

The Born Again Universe + Work in preparation + Work in progress

The Cosmological Constant Problem

 Λ

Observed: 10⁻¹² eV⁴ Theory: 10⁴⁸ eV⁴

Why?

Symmetry? Standard Model? Gravity?
4000 BC 1947 2000s

New way to get small numbers

Time Evolution

Time evolution can change our expectations of naturalness

Initial Formation

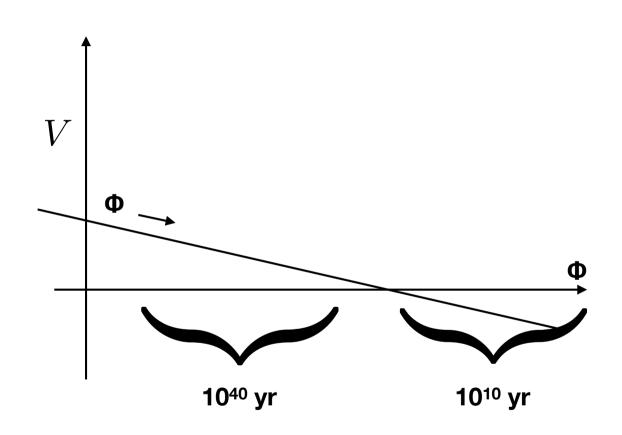
+ millions of years

Dissipation is central - eroded sand needs to go somewhere

Slow Dissipative process => light, weakly coupled field.

Testable!

Could A erode over time?


Relaxation of the Cosmological Constant

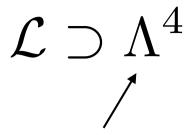
$$\mathcal{L} \supset \Lambda^4 - g^3 \phi$$

Start with large positive Λ⁴, Slowly rolling φ

Inflating universe, slowly changing vacuum energy

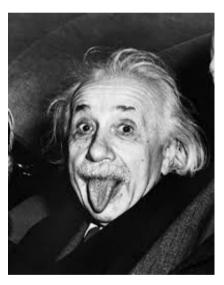
Vacuum energy gets very small, Universe very cold

Vacuum energy eventually zero - universe crunches, gets hot

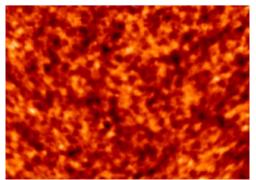

Key Point: Make Universe Bounce - get hot universe with small vacuum energy

Outline

- 1. Why?
- 2. Model
- 3. Bouncing Universe?
- 4. Experimental Tests?
- 5. Conclusions


Why?

Cancellation of A


Want to set to zero. How to sense?

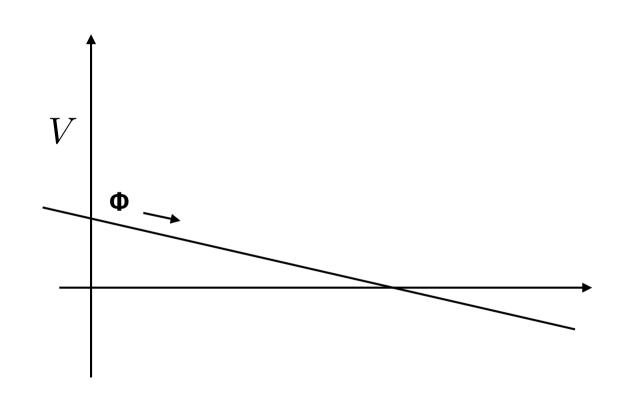
Key Point: Vacuum energy only couples through Gravity

Universal Gravitation

Gravity senses total energy in the universe, cannot distinguish individual components

Hot early universe?
Gravity cannot sense Λ alone

Need Λ domination i.e. inflation


Bounce?

$$\mathcal{L} \supset \Lambda^4 - g^3 \phi$$

Inflation, vacuum energy slowly decreases

Need to reduce vacuum energy to ~ 10⁻¹² eV⁴

Other energy densities (e.g. radiation), smaller than 10⁻¹² eV⁴

10¹⁰ years ago, universe had radiation with density 10²⁴ eV⁴

Need to reheat cold empty universe

Key Point: Energy not conserved in gravity! Reheat with a bounce!

Capabilities

$$\mathcal{L} \supset \Lambda + g^3 \phi + \dots$$

Φ rolls, tunes cosmological constant in empty universe. Reheat with a bounce.

Weinberg?

