Shifted Focus Point and And Naturalness-guided Gluino Mass Bound

Bumseok KYAE

(Pusan Nat'l Univ.)

1. arXiv: 1502.02311

2. arXiv: 1507.07611

collaborated with **Doyoun Kim** (APCTP)

AUG. 18 (2015) @ CTPU workshop (IBS)

- The naturalness problem of EW scale and Higgs boson mass has been the most important issue for last four decades.
- The MSSM has been the most promising BSM candidate.
- No evidence of BSM has been observed yet at LHC.
- → Theoretical puzzles raised in the SM still remain UNsolved.
- A barometer of the solution to the naturalness problem is the stop mass.
 - The stop mass bound has been already > 700 GeV. (The gluino mass bound has exceeded > 1.4 TeV.)
- → They start threatening the traditional status of SUSY as a solution to the naturalness problem of the EW phase transition.

- ATLAS and CMS have discovered the SM(-like) Higgs with 125-126 GeV mass, which is too heavy as a SUSY Higgs.
- According to the recent analysis based on 3-loop calculation,
 3-4 TeV stop mass is necessary for the 126 GeV Higgs mass
 (without a large stop mixing).

$$\Delta m_{h_u}^2|_{1-\text{loop}} \approx \frac{3|y_t|^2}{8\pi^2} \widetilde{m}_t^2 \log\left(\frac{\widetilde{m}_t^2}{\Lambda^2}\right) \left[1 + \frac{1}{2} \frac{A_t^2}{\widetilde{m}_t^2}\right], \qquad \frac{1}{2} m_Z^2 = \frac{m_{h_d}^2 - m_{h_u}^2 \tan^2 \beta}{\tan^2 \beta - |\mu|^2} \\
\Delta m_H^2|_{1-\text{loop}} \approx \frac{3m_t^4}{4\pi^2 v_h^2} \left[\log\left(\frac{\widetilde{m}_t^2}{m_t^2}\right) + \frac{A_t^2}{\widetilde{m}_t^2} \left(1 - \frac{1}{12} \frac{A_t^2}{\widetilde{m}_t^2}\right)\right], \qquad \frac{1}{2} m_Z^2 = \frac{m_{h_d}^2 - m_{h_u}^2 \tan^2 \beta}{\tan^2 \beta - 1} - |\mu|^2.$$

- ATLAS and CMS have discovered the SM(-like) Higgs with 125-126 GeV mass, which is too heavy as a SUSY Higgs.
- According to the recent analysis based on 3-loop calculation,
 3-4 TeV stop mass is necessary for the 126 GeV Higgs mass
 (without a large stop mixing).

A fine-tuning of $10^{-3} - 10^{-4}$

seems to be unavoidable!!??

Can m_{hu}^2 be insensitive to the stop mass??

We need such a model for naturalness of the EW scale.

Can m_{hu}² be insensitive to the stop mass??

We need such a model for naturalness of the EW scale.

We will propose a scenario, in which

the Gluino Mass is more closely associated with the Naturalness.

[Feng, Matchev, Moroi (2000)]

Suppose that

1. Universal soft mass:
$$m_{q3}^2 = m_{u3}^2 = m_{hu}^2 = ... \equiv m_0^2$$

at the **GUT** scale

2. Small enough gaugino mass: $m_{1/2}^2 \ll m_0^2$, and $A_0 \ll m_0$

Then, the Higgs mass parameter m_{hu}^2 becomes insensitive to m_0^2 or stop mass squared.

With the Minimal Gravity Mediation, i.e. with the Universal soft masses

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$
 $C_s, C_g > 0$

C_s happens to be small.

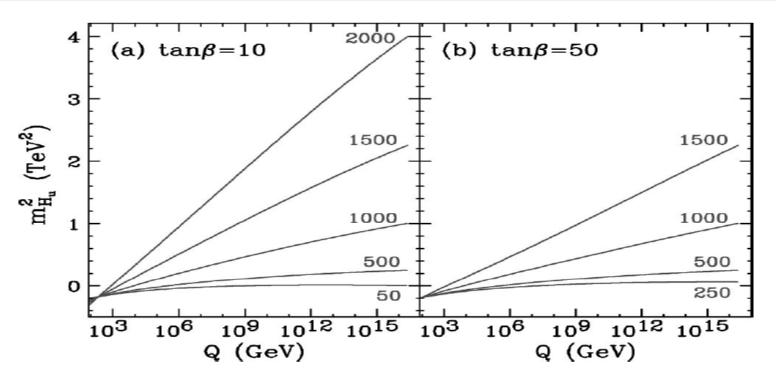
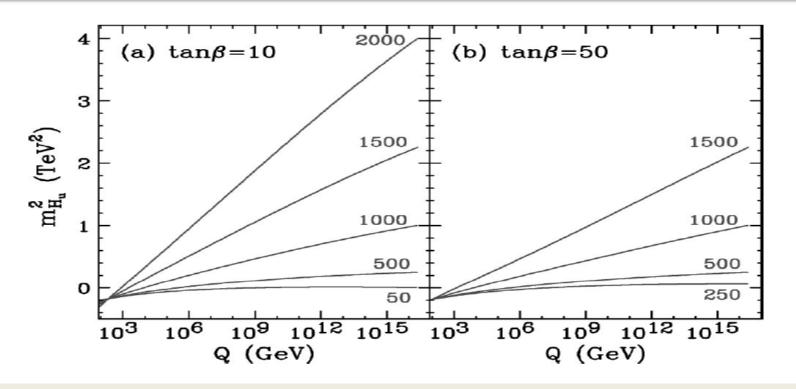



FIG. 1. The RG evolution of m_H^2 for (a) $\tan \beta = 10$ and (b) $\tan \beta = 50$, several values of m_0 (shown, in GeV), $M_{1/2} = 300$ GeV, $A_0 = 0$, and $m_t = 174$ GeV. For both values of $\tan \beta$, $m_{H_u}^2$ exhibits an RG focus point near the weak scale, where $Q_F^{(H_u)} \sim \mathcal{O}(100 \text{ GeV})$, irrespective of m_0 . [Feng, Matchev, Moroi, PRL, PRD (2000)]

Then, the Higgs mass parameter m_{hu}^2 becomes

insensitive to m_0^2 or stop mass squared.

from experiments

 The gluino mass bound has already exceeded M₃ > 1.4 TeV.

 $m_{1/2}$ should NOT be small any longer.

$$\rightarrow$$
 m_{hu}² < - (1 TeV)²

2. The stop mass bound has exceeded 700 GeV. If stop masses > 1 TeV, then ???

from theory

1. 3-4 TeV stop masses are necessary for 126 GeV Higgs mass without A_t at 3-loop level.

[Feng, etal., PRL (2013)]

The needed 3-4 TeV stop decoupling scale is too high from the FP scale.

2. How to get the almost vanishing A-term?

from experiments

In the Minimal Gravity Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$

Since $M_3 > 1.4 \text{ TeV}$,

$$C_s, C_g (> 0)$$

from experiments

In the Minimal Gravity Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$

Since $M_3 > 1.4 \text{ TeV}$,

$$C_s, C_g \ (>0)$$

m_{1/2} can NOT be small.

µ should be
LARGE → Fine-tuning
if stop mass < 1 TeV

from theory

In the Minimal Gravity Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$

For stop mass = 3-4 TeV,

$$C_s, C_g (> 0)$$

 C_s becomes sizable.

Challenges from theory

In the Minimal Gravity Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$

For stop mass = 3-4 TeV,

$$C_s, C_g (> 0)$$

C_s becomes sizable.

The FP behavior becomes seriously spoiled for stop mass = 3-4 TeV

Challenges from theory

In the Minimal Gravity Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$

For stop mass = 3-4 TeV,

$$C_s, C_g (> 0)$$

 C_s becomes sizable.

C_gm_{1/2}² should also be large for EW sym. breaking.

