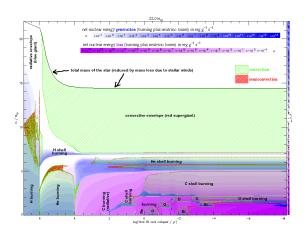


Night Sky from SARF

Jung Keun Ahn (Korea University)

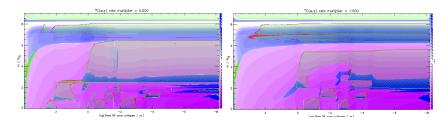
Nuclear Burning and Stellar Evolution

A slowly contracting star behaves like a classical ideal gas:


$$T_c \propto M^{2/3} \rho_c^{1/3}$$

- Hydrogen burning phase is characterized in terms of CNO proton capture reactions.
- Helium burning phase corresponds to alpha capture reactions.
- Carbon burning phase is related to C/O fusion and capture reactions.

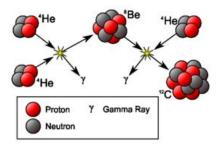
Time Evolution of Nuclear Burning Phases ¹


 \blacksquare Kippenhahn diagrams, i.e., stellar structure as a function of t.

¹Boyes, Heger and Woosley, 2sn.org/stellarevolution/

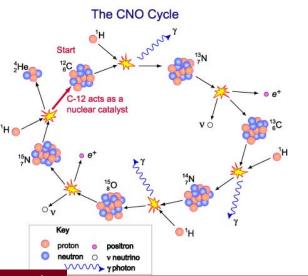
Time Evolution of Nuclear Burning Phases ²

■ Stellar structure in terms of $^{12}C(\alpha,\gamma)$ rate for a $25M_{\odot}$ star.


Stage reached	Time scale	$T_{\rm core}(10^9K)$	Density(g /cm 3)
H burning	$7 imes 10^6$ y	0.06	5
He burning	$5 imes10^5$ y	0.23	$7 imes 10^2$
C/O burning	600y/6 months	0.93-2.3	$2\times10^5-1\times10^7$
Si melting	1d	4.1	3×10^7
Explosive burning	0.1-1s	1.2-7	varies

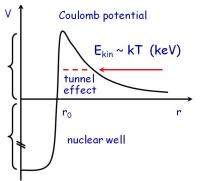
²Boyes, Heger and Woosley, 2sn.org/stellarevolution/

Triple-Alpha Process


$$3^4 He \rightarrow {}^{12}C \quad 0.6 MeV/u$$

- \blacksquare Competing with $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ reaction (poorly known with 20-30% uncertainty.
- \blacksquare Ratio affects $^{12}\text{C}/^{16}\text{O}$ after He burning.

CNO Cycle (Energy Production in Stars)



■ The ¹²C nucleus used in the first reaction is re-generated in the last reaction.

Reactions between Charged Particles

- Reactions occur through TUNNEL EFFECT during quiescent burnings: $(kT \ll E_C \sim Z_1 Z_2 (\text{MeV}))$
- \blacksquare Astrphysical S(E) factor:

$$\sigma(E) = \underbrace{\frac{1}{E} \exp(-2\pi\eta)}_{ ext{non-nuclear origin}} \underbrace{S(E)}_{ ext{nuclear origin}}$$

for s-wave only.

■ Energy available from thermal motion ($kT \sim 8.6 \times 10^{-8}$ T(K) keV) $T \sim 1.5 \times 10^{7}$ K (e.g. our Sun) $kT \sim 1$ keV

$$T\sim 1.5 imes 10^{1} imes 10^{1} imes 10^{1} imes 10^{1} imes 10^{1} imes 10^{10} imes 10^{10$$

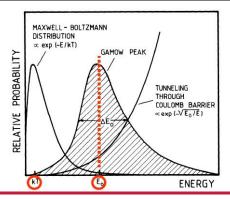
Maximum Reaction Rate

$$<\sigma v>_{12} = \left(\frac{8}{\pi \mu_{12}}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty S(E) \underbrace{\exp\left[-\frac{E}{kT} - \frac{b}{E^{1/2}}\right]}_{f(E)} dE,$$

where $b = \sqrt{2\mu}\pi Z_1 Z_e^2/\hbar$. f(E) governs energy dependence.

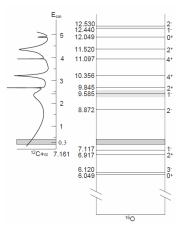
$$\frac{df(E)}{dE} = 0 \underbrace{\longrightarrow}_{\Delta E_0 < E_0} E_0 = \left(\frac{bkT}{2}\right)^{2/3}$$

Only small energy range contributes to the reaction rate. $S(E) \sim S(E_0) = \text{constant}$.

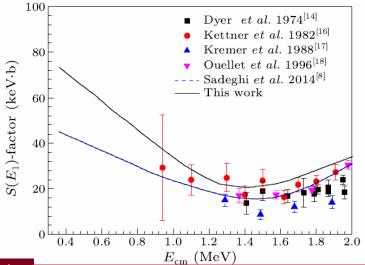


Gamow Peak

For $T \sim 1.5 \times 10^7 \text{K}$


Reaction	Coulomb barrier (MeV)	$E_0(\text{keV})$	$\exp(-3E_0/kT)\Delta E_0$
$\overline{p+p}$	0.55	5.9	7.0×10^{-6}
α + 12 C	3.43	56	5.9×10^{-56}
$^{16}O+^{16}O$	14.07	237	2.5×10^{-237}

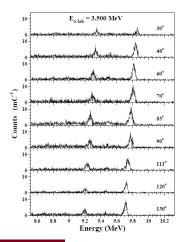
$^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$ Reaction

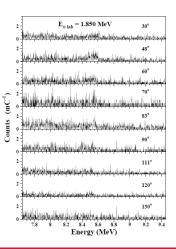


■ ¹²C/¹⁶O ratio after helium burning process affects evolution of heavy starts - supernova or white dwarf.