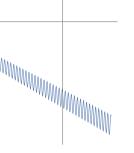
 $V, V' \approxeq 0$

Relaxion = Large Number of Minima

Phase Transitions?

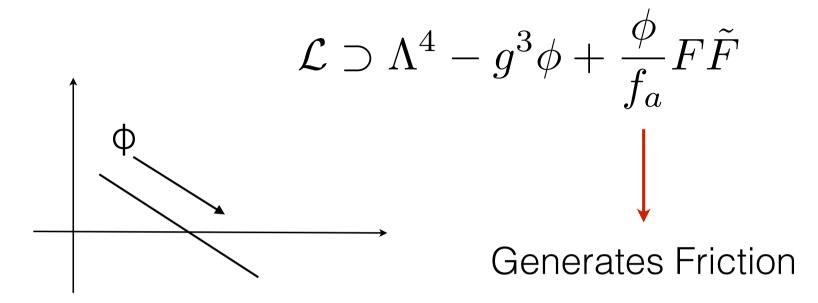
Reheating => hot universe, vacuum energy goes up

Sub-dominant. Expand, cool, return to tuned value



Bounce + Tuning?

Hot universe \Rightarrow Φ rolls. Λ_{eff} changes

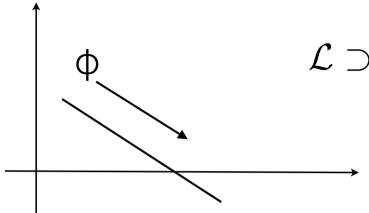

Small change - tuning >> bounce

Likely leads to changing Λ_{eff}

Model

Main Ingredient

$$\ddot{A_{\pm}} + \left(m_A^2 + k^2 \mp \frac{\dot{\phi}}{f_a}\right) A_{\pm} = 0$$


 A_{\pm} tachyonic when $\dfrac{\dot{\phi}}{f_a} \gtrapprox m_A$ $\dot{\phi} \approxeq \mathcal{O} \left(100\right) f_a H \quad \langle F^2 \rangle \approxeq f_a g^3$

$$\dot{\phi} \cong \mathcal{O}(100) f_a H \quad \langle F^2 \rangle \cong f_a g^3$$

Key **Points**

Trigger

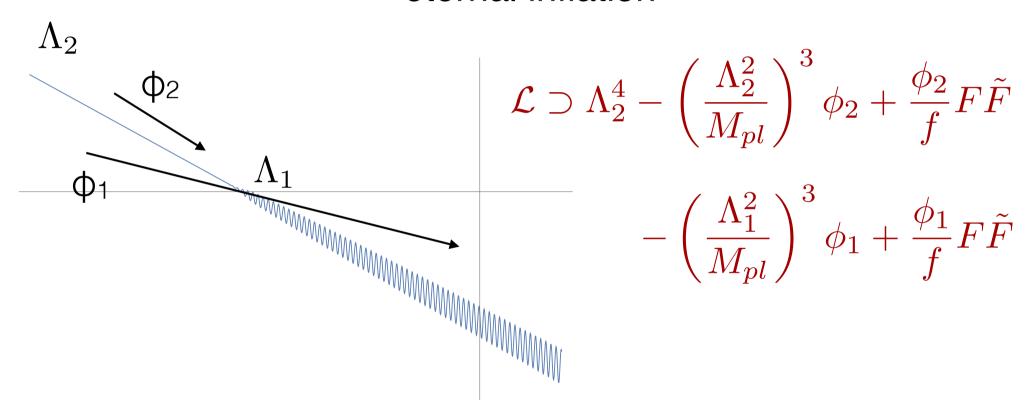
Simplest Model

$$\mathcal{L} \supset \Lambda_i^4 - g^3 \phi + \frac{\phi}{f_a} F \tilde{F}$$

Let φ roll through 0, no barriers

1. No Eternal Inflation: $g \gtrsim \Lambda_i^2/M_{pl}$

2. C.C set by Kinetic Energy: $g^3 M_{pl} \lesssim \text{meV}^4$

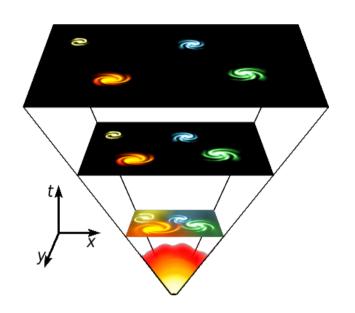

$$\Lambda_i \lesssim \left(\text{meV}^2 M_{pl} \right)^{\frac{1}{3}} \sim 10 \text{ MeV}$$

Can check story works (reheating, small c.c. change today)

Turtles All the Way

Higher Cut-off?