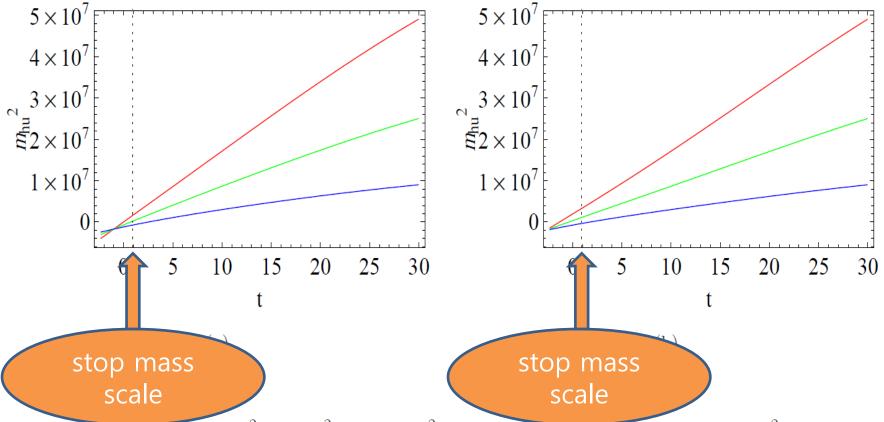


FIG. 1: RG evolutions of $m_{h_u}^2$ for $m_0^2 = (7 \,\text{TeV})^2$ [Red], $(5 \,\text{TeV})^2$ [Green], and $(3 \,\text{TeV})^2$ [Blue], and for (a) $\tan \beta = 5$ and (b) $\tan \beta = 50$, when $m_{1/2} = 1 \,\text{TeV}$ and $A_0 = 0$. Here we take $\alpha_G = 1/25$. The unit of the vertical axis is $(\text{GeV})^2$. The dotted lines at $t \approx 0.92$ denote the assumed stop decoupling scale, $Q = 5 \,\text{TeV}$. $t \approx -2.3$ [$t \approx 29.9$] corresponds to $Q = 200 \,\text{GeV}$ [$Q = 2 \times 10^{16} \,\text{GeV}$]. Below the stop decoupling scale, the above RG runnings must be modified. The above figures show that the extrapolated FP, where $m_{h_u}^2$ is negative, appears at a relatively higher (lower) energy scale for small (large) $\tan \beta$.

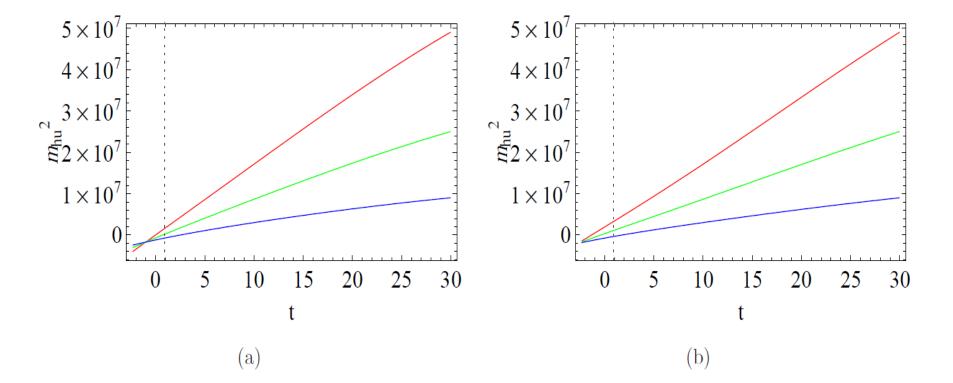


FIG. 1: I for (a) to
$$\Delta_{m_0^2} = \left| \frac{\partial \log m_Z^2}{\partial \log m_0^2} \right| = \left| \frac{m_0^2}{m_Z^2} \frac{\partial m_Z^2}{\partial m_0^2} \right| \sim O(10^{2-3})$$
 [1e], and self-points to $\omega = 0$ for $\omega = 0$ for

Below the stop decoupling scale, the above RG runnings must be modified. The above figures show that the extrapolated FP, where $m_{h_u}^2$ is negative, appears at a relatively higher (lower) energy scale for small (large) tan β .

For predictively small EW scale

In the Minimal Gravity Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$

 $C_s, C_g (> 0)$

C_s needs to be made SMAII enough before stop decoupled.

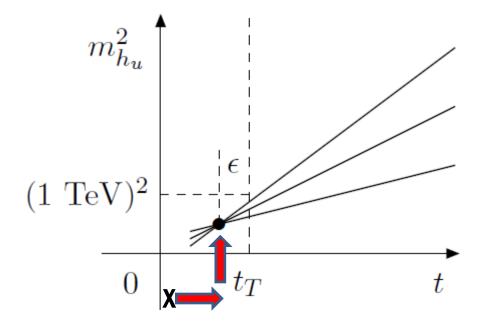
For predictively small EW scale

In the Minimal Gravity Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$

 $C_s, C_g (> 0)$

 $c_g m_{1/2}^2$ needs to be SMAII enough for a small μ .


Below the stop mass scale

$$m_{h_u}^2(t_W) \approx m_{h_u}^2 |_{\Lambda_T} + \frac{3|y_t|^2}{8\pi^2} \left[(\widetilde{m}_t^2 + m_t^2) \left\{ \log \frac{\widetilde{m}_t^2 + m_t^2}{\Lambda_T^2} - 1 \right\} - m_t^2 \left\{ \log \frac{m_t^2}{\Lambda_T^2} - 1 \right\} \right]$$

$$\approx m_{h_u}^2 |_{\Lambda_T} - \frac{3|y_t|^2}{8\pi^2} \widetilde{m}_t^2,$$

 m_{hu}^2 further decreases by $\sim (530 \text{ GeV})^2$ from Q = 3-4 TeV to Q = M_7 .

For predictively small EW scale

FP needs to appear around stop mass scale (3-4 TeV), and $|m_{hu}|^2 < (1 \text{ TeV})^2$ there.

How can we shift the Focus Point of m_{hu}² upto the desired stop mass scale (3-4 TeV) ??

How can we shift the Focus Point of m_{hu}² upto the desired stop mass scale (3-4 TeV) ??

minimal Gravity mediation

minimal Gauge mediation

How can we shift the Focus Point of m_{hu}² upto the desired stop mass scale (3-4 TeV) ??

minimal Gravity mediation

minimal Gauge mediation

"Minimal
Mixed
Medation"

$$K = \sum_{i,a} |z_i|^2 + |\phi_a|^2 , \quad W = W_H(z_i) + W_O(\phi_a)$$
$$\langle z_i \rangle = b_i M_P, \ \langle \partial_{z_i} W_H \rangle = a_i^* m M_P, \ \langle W_H \rangle = m M_P^2,$$

$$K = \sum_{i,a} |z_{i}|^{2} + |\phi|^{2} W_{H}(z_{i}) + W_{O}(\phi_{a})$$

$$F_{z_{i}} = \frac{\partial W_{H}}{\partial z_{i}} + z_{i}^{*} \frac{W}{M_{P}^{2}} = M_{P} \left[(a_{i}^{*} + b_{i}^{*}) m + b_{i}^{*} \frac{W_{O}}{M_{P}^{2}} \right]$$

$$F_{\phi_{a}} = \frac{\partial W_{O}}{\partial \phi_{a}} + \phi_{a}^{*} \frac{W}{M_{P}^{2}} = \frac{\partial W_{O}}{\partial \phi_{a}} + \phi_{a}^{*} \left(m + \frac{W_{O}}{M_{P}^{2}} \right).$$

$$K = \sum_{i,a} |z_{i}|^{2} + |\phi|^{2} W_{H}(z_{i}) + W_{O}(\phi_{a})$$

$$F_{z_{i}} = \frac{\partial W_{H}}{\partial z_{i}} + z_{i}^{*} \frac{W}{M_{P}^{2}} = M_{P} \left[(a_{i}^{*} + b_{i}^{*}) m + b_{i}^{*} W_{O} \right]$$

$$F_{\phi_{a}} = \frac{\partial W_{O}}{\partial \phi_{a}} + \phi_{a}^{*} \frac{W}{M_{P}^{2}} = \frac{\partial W_{O}}{\partial \phi_{a}} + \phi_{a}^{*} \left(m + M_{P} \right)$$

$$K = \sum_{i,a} |z_i|^2 + |\phi_a|^2 , \quad W = W_H(z_i) + W_O(\phi_a)$$
$$\langle z_i \rangle = b_i M_P, \ \langle \partial_{z_i} W_H \rangle = a_i^* m M_P, \ \langle W_H \rangle = m M_P^2,$$

$$V_F = e^{\frac{K}{M_P^2}} \left[|F_{z_i}|^2 + |F_{\phi_a}|^2 - \frac{3}{M_P^2} |W|^2 \right]$$

With the minimal Kahler pot. K, and superpot. W, where the Wilden and Observ. Sectors are separated,