$I_{^{12}\mathrm{C}}=100~p\muA$			
$E_{ m cm}({\sf MeV})$	σ(pb)	Rate (fusions/d)	
2.0	7500	4×10^5	
1.0	36	2000	
0.5	0.03	2	
0.3	0.0001	0.4	

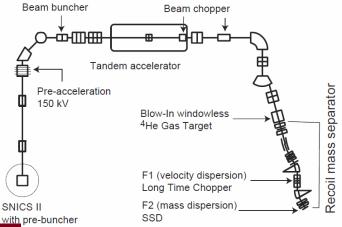
$^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ Reaction



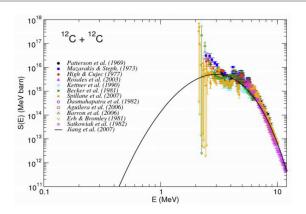


Measurement of Capture Gamma-Rays

Results from LUNA.

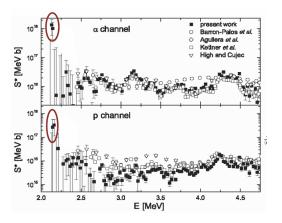


Measurement of Recoil Nucleus


Tandem accelerator with a recoil spectrometer at Kyushu University.

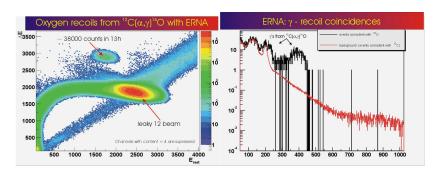
12 C $+^{12}$ C

■ Time scale for stellar C and O burning phases:


$$^{12}\text{C} + ^{12}\text{C} \rightarrow ^{20}\text{Ne} + \alpha, \ ^{23}\text{Na} + p, \ ^{23}\text{Mg} + n$$

<u>Different</u> potential models lead to different extrapolations.

12 C $+^{12}$ C



Recent data suggest strong but narrow resonance structure in the ¹²C+¹²C reaction system, which may enhance the reaction rate substantially.

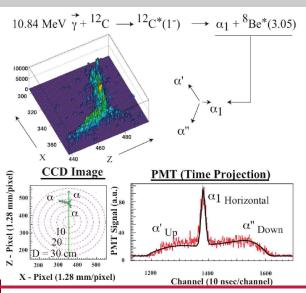
Recoil Separator vs Gamma Ball

- lacktriangle Recoil separator provides a clear 16 O tagging above $E_{
 m cm} > 1.4$ MeV
- Below $E_{\rm cm}=1.4$ MeV, $\Delta E-E$ identification is not possible, a larger acceptance is needed, and beam suppression becomes more difficult.

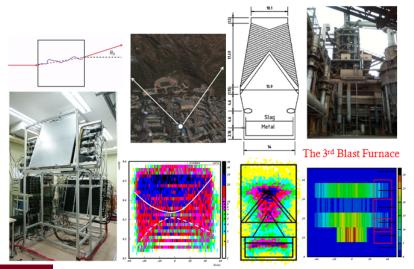
DIANA at the Homestake Sanford Lab

The DIANA (Dual Ion Accelerator for Nuclear Astrophysics) collaboration is awaiting a federal budget approval for final design and construction of the experiment.

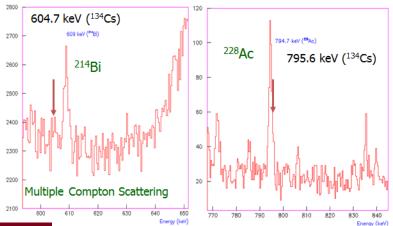
Competing with DIANA?


Facility	Ion Source	Accelerator	Beam Currents (mA)
DIANA	2.45 GHz ECR	Dynamitron	100 mA for p at 50 keV 50 mA for 4 He $^+$ at 50 keV 0.6 mA for 4 He $^+$ at 400 keV

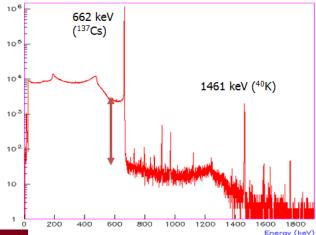
- \blacksquare High-intensity heavy ion beam and a He gas-jet target / a 12 C target.
- \blacksquare $^4{\rm He}(^{12}{\rm C},\gamma)^{16}{\rm O}$ vs $^{12}{\rm C}(^4{\rm He},\gamma)^{16}{\rm O}$
- Beam induced background and robustness of solid targets.


Optical Readout TPC

Cosmic-ray Muon Radiography



$^{134}\mathrm{Cs}$ and $^{137}\mathrm{Cs}$


- 137 Cs from nuclear fission and 134 from 133 Cs $(n,\gamma)^{134}$ Cs.
- ¹³⁴Cs concentration in soil samples.

땅 깊숙이 가더라도? (양양 양수발전소 터널 안)

134Cs in Rainwater Samples

¹³⁴Cs and ¹³⁷Cs in Rainwater Sample ¹³⁷Cs from Fission; ¹³⁴Cs from ¹³³Cs(n, γ)¹³⁴Cs 350 360 370 380 390

Summary

- Heavy-ion accelerator facility with a 18-GHz ECR ion source!
- Cosmic-ray muon radiography!