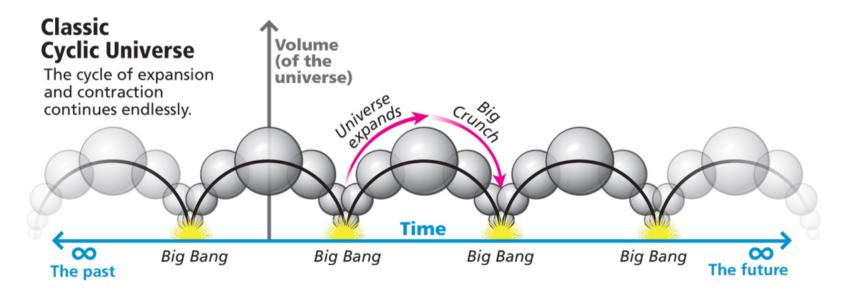
Need larger slope at top to combat eternal inflation


Key Point: ϕ_2 rolls faster at lower c.c. Use friction to raise barrier

$$\Lambda_2 \lesssim \left(M_{pl}^2 \Lambda_1^4\right)^{\frac{1}{6}}$$

No Bounce

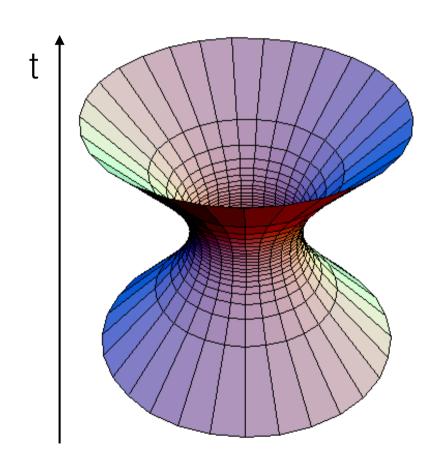
Bouncing Universe


Bouncing Cosmology

Independently Motivated

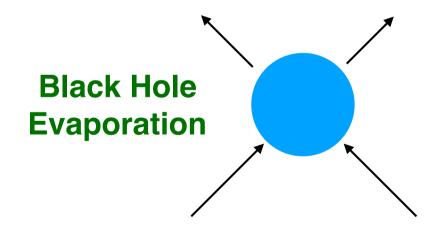
Singularity not removed by inflation

Infinite Past?



Why not?

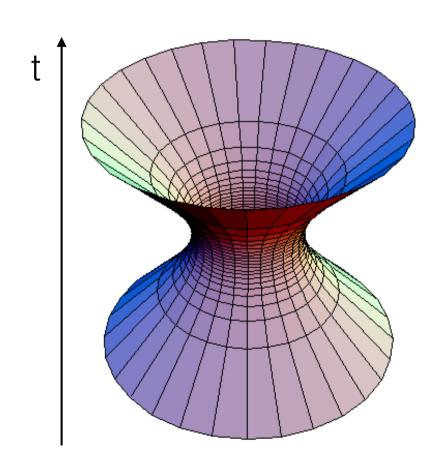
Bouncing Cosmology


Generic Requirement?

Need converging geodesics to diverge

Collapsing matter, gravity gets stronger

Can matter never escape strong gravity?


Key Point: Matter could escape gravitational singularities

Singular Bounce likely possible. Non singular bounce??

Bouncing Cosmology

Generic Requirement?

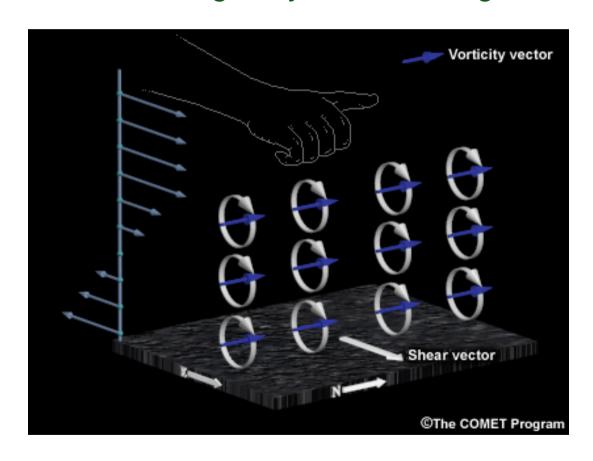
Need converging geodesics to diverge

Raychaudhuri's Equation

$$\frac{d\hat{\theta}}{d\lambda} = -\frac{1}{2}\hat{\theta}^2 - 2\hat{\sigma}^2 + 2\hat{\omega}^2 - T_{\mu\nu}U^{\mu}U^{\nu}$$