For the *vanishing*Cosmological Constant,

$$\sum_{i}\langle |F_{z_i}|^2\rangle = 3|\langle W_H\rangle|^2/M_P^2$$
, or $\sum_{i}|a_i+b_i|^2=3$

$$W_H(z_i) + W_O(\phi_a)$$

$$a_i m M_P, \ \langle W_H \rangle = m M_P^2,$$

$$V_F = e^{\frac{K}{M_P^2}} \left[|F_{z_i}|^2 + |F_{\phi_a}|^2 - \frac{3}{M_P^2} |W|^2 \right]$$

$$K = \sum_{i,a} |z_i|^2 + |\phi_a|^2$$
, $W = W_H(z_i) + W_O(\phi_a)$

$$\langle z_i \rangle = b_i M_P, \ \langle \partial_{z_i} W_H \rangle = a_i^* m M_P, \ \langle W_H \rangle = m M_P^2,$$

$$V_F \approx \left| \partial_{\phi_a} \widetilde{W}_O \right|^2 + \underline{m}_0^2 |\phi_a|^2$$

$$+ \underline{m}_0 \left[\phi_a \partial_{\phi_a} \widetilde{W}_O + (A_{\Sigma} - 3) \widetilde{W}_O + \text{h.c.} \right]$$

With the minimal Kahler pot. K, and superpot. W, Observ. Sectors are separated,

Universal Soft Masses:

$$m_{h_u}^2 = m_{h_d}^2 = m_{q_3}^2 = m_{u_3^c}^2 = \dots = m_0^2$$
 $W_H(z_i) + W_O(\phi_a)$

$$W_H(z_i) + W_O(\phi_a)$$

A-terms $\propto m_0$

$$V_F \approx \left| \partial_{\phi_a} \widetilde{W}_O \right|^2 + \underline{m_0^2} |\phi_a|^2$$

$$+ \underline{m_0} \left[\phi_a \partial_{\phi_a} \widetilde{W}_O + (A_{\Sigma} - 3) \widetilde{W}_O + \text{h.c.} \right]$$

With the minimal Kahler pot. K, and superpot. W, where the Wilden and Observ. Sectors are separated,

Universal Soft Masses:

$$m_{h_u}^2 = m_{h_d}^2 = m_{q_3}^2 = m_{u_3^c}^2 = \dots = m_0^2$$

 $\underline{A\text{-terms}} \propto \underline{m}_{\underline{0}}$

 $a_i m M_P$,

Assume $f_{ab} = \delta_{ab}$ So $M_a = 0$ at tree level.

$$V_F \approx \left| \partial_{\phi_a} \widetilde{W}_O \right|^2 + \underline{m_0^2} |\phi_a|^2 + \underline{m_0} |\phi_a|^2 + \underline{m_0} \left[\phi_a \partial_{\phi_a} \widetilde{W}_O + (A_{\Sigma} - 3) \widetilde{W}_O + \text{h.c.} \right]$$

$$K = \sum_{i,a} |z_i|^2 + |\sigma|^2 = \mathbf{W}_H(z_i) + W_O(\phi_a)$$

$$\mathbf{f_{ab}} = \mathbf{\delta}_{ab}$$

$$\frac{M_P}{4} e^{G/(2M_P^2)} \frac{\partial f_{ab}^*}{\partial z_i^*} \frac{\partial G}{\partial z_i} \lambda^a \lambda^b = \frac{1}{4} e^{\sum_i |b_i|^2/2} \frac{\partial f_{ab}^*}{\partial z_i^*} F_{z_i} \lambda^a \lambda^b$$

Minimal Gauge Mediation

With ONE pair of messenger fields {5, 5*},

$$W_{\rm m} = y_{\rm S} 5.5.5$$

$$M_a = \frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle}, \ m_i^2 = 2 \sum_{a=1}^3 \left[\frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle} \right]^2 C_a(i)$$

where $C_a(i)$ is the quadratic Casimir invariant $(T^aT^a)_i^j = C_a(i)\delta_i^j$

With ONE pair of messenger fields {5, 5*},

Non-universal

(dep. on flavors)

Soft Mass corrections !!

$$M_a = \frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle}, \ m_i^2 = 2 \sum_{a=1}^3 \left[\frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle} \right]^2 C_a(i)$$

where $C_a(i)$ is the quadratic Casimir invariant $(T^aT^a)_i^j = C_a(i)\delta_i^j$

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_a = \frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle}, \ m_i^2 = 2 \sum_{a=1}^3 \left[\frac{g_a^2}{16\pi^2} \frac{\langle F_S \rangle}{\langle S \rangle} \right]^2 C_a(i)$$

where $C_a(i)$ is the quadratic Casimir invariant $(T^aT^a)_i^j = C_a(i)\delta_i^j$

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_a = \frac{g_a^2}{K} \underbrace{K \supset f(z)S + \text{h.c.}}^{3} \underbrace{\langle F_S \rangle}_{\langle W_H \rangle = mM_P^2}^{2}$$
where $C_a(i)$ is the question of T^aT^a , T^aT^a ,

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

ONE SUSY
breaking source
but
TWO mediations

$$M_{a} = \frac{g_{a}^{2} \langle F \rangle}{K \supset f(z)S + \text{h.c.}} \begin{pmatrix} \langle F_{S} \rangle \rangle \\ \langle W_{H} \rangle = mM_{P}^{2} \end{pmatrix}$$
where $C_{a}(i)$ is the question of $T^{a}T^{a}$, where $C_{a}(i)$ is the question of $T^{a}T^{a}$, where $C_{a}(i)$ is the question of $T^{a}T^{a}$, where $C_{a}(i)$ is the question of $T^{a}T^{a}$.

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_{a} = \frac{g_{a}^{2} \langle F \rangle}{K \supset f(z)S + \text{h.c.}}^{2} C_{a}(i)$$

$$\langle F_{S} \rangle \approx m \left[f(z) + \langle S^{*} \rangle \right] \mathcal{O}(mM_{P})$$
where $C_{a}(i)$ is the quasis of $C_{a}(i)$ is the quasis of $C_{a}(i)$ and $C_{a}(i)$ is the quasis of $C_{a}(i)$ is the quasis of $C_{a}(i)$ and $C_{a}(i)$ is the quasis of $C_{a}(i)$ and $C_{a}(i)$ and $C_{a}(i)$ are $C_{a}(i)$ and $C_{a}(i)$ and $C_{a}(i)$ are $C_{a}(i)$ and $C_{a}(i)$ are $C_{a}(i)$ and

With ONE pair of messenger fields {5, 5*},

Assoc. w/C.C. prob.

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

Possible by a GUT Model

$$C_a(i)$$

$$\langle F_S \rangle \approx m \left[f(z) + \langle S^* \rangle \right]$$

 $K \supset f(z)S + \text{h.c.}$

 $M_G \approx 1.3 \times 10^{16} \text{ GeV}$

where $C_a(i)$ is the qu

With ONE pair of messenger fields {5, 5*},

$$\frac{\langle F_S \rangle = m_0 M_P}{\langle S \rangle = \langle \mathbf{24}_H \rangle}$$

$$M_{a} = \frac{g_{a}^{2} \langle F \rangle}{16\pi^{2}\langle S \rangle} = \frac{m_{0}M_{P}}{16\pi^{2}M_{X}} \sqrt{\frac{5}{24}} g_{G} \approx 0.36 m_{0}$$
where $C_{a}(i)$ is the question of $C_{a}(i)$ and $C_{a}(i)$ are $C_{a}(i)$ and $C_{a}(i)$ and $C_{a}(i)$ are $C_{a}(i)$ and $C_{a}(i)$ are $C_{a}(i)$ and

Minimal Mixed Mediation

In the Minimal Mixed Mediation,

$$m_{h_u}^2(Q=m_Z) = C_s m_0^2 - C_g m_{1/2}^2$$
 $C_s, C_g > 0$

As $\emph{\textbf{C}_g}$ is converted to a $\emph{\textbf{C}_s}$, making $\emph{\textbf{C}_s}$ smaller , Fine-Tuning is improved,

until the FP reaches the stop decoupling scale.

