	< 20	0.7 - 10	0.5 - 7.5	5.5 - 7.5

Event rate

Crystal trigger rates versus time (in hours) for the first physics run (48 days).

All of the crystals show stable behavior throughout this running period and the rest of data-taking.

Low energy region (Region of interest)

~3.5 counts/day/keV/kg in the (2-6) keV energy Dominant contributions from 210Pb and 3H.

2-6keV single hit dru level

		Crystal-1	Crystal-2	Crystal-3	Crystal-4	Crystal-6	Crystal-7
Internal	$^{40}{ m K}$	0.10 ± 0.02	0.20 ± 0.02	0.10 ± 0.01	0.10 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
	$^{210}\mathrm{Pb}$	2.50 ± 0.10	1.69 ± 0.09	0.57 ± 0.05	0.71 ± 0.05	1.46 ± 0.07	1.50 ± 0.07
	Other $(\times 10^{-4})$	7.0 ± 0.1	15 ± 1	7.3 ± 0.1	7.7 ± 0.1	14±1	14±1
Cosmogenic	$^3\mathrm{H}$	2.35 ± 0.90	0.81 ± 0.40	1.54 ± 0.77	1.97 ± 0.66	0.69 ± 0.67	0.58 ± 0.54
	$^{109}\mathrm{Cd}$	0.05 ± 0.04	0.009 ± 0.009	0.13 ± 0.06	0.33 ± 0.16	0.09 ± 0.09	0.09 ± 0.09
	Other	-	-	0.02 ± 0.01	0.05 ± 0.02	0.05 ± 0.03	0.05 ± 0.03
Surface	$^{210}\mathrm{Pb}$	0.64 ± 0.64	0.51 ± 0.51	1.16 ± 0.51	0.22 ± 0.16	0.34 ± 0.20	0.38 ± 0.21
External		0.03 ± 0.02	0.05 ± 0.04	0.03 ± 0.02	0.03 ± 0.02	0.04 ± 0.03	0.03 ± 0.02
Tolal simulation		5.68 ± 1.04	3.28 ± 0.67	3.57 ± 0.76	3.41 ± 0.75	2.74 ± 0.61	2.70 ± 0.51
Data		5.64 ± 0.10	3.27 ± 0.07	3.35 ± 0.07	3.19 ± 0.05	2.62 ± 0.05	2.64 ± 0.05

Examples of Signal Events

Annual Modulation Analysis

400 days of data

Side band : Multiple-hit (2-6 keV)

Side band :Single-hit (6-10 keV)

Side band data fit well with simple exponential models built from the known cosmogenic components

Crystals 1, 5, and 8 are excluded in this analysis due to excessive PMT noise and low light yield