Divergence
$$\Longrightarrow \frac{d\hat{\theta}}{d\lambda} > 0$$

$$T_{\mu\nu}U^{\mu}U^{\nu}<0 \text{ or } \hat{\omega}\neq0$$

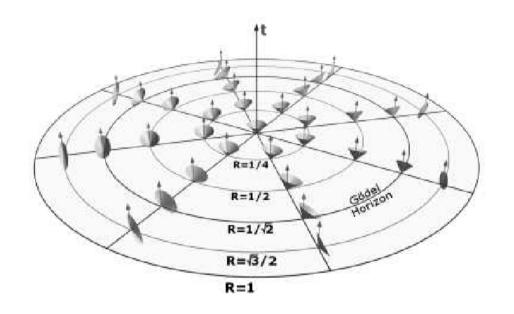

$$\downarrow\qquad\qquad \qquad \downarrow$$
Null Energy Vorticity

Violation

Vorticity

$$\frac{d\hat{\theta}}{d\lambda} = -\frac{1}{2}\hat{\theta}^2 - 2\hat{\sigma}^2 + 2\hat{\omega}^2 - T_{\mu\nu}U^{\mu}U^{\nu}$$

Combat attractive gravity with centrifugal motion



Why not use this term?

To avoid Null Energy violation, need global vorticity

Godel Universe

$$ds^{2} = \frac{2}{\omega^{2}} \left(-dt^{2} + dr^{2} + dy^{2} - \left(\sinh^{4} r - \sinh^{2} r \right) d\phi^{2} - 2\sqrt{2} \sinh^{2} r d\phi dt \right)$$

Cosmological Constant + Spinning Dust

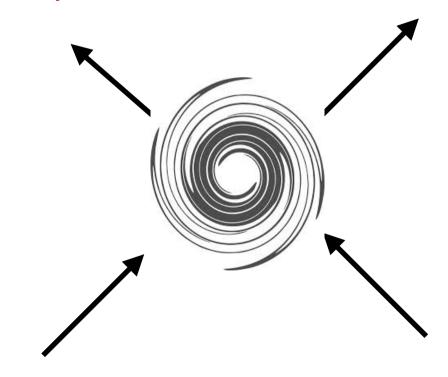
Static Universe: Gravity balanced by rotation

Closed time-like curves for r > 1

Does not describe region of space-time where we live

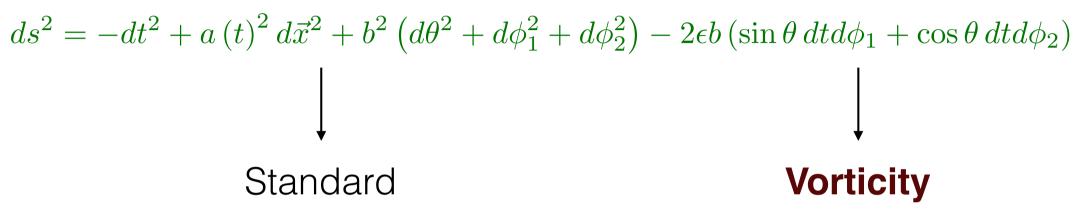
The Born Again Universe

Have vorticity everywhere, without closed time-like curves?


Distant points rotate -> Closed time-like curve

To avoid singularity, just need rotation everywhere

Key Point: Rotate into compact extra-dimensions?


Space-Time: R⁴ x T³

Non-singular bounce without closed time-like curves?

The Metric

Space-Time: R⁴ X T³

Geodesics along R4 forced to move into extra-dimensions

Plug in for a(t), use Einstein's Equations to get stress-tensor

Can the required stress-tensor be made?
4D effective field theory?