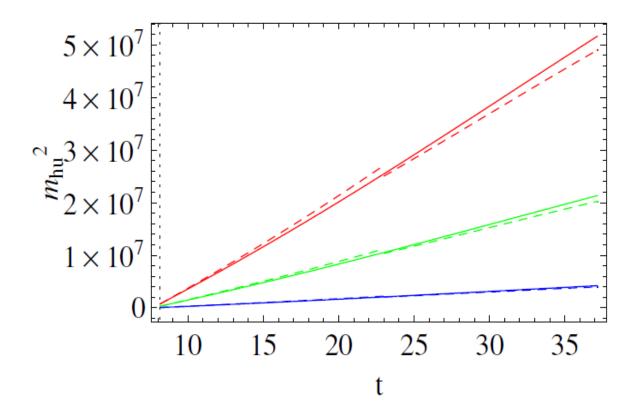
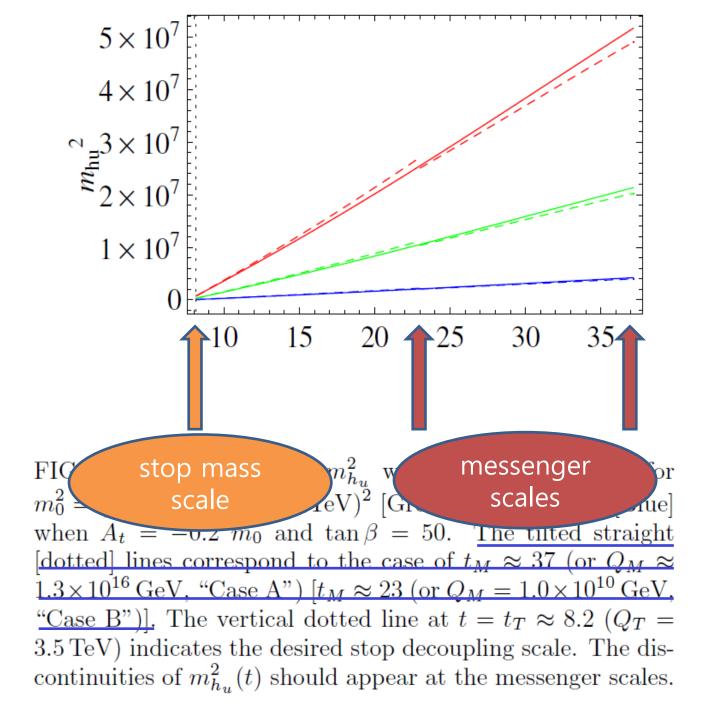



FIG. 1. RG evolutions of $m_{h_u}^2$ with $t \equiv \log(Q/\text{GeV})$ for $m_0^2 = (7 \text{ TeV})^2$ [Red], $(4.5 \text{ TeV})^2$ [Green], and $(2 \text{ TeV})^2$ [Blue] when $A_t = -0.2 \ m_0$ and $\tan \beta = 50$. The tilted straight [dotted] lines correspond to the case of $t_M \approx 37$ (or $Q_M \approx 1.3 \times 10^{16} \text{ GeV}$, "Case A") [$t_M \approx 23$ (or $Q_M = 1.0 \times 10^{10} \text{ GeV}$, "Case B")]. The vertical dotted line at $t = t_T \approx 8.2$ ($Q_T = 3.5 \text{ TeV}$) indicates the desired stop decoupling scale. The discontinuities of $m_{h_u}^2(t)$ should appear at the messenger scales.

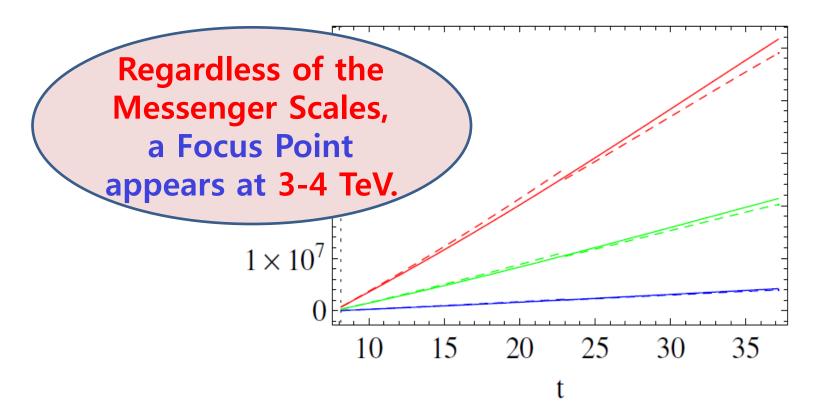


FIG. 1. RG evolutions of $m_{h_u}^2$ with $t \equiv \log(Q/\text{GeV})$ for $m_0^2 = (7 \,\text{TeV})^2$ [Red], $(4.5 \,\text{TeV})^2$ [Green], and $(2 \,\text{TeV})^2$ [Blue] when $A_t = -0.2 \, m_0$ and $\tan \beta = 50$. The tilted straight [dotted] lines correspond to the case of $t_M \approx 37$ (or $Q_M \approx 1.3 \times 10^{16} \,\text{GeV}$, "Case A") [$t_M \approx 23$ (or $Q_M = 1.0 \times 10^{10} \,\text{GeV}$, "Case B")]. The vertical dotted line at $t = t_T \approx 8.2$ ($Q_T = 3.5 \,\text{TeV}$) indicates the desired stop decoupling scale. The discontinuities of $m_{h_u}^2(t)$ should appear at the messenger scales.

for various trial m_0^2 s

$\mathbf{Case} \; \mathbf{I}$	$A_t = 0$	$\tan \beta = 50$	$\Delta_{\mathrm{m}_0^2} \equiv 1$
$\mathbf{m_0^2}$	$(5.5\mathrm{TeV})^2$	$(4.5 {\rm TeV})^2$	$(3.5\mathrm{TeV})^2$
$m_{q_3}^2(t_T)$	$(4363 {\rm GeV})^2$	$(3551 {\rm GeV})^2$	$(2744{ m GeV})^2$
$m_{u_3^c}^2(t_T)$	$(3789 \text{GeV})^2$	$(3098{\rm GeV})^2$	$(2406{\rm GeV})^2$
$\mathbf{m_{h_{\mathbf{u}}}^{2}(t_{\mathbf{T}})}$	$({\bf 431}{ m GeV})^2$	$(189\mathrm{GeV})^2$	$-(251{ m GeV})^2$
$m_{h_d}^2(t_T)$	$(2022{\rm GeV})^2$	$(1512{\rm GeV})^2$	$(1008{\rm GeV})^2$
Case II	$A_t = -0.2 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 16$
$\mathbf{m_0^2}$	$(5.5\mathrm{TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5 {\rm TeV})^2$
$m_{q_3}^2(t_T)$	$(4376 {\rm GeV})^2$	$(3563 {\rm GeV})^2$	$(2752 {\rm GeV})^2$
$m_{u_3^c}^2(t_T)$	$(3798 \text{GeV})^2$	$(3106{\rm GeV})^2$	$(2413 {\rm GeV})^2$
$\mathbf{m_{h_{II}}^2(t_T)}$	$({\bf 539}{ m GeV})^2$	$({\bf 361}{ m GeV})^2$	$-(44{ m GeV})^2$
$m_{h_d}^{\overline{2}a}(t_T)$	$(2053{\rm GeV})^2$	$(1565{\rm GeV})^2$	$(1046{\rm GeV})^2$
α			
Case III	$A_t = -0.5 m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m}_{\mathrm{o}}^2} = 9$
	$A_t = 0.5 m_0$ $(5.5 \mathrm{TeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$	$\frac{\Lambda_{\rm m_0^2} - 9}{(3.5 { m TeV})^2}$
Case III $\frac{\mathbf{m_0^2}}{m^2 (t_T)}$			$\Delta_{m_0^2} = 9$ (3.5 TeV) ² (2630 GeV) ²
Case III $\frac{\mathbf{m_0^2}}{m^2(t_T)}$	$(5.5\mathrm{TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5 {\rm TeV})^2$
$\begin{array}{c} \text{Case III} \\ \text{m}_0^2 \end{array}$	$(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^c}^2(t_T)$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$	$(3.5 \mathrm{TeV})^2$ $(2630 \mathrm{GeV})^2$ $(2373 \mathrm{GeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^2}^2(t_T)$ $\mathbf{m_{h_u}^2(t_T)}$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$ $-(363 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$	$(3.5 \mathrm{TeV})^2$ $(2630 \mathrm{GeV})^2$ $(2373 \mathrm{GeV})^2$ $-(546 \mathrm{GeV})^2$ $-(950 \mathrm{GeV})^2$
	$(5.5 \text{ TeV})^2)$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$ $A_t = 0$ $(5.5 \text{ TeV})^2$	$(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$ $-(41 \text{ GeV})^2$ $(1359 \text{ GeV})^2$ $\tan \beta = 25$ $(4.5 \text{ TeV})^2$	$(3.5 \text{ TeV})^2$ $(2630 \text{ GeV})^2$ $(2373 \text{ GeV})^2$ $-(546 \text{ GeV})^2$ $-(950 \text{ GeV})^2$ $\Delta_{\text{M2}} = 57$ $(3.5 \text{ TeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^c}^2(t_T)$ $\mathbf{m_{h_u}^c(t_T)}$ $m_{h_d}^2(t_T)$ Case IV	$(5.5 \text{ TeV})^2)$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$ $A_t = 0$ $(5.5 \text{ TeV})^2)$ $(4915 \text{ GeV})^2$	$(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$ $-(41 \text{ GeV})^2$ $(1359 \text{ GeV})^2$ $\tan \beta = 25$ $(4.5 \text{ TeV})^2$ $(4025 \text{ GeV})^2$	$(3.5 \text{ TeV})^{2}$ $(2630 \text{ GeV})^{2}$ $(2373 \text{ GeV})^{2}$ $-(546 \text{ GeV})^{2}$ $-(950 \text{ GeV})^{2}$ $\Delta_{\text{mo}} = 57$ $(3.5 \text{ TeV})^{2}$ $(3134 \text{ GeV})^{2}$
	$(5.5 \text{ TeV})^2)$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$ $A_t = 0$ $(5.5 \text{ TeV})^2$	$(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$ $-(41 \text{ GeV})^2$ $(1359 \text{ GeV})^2$ $\tan \beta = 25$ $(4.5 \text{ TeV})^2$	$(3.5 \text{ TeV})^2$ $(2630 \text{ GeV})^2$ $(2373 \text{ GeV})^2$ $-(546 \text{ GeV})^2$ $-(950 \text{ GeV})^2$ $\Delta_{\text{M2}} = 57$ $(3.5 \text{ TeV})^2$
	$(5.5 \text{ TeV})^2)$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$ $A_t = 0$ $(5.5 \text{ TeV})^2)$ $(4915 \text{ GeV})^2$	$(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$ $-(41 \text{ GeV})^2$ $(1359 \text{ GeV})^2$ $\tan \beta = 25$ $(4.5 \text{ TeV})^2$ $(4025 \text{ GeV})^2$	$(3.5 \text{ TeV})^{2}$ $(2630 \text{ GeV})^{2}$ $(2373 \text{ GeV})^{2}$ $-(546 \text{ GeV})^{2}$ $-(950 \text{ GeV})^{2}$ $\Delta_{\text{mo}} = 57$ $(3.5 \text{ TeV})^{2}$ $(3134 \text{ GeV})^{2}$

