Constant-roll Inflation

Gansukh Tumurtushaa

based on: JCAP 09 (2015) 018



Introduction

Inflation is currently the dominant paradigm providing the initial seeds for the
Cosmic Microwave Background(CMB) anisotropies and the Large-Scale-
Structure (LSS) formation.

In its most common form, inflation is driven by a scalar field rolling slowly down
a not very steep potential. This is known as the slow-roll scenario.

Since the scenario leads to nearly scale-invariant spectrum of density
perturbations, it is widely thought to be necessary for agreement with
observations.

However, slow roll by itself is not a necessary condition for inflationary models to
be viable hence it is interesting to study models which break slow-roll restriction.

As a phenomenological way to parameterize deviations from the slow-roll
scenario, Motohashi, Starobinsky, Yokoyama first introduced the idea of
constant-roll inflation.



Single field inflation
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In a flat FRW universe with metric ds* = — dt’> + a(t)’d x>, one arrives at equations:
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Constant-roll potential

In addition to the constant-roll condition, if we consider H = H(¢) and t = #(¢) ,
the evolution equations give
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Constant-roll potential
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Natural inflation + negative CC
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Scalar and tensor pert.

Curvature perturbation ¢, relates to the metric perturbation as é6g; = a*(1 — 20)5;,
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The power spectrum of the curvature perturbation:
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Scalar and tensor pert.

For the tensor perturbation 6g; = a7,
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where 1w, =ah ;/2 and 4 =+, X the two polarization modes of GWs.
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Super-horizon evolution

On the super-horizon limit k> <« 7"/z,
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Super-horizon
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Conclusion

Exact solutions satisfying the constant-roll condition has been found,

Power-law inflation and particular ( and somehow modified) cases of hilltop
Inflation and natural inflation,

It seems difficult for the model with g < 0 to explain the observed universe due to
the super-horizon evolution of the curvature perturbation,

On the other hand, the constant-roll inflation model with s > 0 has desired
constant + decaying mode on super-horizon scale,

Therefore, the model with g > 0 is observationally viable inflationary model with
constant rate of roll, which possesses an attractor background evolution, slightly
red-tilted scalar spectrum, and conservation of the curvature perturbation on
super-horizon scales.

However, for a realistic model, we have to cut the potential before it becomes
negative...