The Stress Tensor

$$ds^{2} = -dt^{2} + a(t)^{2} d\vec{x}^{2} + b^{2} (d\theta^{2} + d\phi_{1}^{2} + d\phi_{2}^{2}) - 2\epsilon b (\sin\theta dt d\phi_{1} + \cos\theta dt d\phi_{2})$$

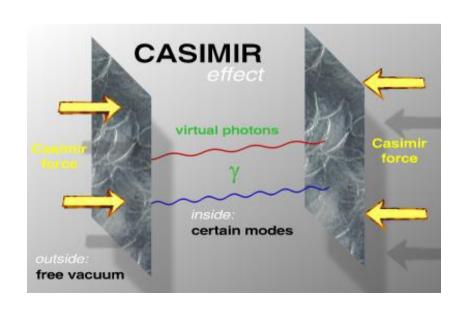
$$T_{tt} = -M_7^5 \left(\frac{3\epsilon^2 a''(t)}{a(t)} + \frac{3(\epsilon^2 - 1)a'(t)^2}{a(t)^2} - \frac{3\epsilon^2}{4b^2} \right)$$

$$T_{xx} = T_{yy} = T_{zz} = -M_7^5 \left(-2 \left(\epsilon^2 - 1 \right) a(t) a''(t) - \left(\epsilon^2 - 1 \right) a'(t)^2 + \frac{\epsilon^2 a(t)^2}{4b^2} \right)$$

Consider 4D geodesic during bounce. Null Energy?

$$T_{tt} + \frac{T_{xx}}{a(t)^2} \approx \frac{\epsilon^2}{2b^2} - 2\frac{\ddot{a}}{a}$$

Vorticity combats gravity, for weak bounce


The Stress Tensor

$$ds^{2} = -dt^{2} + a(t)^{2} d\vec{x}^{2} + b^{2} (d\theta^{2} + d\phi_{1}^{2} + d\phi_{2}^{2}) - 2\epsilon b (\sin\theta dt d\phi_{1} + \cos\theta dt d\phi_{2})$$

Null Energy Condition not violated for 4D geodesics

Violated for geodesics into extra-dimensions

But can use Casimir!

$$T_{\mu\nu} = T_C + T_M$$

Have Proven: T_M preserves dominant energy condition

Don't know: Microphysics of T_M

The Loophole

$$\frac{d\hat{\theta}}{d\lambda} = -\frac{1}{2}\hat{\theta}^2 - 2\hat{\sigma}^2 + 2\hat{\omega}^2 - T_{\mu\nu}U^{\mu}U^{\nu}$$

$$ds^{2} = -dt^{2} + a(t)^{2} d\vec{x}^{2} + b^{2} (d\theta^{2} + d\phi_{1}^{2} + d\phi_{2}^{2}) - 2\epsilon b (\sin\theta dt d\phi_{1} + \cos\theta dt d\phi_{2})$$

$$T_{\mu\nu} = T_C + T_M$$

Null Energy Condition in extra-dimensions

4D geodesics carry vorticity into extra-dimensions, avoiding focusing. Need T³.

Metric clearly globally hyperbolic

4D effective field theory?

The Effective Theory

$$ds^{2} = -dt^{2} + a(t)^{2} d\vec{x}^{2} + b^{2} (d\theta^{2} + d\phi_{1}^{2} + d\phi_{2}^{2}) - 2\epsilon b (\sin\theta dt d\phi_{1} + \cos\theta dt d\phi_{2})$$

$$T_{tt} = -M_7^5 \left(\frac{3\epsilon^2 a''(t)}{a(t)} + \frac{3(\epsilon^2 - 1)a'(t)^2}{a(t)^2} - \frac{3\epsilon^2}{4b^2} \right)$$

$$T_{xx} = T_{yy} = T_{zz} = -M_7^5 \left(-2 \left(\epsilon^2 - 1 \right) a(t) a''(t) - \left(\epsilon^2 - 1 \right) a'(t)^2 + \frac{\epsilon^2 a(t)^2}{4b^2} \right)$$

Vorticity terms contribute like a null-energy violating term

Can Show: In 4D, KK modes of source + gravivector violate NEC!