for various trial m_0^2 s

Case I	$A_t = 0$	$\tan \beta = 50$	$oldsymbol{\Delta_{m_0^2}=1}$
$\mathbf{m_0^2}$	$(5.5\mathrm{TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5 { m TeV})^2$
$m_{q_3}^2(t_T)$	$(4363{\rm GeV})^2$	$(3551{ m GeV})^2$	$(2744{\rm GeV})^2$
$m_{u_3^c}^{2}(t_T)$	$(3789 {\rm GeV})^2$	$(3098{\rm GeV})^2$	$(2406{\rm GeV})^2$
$\mathbf{m_{h_{II}}^{2}(t_{T})}$	$({\bf 431}{ m GeV})^2$	$(189\mathrm{GeV})^2$	$-(251{ m GeV})^2$
$m_{h_d}^2(t_T)$	$(2022{\rm GeV})^2$	$(1512{\rm GeV})^2$	$(1008{\rm GeV})^2$
Case II	$A_t = -0.2 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 16$
$\mathbf{m_0^2}$	$({f 5}.{f 5}{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5 { m TeV})^2$
$m_{q_3}^2(t_T)$	$(4376{\rm GeV})^2$	$(3563 {\rm GeV})^2$	$(2752{\rm GeV})^2$
$m_{u_3^c}^2(t_T)$	$(3798{\rm GeV})^2$	$(3106{\rm GeV})^2$	$(2413{\rm GeV})^2$
$\mathbf{m_{h_{\mathbf{u}}}^{2}}(\mathbf{t_{T}})$	$({f 539}{ m GeV})^2$	$({\bf 361}{ m GeV})^2$	$-(44{ m GeV})^2$
$m_{h_d}^2(t_T)$	$(2053{\rm GeV})^2$	$(1565{\rm GeV})^2$	$(1046{\rm GeV})^2$
Case III	$A_t = -0.5 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m}_0^2}=9$
Case III m_0^2	$A_t = -0.5 \ m_0$ $(5.5 \text{TeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$	$egin{aligned} oldsymbol{\Delta_{m_0^2}} &= 9 \ (3.5 { m TeV})^2 \end{aligned}$
m_0^2		$\tan \beta = 50$ $(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$	
	$(5.5{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5 { m TeV})^2$
$\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^2}^2(t_T)$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$	$(3.5 \mathrm{TeV})^2$ $(2630 \mathrm{GeV})^2$
$\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$	$(3.5 \mathrm{TeV})^2$ $(2630 \mathrm{GeV})^2$ $(2373 \mathrm{GeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$ $m_{u_{3}^{c}}^{2}(t_{T})$ $\mathbf{m_{h_{u}}^{2}(t_{T})}$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$ $-(363 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$	$(3.5 \mathrm{TeV})^2$ $(2630 \mathrm{GeV})^2$ $(2373 \mathrm{GeV})^2$ $-(546 \mathrm{GeV})^2$ $-(950 \mathrm{GeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$ $m_{u_{3}^{c}}^{2}(t_{T})$ $\mathbf{m_{h_{u}}^{2}(t_{T})}$ $m_{h_{d}}^{2}(t_{T})$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$ $-(363 \mathrm{GeV})^2$ $(1447 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$	$(3.5 \mathrm{TeV})^2$ $(2630 \mathrm{GeV})^2$ $(2373 \mathrm{GeV})^2$ $-(546 \mathrm{GeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})} \\ m_{u_{3}^{c}}^{2}(t_{T}) \\ \mathbf{m_{h_{u}}^{2}(t_{T})} \\ m_{h_{d}}^{2}(t_{T}) \\ \hline \mathbf{Case\ IV} \\ \mathbf{m_{0}^{2}}$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$ $-(363 \mathrm{GeV})^2$ $(1447 \mathrm{GeV})^2$ $A_t = 0$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$	$\frac{(3.5 \mathrm{TeV})^2}{(2630 \mathrm{GeV})^2}$ $(2373 \mathrm{GeV})^2$ $-(546 \mathrm{GeV})^2$ $-(950 \mathrm{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$ $m_{u_{3}^{c}}^{2}(t_{T})$ $\mathbf{m_{h_{u}}^{2}(t_{T})}$ $m_{h_{d}}^{2}(t_{T})$ $\mathbf{Case\ IV}$ $\mathbf{m_{0}^{2}}$ $m_{q_{3}}^{2}(t_{T})$	$(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$ $(3755 \text{GeV})^2$ $-(363 \text{GeV})^2$ $(1447 \text{GeV})^2$ $A_t = 0$ $(5.5 \text{TeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$ $(3.5 \text{TeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}\\ m_{u_{3}^{c}}^{2}(t_{T})\\ \mathbf{m_{h_{u}}^{2}(t_{T})}\\ m_{h_{d}}^{2}(t_{T})\\ \hline \mathbf{Case\ IV}\\ \mathbf{m_{0}^{2}}$	$(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$ $(3755 \text{GeV})^2$ $-(363 \text{GeV})^2$ $(1447 \text{GeV})^2$ $A_t = 0$ $(5.5 \text{TeV})^2$ $(4915 \text{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$ $(4025 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$ $(3.5 \text{TeV})^2$ $(3134 \text{GeV})^2$

