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» The threshold for the fragmentation in T-models is
estimated as « ~ ]_0_4 K. D. Lozanov and M. A. Amin (201¢)

» Itisreported in the Starobinsky model(a = 1 of E-model)
that the fragmentation does Not OCCUr  N.Takeda and Y. Watanabe (2014)

» We estimate the threshold in E-models
. also from theoretical curiosity on the model itself
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R. Kallosh and A. Linde (2013)

» E-models are a simplest class of models of « -attractors
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» Consider nearly harmonic oscillation: v = %m2gb2 + 6V, ¢(x,t) ~ ®(x)cosmt,
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F. Hasegawa and J. P. Hong (2017)

» In the leading order, the solution harmonically oscillates and does not
feel the flatness for ¢ > 0

» Asymmetric correction takes into account that inflaton stays longer in
the flat regime ¢ > 0 — [-ball solution exists:
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Linear instability analysis

F. Hasegawa and J. P. Hong (2017)

» Equation of motion for linear fluctuation:
d2
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» |-ball formation must be verified in non-linear regime
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Lattice simulations

F. Hasegawa and J. P. Hong (2017)

» I-ball formation for a < 1072 is confirmed in 2D, 3D
simulations as well:

a2pm4x10-7
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» Inflaton fragmentation may produce a large amount of GWs

» However, the frequency is not in currently observable range:
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» Spatially localized reheating at the locations of I-balls

» Locally generated radiation must diffuse throughout the space

» Possible delay of usual homogeneous radiation era

» Temperature of usual homogeneous radiation is upperly bounded by

requiring efficient diffusion: Hball number per horizon
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Implications

» Temperature gradient due to the inefficient diffusion
may lead to local high-temperature events
including thermal leptogenesis, etc.

» Observational degeneracy of T- and E-models
may be resolved for 107* < a < 107°

» Even for a <107* the difference in oscillon
properties including size, number density may
lead to different phenomena

— O(1) change in radius may lead to sizable change in number density,
since (Volume)« (Radius)3



» We studied Inflaton fragmentation in E-models of a-aftractors

» Instability overcomes cosmic expansion and fragments into I-
balls for a < 1073

» GWs are expected to be produced but the frequency is out
of observable range

» Spatially localized reheating from |-balls may lead to possible
delay of usual homogeneous radiation era

» Observational degeneracy with T-models may be resolved



