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 The threshold for the fragmentation in T-models is 
estimated as

 It is reported in the Starobinsky model(          of E-model) 
that the fragmentation does not occur

 We estimate the threshold in E-models

 Significant amount of GWs is expected to be produced 

 Reheating will occur inhomogeneously unless the 
diffusion is rapid enough

: also from theoretical curiosity on the model itself
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E-models of -attractors
R. Kallosh and A. Linde (2013)

 E-models are a simplest class of models of     -attractors 
that incorporate quadratic and Starobinsky model:
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Flatness of the potential 
→ Fragmentation into 

I-balls (Oscillons)
: Initial condition of 

coherent oscillation
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I-ball

 In periodic motion, the area surrounded by 
trajectory in phase space is constant

 Conserved for adiabatic deviation of periodicity

S. Kasuya, M. Kawasaki, and F. Takahashi (2002)

: Adiabatic invariant
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: Spatial gradient of the solution 
coming from the higher-order terms must be 
small since it violates the adiabaticity

I-ball

 I-ball is lowest energy configuration with a fixed

 Consider nearly harmonic oscillation:

S. Kasuya, M. Kawasaki, and F. Takahashi (2002)

: 1D dynamics of point mass

Flatter than quadratic
: Existence condition of 
I-ball solution

(in order to fix    )
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I-ball profiles in E-models

 In the leading order, the solution harmonically oscillates and does not 
feel the flatness for 

 Asymmetric correction takes into account that inflaton stays longer in 
the flat regime             → I-ball solution exists: 

F. Hasegawa and J. P. Hong (2017)

I-balls are formed when
→



Linear instability analysis

 Equation of motion for linear fluctuation:
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Linear instability analysis

 Equation of motion for linear fluctuation:

 Instability overcomes cosmic expansion for

F. Hasegawa and J. P. Hong (2017)

← : Consistent with the 
analytical estimation
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Lattice simulations

 I-ball formation for                     is confirmed in 2D, 3D 
simulations as well:

F. Hasegawa and J. P. Hong (2017)
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horizon  
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Implications

 Temperature gradient due to the inefficient diffusion 
may lead to local high-temperature events 
including thermal leptogenesis, etc.

 Observational degeneracy of T- and E-models 
may be resolved for

 Even for                  the difference in oscillon
properties including size, number density may 
lead to different phenomena
← change in radius may lead to sizable change in number density, 

since (Volume)∝(Radius)3



Summary

 We studied Inflaton fragmentation in E-models of     -attractors

 Instability overcomes cosmic expansion and fragments into I-
balls for  

 GWs are expected to be produced but the frequency is out 
of observable range 

 Spatially localized reheating from I-balls may lead to possible 
delay of usual homogeneous radiation era

 Observational degeneracy with T-models may be resolved