for various trial m_0^2 s

Case I	$A_t = 0$	$\tan \beta = 50$	$oldsymbol{\Delta_{\mathbf{m_0^2}}} = 1$
$\mathbf{m_0^2}$	$(5.5\mathrm{TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5{ m TeV})^2$
$m_{q_3}^2(t_T)$	$(4363{\rm GeV})^2$	$(3551 {\rm GeV})^2$	$(2744{ m GeV})^2$
$m_{u_3^c}^2(t_T)$	$(3789 \text{GeV})^2$	$(3098{\rm GeV})^2$	$(2406{\rm GeV})^2$
$\mathbf{m_{h_{II}}^2(t_T)}$	$(431 {\rm GeV})^2$	$(189\mathrm{GeV})^2$	$-(251{ m GeV})^2$
$m_{h_d}^2(t_T)$	$(2022{\rm GeV})^2$	$(1512{\rm GeV})^2$	$(1008{\rm GeV})^2$
Case II	$A_t = -0.2 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 16$
$\mathbf{m_0^2}$	$(5.5\mathrm{TeV})^2$	$(4.5{ m TeV})^2$	$(3.5{ m TeV})^2$
$m_{q_3}^2(t_T)$	$(4376{\rm GeV})^2$	$(3563{\rm GeV})^2$	$(2752{\rm GeV})^2$
$m_{u_3^c}^2(t_T)$	$(3798{\rm GeV})^2$	$(3106 {\rm GeV})^2$	$(2413{\rm GeV})^2$
$\mathbf{m_{h_{II}}^2(t_T)}$	$({\bf 539}{ m GeV})^2$	$({\bf 361}{ m GeV})^2$	$-(44{ m GeV})^2$
$m_{h_d}^{2^{-1}}(t_T)$	$(2053{\rm GeV})^2$	$(1565 {\rm GeV})^2$	$(1046{ m GeV})^2$
Case III	$A_t = -0.5 \ m_0$	$\tan \beta = \underline{50}$	$\Delta_{\mathrm{m}_0^2} = 9$
$\begin{array}{c} \hline \text{Case III} \\ \text{m}_0^2 \\ \hline \end{array}$			$egin{aligned} \Delta_{\mathbf{m_0^2}} &= 9 \ &(3.5\mathrm{TeV})^2 \end{aligned}$
_	$A_t = -0.5 \ m_0$	$\tan \beta = \underline{50}$	
m_0^2	$A_t = -0.5 \ m_0$ $(5.5 \ \text{TeV})^2$ $(4284 \ \text{GeV})^2$ $(3755 \ \text{GeV})^2$	$\tan \beta = \underline{50}$ $(4.5 \text{TeV})^2$	$(3.5 {\rm TeV})^2$
$\frac{m_0^2}{m_{q_3}^2(t_T)}$ $m_{u_3^c}^2(t_T)$	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$
$\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$	$\tan \beta = 50$ $(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$ $m_{u_{3}^{c}}^{2}(t_{T})$ $\mathbf{m_{h_{u}}^{2}(t_{T})}$	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$
$\frac{\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}}{\frac{m_{u_{3}^{c}}^{2}(t_{T})}{\mathbf{m_{h_{u}}^{2}(t_{T})}}}$ $\frac{m_{h_{u}}^{2}(t_{T})}{\mathbf{Case\ IV}}$ $\mathbf{m_{0}^{2}}$	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$	$\tan \beta = \underline{50}$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$
$\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^c}^2(t_T)$ $\mathbf{m_{h_u}^2(t_T)}$ $m_{h_d}^2(t_T)$ $\mathbf{Case\ IV}$	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$	$\frac{(3.5 \text{TeV})^2}{(2630 \text{GeV})^2}$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$
$\frac{\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}}{\frac{m_{u_{3}^{c}}^{2}(t_{T})}{\mathbf{m_{h_{u}}^{2}(t_{T})}}}$ $\frac{m_{h_{u}}^{2}(t_{T})}{\mathbf{Case\ IV}}$ $\mathbf{m_{0}^{2}}$	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$ $A_t = 0$ $(5.5 \text{ TeV})^2$	$\tan \beta = \underline{50}$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$ $(3.5 \text{TeV})^2$
$rac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})} \ rac{m_{q_{3}}^{2}(t_{T})}{m_{\mathbf{h_{u}}}^{2}(t_{T})} \ rac{\mathbf{m_{h_{u}}^{2}(t_{T})}}{m_{h_{d}}^{2}(t_{T})} \ rac{\mathbf{Case\ IV}}{m_{0}^{2}} \ rac{m_{q_{3}}^{2}(t_{T})}{m_{q_{3}}^{2}(t_{T})}$	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$ $A_t = 0$ $(5.5 \text{ TeV})^2$ $(4915 \text{ GeV})^2$	$\tan \beta = 50$ $(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$ $-(41 \text{ GeV})^2$ $(1359 \text{ GeV})^2$ $\tan \beta = 25$ $(4.5 \text{ TeV})^2$ $(4025 \text{ GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$ $(3.5 \text{TeV})^2$ $(3134 \text{GeV})^2$

for various trial m_0^2 s

Case I	$A_t = 0$	$\tan \beta = 50$	$\Delta_{ ext{m}_0^2} = 1$
$\mathbf{m_0^2}$	$(5.5{ m TeV})^2$	$({f 4.5}{ m TeV})^2$	$(3.5 { m TeV})^2$
$m_{q_3}^2(t_T)$	$(4363{ m GeV})^2$	$(3551 {\rm GeV})^2$	$(2744{\rm GeV})^2$
$m_{u_{3}^{c}}^{2}(t_{T})$	$(3780 \text{CeV})^2$	$(3098 \text{CeV})^2$	$(2406 {\rm GeV})^2$
$\mathbf{m_{h_{II}}^2(t_T)}$	$(431\mathrm{GeV})^2$	$(189\mathrm{GeV})^2$	$-(251 {\rm GeV})^2$
$m_{h_d}^2(t_T)$	$(2022\mathrm{GeV})^2$	$(1512\mathrm{GeV})^2$	$(1008\mathrm{GeV})^2$
Case II	$A_t = -0.2 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 16$
$\mathbf{m_0^2}$	$(5.5{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5 { m TeV})^2$
$m_{q_3}^2(t_T)$	$(4376{\rm GeV})^2$	$(3563 \text{GeV})^2$	$(2752{\rm GeV})^2$
$m_{u_3^c}^2(t_T)$	$(3798 \text{GeV})^2$	$(3106 {\rm GeV})^2$	$(2413{\rm GeV})^2$
$\mathbf{m_{h_{II}}^2(t_T)}$	$(539 \text{GeV})^2$	$(361 \text{GeV})^2$	$-(44{\rm GeV})^2$
$m_{h_d}^2(t_T)$	$(2053 {\rm GeV})^2$	$(1565 {\rm GeV})^2$	$(1046{ m GeV})^2$
Case III	$A_t = -0.5 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 9$
$\begin{array}{c} \text{Case III} \\ \text{m}_0^2 \end{array}$	$A_t = -0.5 \ m_0$ $(5.5 \text{TeV})^2$	$\tan \beta = \underline{50}$ $(4.5 \text{TeV})^2$	$egin{aligned} \Delta_{\mathbf{m_0^2}} &= 9 \ &(3.5\mathrm{TeV})^2 \end{aligned}$
m_0^2	$(5.5\mathrm{TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5 {\rm TeV})^2$
$\frac{m_0^2}{m_{q_3}^2(t_T)}$ $m_{u_3^c}^2(t_T)$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$
$\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$
$\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $\frac{m_{q_3}^2(t_T)}{m_{\mathbf{h_u}}^2(\mathbf{t_T})}$	$(5.5 \mathrm{TeV})^2$ $(4284 \mathrm{GeV})^2$ $(3755 \mathrm{GeV})^2$ $-(363 \mathrm{GeV})^2$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}\\ \frac{m_{u_{3}^{c}}^{2}(t_{T})}{\mathbf{m_{h_{u}}^{2}(t_{T})}}\\ \frac{m_{h_{d}}^{2}(t_{T})}{\mathbf{Case\ IV}}\\ \mathbf{m_{0}^{2}}$	$(5.5 \text{TeV})^{2}$ $(4284 \text{GeV})^{2}$ $(3755 \text{GeV})^{2}$ $-(363 \text{GeV})^{2}$ $(1447 \text{GeV})^{2}$ $A_{t} = 0$ $(5.5 \text{TeV})^{2}$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$ $(3.5 \text{TeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$ $\frac{m_{u_{3}^{c}}^{2}(t_{T})}{\mathbf{m_{h_{u}}^{2}(t_{T})}}$ $\frac{m_{h_{d}}^{2}(t_{T})}{\mathbf{Case\ IV}}$ $\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$	$(5.5 \text{TeV})^{2}$ $(4284 \text{GeV})^{2}$ $(3755 \text{GeV})^{2}$ $-(363 \text{GeV})^{2}$ $(1447 \text{GeV})^{2}$ $A_{t} = 0$ $(5.5 \text{TeV})^{2}$ $(4915 \text{GeV})^{2}$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$ $(4025 \text{GeV})^2$	$(3.5 \text{TeV})^{2}$ $(2630 \text{GeV})^{2}$ $(2373 \text{GeV})^{2}$ $-(546 \text{GeV})^{2}$ $-(950 \text{GeV})^{2}$ $\Delta_{\mathbf{m_{0}^{2}}} = 57$ $(3.5 \text{TeV})^{2}$ $(3134 \text{GeV})^{2}$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}\\ \frac{m_{u_{3}^{c}}^{2}(t_{T})}{\mathbf{m_{h_{u}}^{2}(t_{T})}}\\ \frac{m_{h_{d}}^{2}(t_{T})}{\mathbf{Case\ IV}}\\ \mathbf{m_{0}^{2}}$	$(5.5 \text{TeV})^{2}$ $(4284 \text{GeV})^{2}$ $(3755 \text{GeV})^{2}$ $-(363 \text{GeV})^{2}$ $(1447 \text{GeV})^{2}$ $A_{t} = 0$ $(5.5 \text{TeV})^{2}$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$	$(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{\mathbf{m_0^2}} = 57$ $(3.5 \text{TeV})^2$
$\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$ $\frac{m_{u_{3}^{c}}^{2}(t_{T})}{\mathbf{m_{h_{u}}^{2}(t_{T})}}$ $\frac{m_{h_{d}}^{2}(t_{T})}{\mathbf{Case\ IV}}$ $\frac{\mathbf{m_{0}^{2}}}{m_{q_{3}}^{2}(t_{T})}$	$(5.5 \text{TeV})^{2}$ $(4284 \text{GeV})^{2}$ $(3755 \text{GeV})^{2}$ $-(363 \text{GeV})^{2}$ $(1447 \text{GeV})^{2}$ $A_{t} = 0$ $(5.5 \text{TeV})^{2}$ $(4915 \text{GeV})^{2}$	$(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$ $(4025 \text{GeV})^2$	$(3.5 \text{TeV})^{2}$ $(2630 \text{GeV})^{2}$ $(2373 \text{GeV})^{2}$ $-(546 \text{GeV})^{2}$ $-(950 \text{GeV})^{2}$ $\Delta_{\mathbf{m_{0}^{2}}} = 57$ $(3.5 \text{TeV})^{2}$ $(3134 \text{GeV})^{2}$