4D NEC Violation

$$\mathcal{L} \supset (\partial_{\mu}\phi)^{2} + f(\partial_{\mu}\phi) + V(\phi)$$

$$T_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi + \frac{\partial f}{\partial\partial_{\mu}\phi}\partial_{\nu}\phi + g_{\mu\nu}\mathcal{L}$$

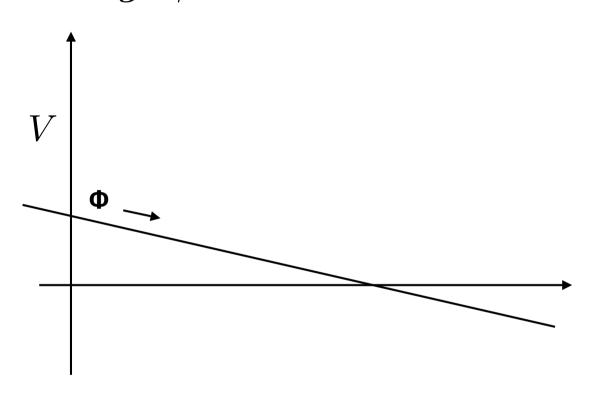
Need minus signs. Ghosts/Causality No contribution to NEC. V irrelevant

Lorentz Violation

$$\mathcal{L} \supset \partial_{\mu}\phi\partial_{\nu}\phi + A_{\mu}J^{\mu} + \dots$$

Background vector allows new possibilities

UV complete to Lorentz invariant higher dimensional theory


Experimental Tests

Dark Energy

$$\mathcal{L} \supset \Lambda^4 - g^3 \phi$$

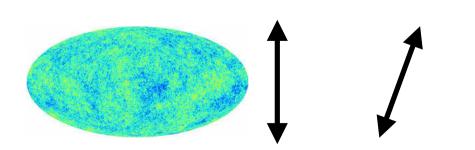
Slowly rolling φ, changing dark energy

$$w = \frac{\dot{\phi}^2 - V}{\dot{\phi}^2 + V}$$

Cosmological measurements of the equation of state of dark energy

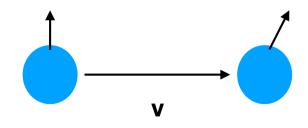
Can φ couple to the standard model?

Laboratory measurements of the Dark Energy?


Direct Detection of Dark Energy

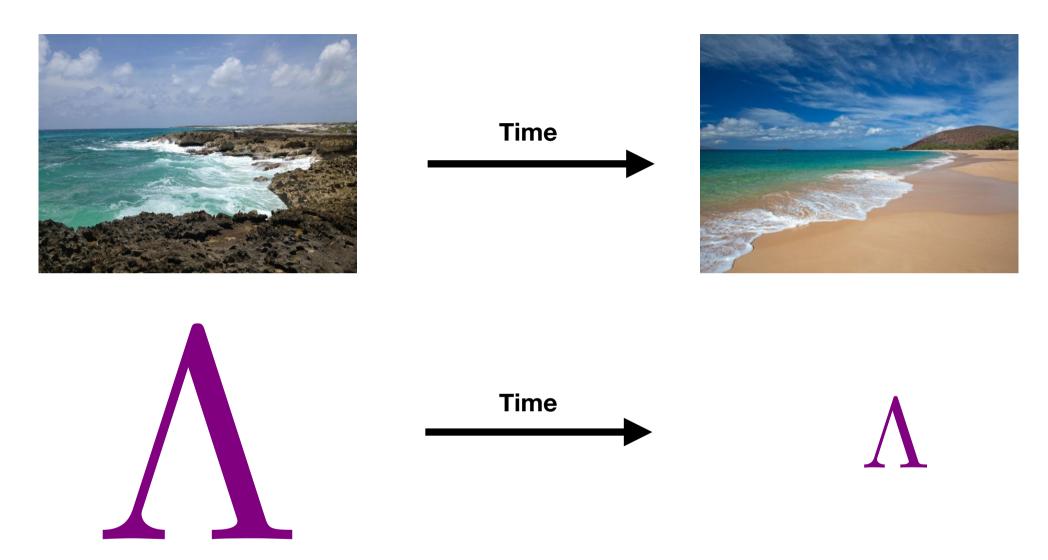
How can φ interact, while still having a small slope?

Axion-like interactions!


$$\mathcal{L} \supset \Lambda^4 - g^3 \phi + \frac{\phi}{f_a} F \tilde{F} + \frac{\partial_{\mu} \phi}{f_a} \bar{\Psi} \gamma^{\mu} \gamma_5 \Psi$$

Rotates polarization of light with dark energy evolution

CMB Polarization Experiments


Rotates spins moving against dark energy

Axion Dark Matter

Conclusions

Relaxation of the Vacuum Energy

Time Evolution is a new way to get small numbers

Testable in cosmological and laboratory experiments