for various trial m_0^2 s

Case I	$A_t = 0$	$\tan \beta = 50$	$\Delta_{\mathbf{m}_0^2} = 1$ $(3.5 \mathrm{TeV})^2$
$\mathbf{m_0^2}$	$({f 5.5}{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5\mathrm{TeV})^2$
$m_{q_3}^2(t_T)$	$(4363 {\rm GeV})^2$	$(3551 {\rm GeV})^2$	$(2744{\rm GeV})^2$
$m_{u_3^c}^{2}(t_T)$	$(3789 \text{GeV})^2$	$(3098{\rm GeV})^2$	$(2406{\rm GeV})^2$
$\mathbf{m_{h_{\mathbf{u}}}^{2}(t_{\mathbf{T}})}$	$({\bf 431}{ m GeV})^2$	$(189\mathrm{GeV})^2$	$-({f 251}{ m GeV})^2$
$m_{h_d}^2(t_T)$	$(2022{\rm GeV})^2$	$(1512{\rm GeV})^2$	$(1008{\rm GeV})^2$
Case II	$A_t = -0.2 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 16$
$\mathbf{m_0^2}$	$({f 5}.{f 5}{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5\mathrm{TeV})^2$
$m_{q_3}^2(t_T)$	$(4376{\rm GeV})^2$	$(3563 {\rm GeV})^2$	$(2752{\rm GeV})^2$
$m_{u_{Q}^{c}}^{2}(t_{T})$	$(3798 \text{GeV})^2$	$(3106{\rm GeV})^2$	$(2413{\rm GeV})^2$
$\mathbf{m_{h_{\mathbf{u}}}^{2}(t_{\mathbf{T}})}$	$({\bf 539}{ m GeV})^2$	$(361\mathrm{GeV})^2$	$-(44{ m GeV})^2$
$m_{h_d}^2(t_T)$	$(2053{\rm GeV})^2$	$(1565{ m GeV})^2$	$(1046{\rm GeV})^2$
nd ·	` ′		
$\frac{n_d}{\text{Case III}}$	$A_t = -0.5 \ m_0$	$\tan \beta = 50$	$\Delta_{-2} \neq 9$
			$\Delta_{-2} \neq 9$
Case III $\underline{m_0^2}$	$A_t = -0.5 \ m_0$	$\tan \beta = 50$	$\Delta_{m_0^2} = 9$ $(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$	$A_t = -0.5 m_0$ $(5.5 \mathrm{TeV})^2$	$\tan \beta = \underline{50}$ $(4.5 \text{TeV})^2$	$\Delta_{\mathbf{m_0^2}} = 9$ $(3.5 \mathrm{TeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^2}^2(t_T)$	$A_t = -0.5 \ m_0$ $(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$	$\tan \beta = \underline{50}$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$	$\Delta_{m_0^2} = 9$ $(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$	$A_t = -0.5 \ m_0$ $(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$ $(3755 \text{GeV})^2$	$\tan \beta = 50$ $(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$	$\Delta_{m_0^2} = 9$ $(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^2}^2(t_T)$ $\mathbf{m_{h_u}^2(t_T)}$	$A_t = -0.5 m_0$ $(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$ $(3755 \text{GeV})^2$ $-(363 \text{GeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$	$\Delta_{m_0^2} = 9$ $(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$
Case III $\frac{\mathbf{m_0^2}}{m_{q_3}^2(t_T)}$ $m_{u_3^c}^2(t_T)$ $\mathbf{m_{h_u}^c(t_T)}$ $m_{h_u}^2(t_T)$	$A_t = -0.5 m_0$ $(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$ $(3755 \text{GeV})^2$ $-(363 \text{GeV})^2$ $(1447 \text{GeV})^2$ $A_t = 0$ $(5.5 \text{TeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$	$\Delta_{m_0^2} = 9$ $(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$
	$A_t = -0.5 m_0$ $(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$ $(3755 \text{GeV})^2$ $-(363 \text{GeV})^2$ $(1447 \text{GeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$	$\Delta_{m_0^2} = 9$ $(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$
	$A_t = -0.5 m_0$ $(5.5 \text{TeV})^2$ $(4284 \text{GeV})^2$ $(3755 \text{GeV})^2$ $-(363 \text{GeV})^2$ $(1447 \text{GeV})^2$ $A_t = 0$ $(5.5 \text{TeV})^2$	$\tan \beta = 50$ $(4.5 \text{TeV})^2$ $(3532 \text{GeV})^2$ $(3088 \text{GeV})^2$ $-(41 \text{GeV})^2$ $(1359 \text{GeV})^2$ $\tan \beta = 25$ $(4.5 \text{TeV})^2$	$ \Delta_{\mathbf{m_0^2}} = 9 (3.5 \text{TeV})^2 $ $ (2630 \text{GeV})^2 $ $ (2373 \text{GeV})^2 $ $ -(546 \text{GeV})^2 $ $ -(950 \text{GeV})^2 $ $ \Delta_{\mathbf{m_0^2}} = 57 $ $ (3.5 \text{TeV})^2 $
	$A_t = -0.5 m_0$ $(5.5 \text{ TeV})^2$ $(4284 \text{ GeV})^2$ $(3755 \text{ GeV})^2$ $-(363 \text{ GeV})^2$ $(1447 \text{ GeV})^2$ $A_t = 0$ $(5.5 \text{ TeV})^2$ $(4915 \text{ GeV})^2$	$\tan \beta = 50$ $(4.5 \text{ TeV})^2$ $(3532 \text{ GeV})^2$ $(3088 \text{ GeV})^2$ $-(41 \text{ GeV})^2$ $(1359 \text{ GeV})^2$ $\tan \beta = 25$ $(4.5 \text{ TeV})^2$ $(4025 \text{ GeV})^2$	$\Delta_{m_0^2} = 9$ $(3.5 \text{TeV})^2$ $(2630 \text{GeV})^2$ $(2373 \text{GeV})^2$ $-(546 \text{GeV})^2$ $-(950 \text{GeV})^2$ $\Delta_{m_0^2} = 57$ $(3.5 \text{TeV})^2$ $(3134 \text{GeV})^2$

for various trial m_0^2 s

Case I	$A_t = 0$	$\tan \beta = 50$	$\Delta_{\mathrm{m}_0^2} \neq 1$			
$\mathbf{m_0^2}$	$({f 5}.{f 5}{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5\mathrm{TeV})^2$			
$m_{q_3}^2(t_T)$	$(4363{\rm GeV})^2$	$(3551{\rm GeV})^2$	$(2744{\rm GeV})^2$			
$m_{u_Q^C}^2(t_T)$	$(3789 \text{GeV})^2$	$(3098{\rm GeV})^2$	$(2406{\rm GeV})^2$			
$\mathbf{m_{h_{II}}^{2}(t_{T})}$	$(431{ m GeV})^2$	$(189\mathrm{GeV})^2$	$-(251{ m GeV})^2$			
$m_{h_d}^2(t_T)$	$(2022{\rm GeV})^2$	$(1512{\rm GeV})^2$	$(1008{\rm GeV})^2$			
Case II	$A_t = -0.2 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 16$			
$\mathbf{m_0^2}$	$({f 5}.{f 5}{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5\mathrm{TeV})^2$			
$m_{q_3}^2(t_T)$	$(4376{\rm GeV})^2$	$(3563{\rm GeV})^2$	$(2752{\rm GeV})^2$			
$m_{u_{\mathbf{Q}}^{\mathbf{C}}}^{\mathbf{Z}}(t_{T})$	$(3798{\rm GeV})^2$	$(3106{\rm GeV})^2$	$(2413{\rm GeV})^2$			
$\mathbf{m_{h_{II}}^{2}(t_{T})}$	$({\bf 539}{ m GeV})^2$	$({\bf 361}{ m GeV})^2$	$-(44{ m GeV})^2$			
$m_{h_d}^2(t_T)$	$(2053{\rm GeV})^2$	$(1565{\rm GeV})^2$	$(1046{\rm GeV})^2$			
		$V)^2$	$egin{array}{c} \Delta_{\mathbf{m_0^2}} = 9 \ (3.5\mathrm{TeV})^2 \end{array}$			
For Ca	For Case I, II, III, IV, (2630 GeV) ²					
FOI Case I, II, III, IV, $373 \text{GeV})^2$						
	$46\mathrm{GeV})^2$					
$\Lambda_{\bullet, \approx \{0 \ 10 \ 118 \ 0\}$ $50 \text{GeV})^2$						
710						
/GeV≈{480, 390, 510, 580} $\Delta_{m_0^2} = 57$ (3.5 TeV)						
Treq3		$(1025{\rm GeV})^2$	$(3134 {\rm GeV})^2$			
$m_{u_3^c}^2(t_T)$	$(3770{\rm GeV})^2$	$(3086{\rm GeV})^2$	$(2400{\rm GeV})^2$			
$\mathbf{m_{h_{u}}^{2}(t_{T})}$	$({f 152}{ m GeV})^2$	$-(220{\rm GeV})^2$	$-(293{ m GeV})^2$			
$m_{h_d}^2(t_T)$	$(5057 {\rm GeV})^2$	$(4136{\rm GeV})^2$	$(3215 {\rm GeV})^2$			

for various trial m_0^2 s

_						
	Case I	$A_t = 0$	$\tan \beta = 50$	$\Delta_{\mathrm{m}_0^2} \neq 1$		
	$\mathbf{m_0^2}$	$(5.5\mathrm{TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5\mathrm{TeV})^2$		
	$m_{q_3}^2(t_T)$	$(4363{\rm GeV})^2$	$(3551 {\rm GeV})^2$	$(2744{\rm GeV})^2$		
	$m_{u_3^c}^2(t_T)$	$(3789 \text{GeV})^2$	$(3098{\rm GeV})^2$	$(2406{\rm GeV})^2$		
	$\mathbf{m_{h_{II}}^{2}(t_{T})}$	$(431 {\rm GeV})^2$	$(189\mathrm{GeV})^2$	$-(251{ m GeV})^2$		
	$m_{h_d}^{2}(t_T)$	$(2022{\rm GeV})^2$	$(1512\mathrm{GeV})^2$	$(1008{\rm GeV})^2$		
_	Case II	$A_t = -0.2 \ m_0$	$\tan \beta = 50$	$\Delta_{\mathrm{m_0^2}} = 16$		
	$\mathbf{m_0^2}$	$({f 5}.{f 5}{ m TeV})^2$	$(4.5\mathrm{TeV})^2$	$(3.5{ m TeV})^2$		
	$m_{q_3}^2(t_T)$	$(4376{\rm GeV})^2$	$(3563{\rm GeV})^2$	$(2752{\rm GeV})^2$		
	$m_{u_3^c}^2(t_T)$	$(3798 \mathrm{GeV})^2$	$(3106{\rm GeV})^2$	$(2413{\rm GeV})^2$		
	$\mathbf{m_{h_{II}}^{2}(t_{T})}$	$({f 539}{ m GeV})^2$	$({\bf 361}{ m GeV})^2$	$-(44{ m GeV})^2$		
_	$m_{h_d}^{2}(t_T)$	$(2053{\rm GeV})^2$	$(1565\mathrm{GeV})^2$	$(1046{\rm GeV})^2$		
	Case III	$A = 0.5 m_0$	$\tan \beta = \underline{50}$	$\Delta_{\mathrm{m}_0^2} = 9$		
			$V)^2$	$(3.5\mathrm{TeV})^2$		
	$(2630 \text{GeV})^2$					
	For $A_t/m_0 = +0.1$, $373 \text{GeV})^2$					
		<u></u>		$46 { m GeV})^2$		
		1		$50\mathrm{GeV})^2$		
n0	₂ , Δ _{At} , μ		33,570}	$\Delta_{\mathrm{m_0^2}} = 57$		
	$\frac{-\mathrm{m}_{f 0}}{(3.5\mathrm{TeV})^2}$					
	11093		$(1025{\rm GeV})^2$	$(3134 {\rm GeV})^2$		
	$m_{u_3^c}^{q_3}(t_T)$	$(3770{\rm GeV})^2$	$(3086{\rm GeV})^2$	$(2400{\rm GeV})^2$		
	$\mathbf{m_{h_{II}}^{2}}^{3}(\mathbf{t_{T}})$	$({f 152}{ m GeV})^2$	$-(220\mathrm{GeV})^2$	$-(293\mathrm{GeV})^2$		
	$m_h^2(t_T)$	$(5057 {\rm GeV})^2$	$(4136 {\rm GeV})^2$	$(3215 {\rm GeV})^2$		

$$m_0^2 \approx (4.5 \,\mathrm{TeV})^2$$
 , $\tan \beta \gtrsim 25$

 $-0.5 < A_t/m_0 \lesssim +0.1$

both

$$\Delta_{m_0^2}$$
 and

$$\Delta_{A_t}$$

and

$$\equiv \left| \frac{\partial \log m_Z^2}{\partial \log m_0^2} \right| = \left| \frac{m_0^2}{m_Z^2} \frac{\partial m_Z^2}{\partial m_0^2} \right| \qquad = \left| \frac{A_t}{m_Z^2} \frac{\partial m_Z^2}{\partial A_t} \right|$$

For $m_0^2 \approx (4.5\,{\rm TeV})^2$ Even for $(m_{q_3}^2, m_{u_3^c}^2) \equiv {\rm 3-4\,TeV}$ $-0.5 < A_t/m_0 \lesssim +0.1$

both

$$\Delta_{m_0^2}$$

and

$$\Delta_{A_t}$$

$$\ll$$

100

$$\equiv \left| \frac{\partial \log m_Z^2}{\partial \log m_0^2} \right| = \left| \frac{m_0^2}{m_Z^2} \frac{\partial m_Z^2}{\partial m_0^2} \right| \qquad = \left| \frac{A_t}{m_Z^2} \frac{\partial m_Z^2}{\partial A_t} \right|$$

$$m_0^2 \approx (4.5 \,\mathrm{TeV})^2$$
, $\tan \beta \gtrsim 25$

$$\tan \beta \gtrsim 25$$

$$-0.5 < A_t/m_0 \lesssim +0.1$$

$$(m_{q_3}^2, m_{u_2^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_a(t_T) \approx 0.36 \times m_0 \times g_a^2(t_T)$$

$$m_0^2 \approx (4.5 \, \mathrm{TeV})^2$$

$$\tan \beta \gtrsim 25$$

and

$$-0.5 < A_t/m_0 \lesssim +0.1$$

$$(m_{q_3}^2, m_{u_3^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_{3,2,1} \approx \{1.7 \,\text{TeV}, 660 \,\text{GeV}, 360 \,\text{GeV}\}$$

PREDICTIONS!

testable at LHC run2

$$m_0^2 \approx (4.5 \, \mathrm{TeV})^2$$
 , $\tan \beta \gtrsim 25$

$$\tan \beta \gtrsim 25$$

$$-0.5 < A_t/m_0 \lesssim +0.1$$

$$(m_{q_3}^2, m_{u_2^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_{3,2,1} \approx \{1.7 \,\text{TeV}, 660 \,\text{GeV}, 360 \,\text{GeV}\}$$

sleptons, sbottom masses > 3 - 4 TeV

$$m_0^2 \approx (4.5 \,\mathrm{TeV})^2$$
, $\tan \beta \gtrsim 25$

$$\tan \beta \gtrsim 25$$

$$-0.5 < A_t/m_0 \lesssim +0.1$$

$$(m_{q_3}^2, m_{u_3^c}^2) = 3 - 4 \text{ TeV}$$

responsible for

126 GeV Higgs mass

$$M_{3,2,1} \approx \{1.7 \,\text{TeV}, 660 \,\text{GeV}, 360 \,\text{GeV}\}$$

$|\mu| = 390 \text{ GeV} - 590 \text{ GeV}$ for $m_z = 91 \text{ GeV}$

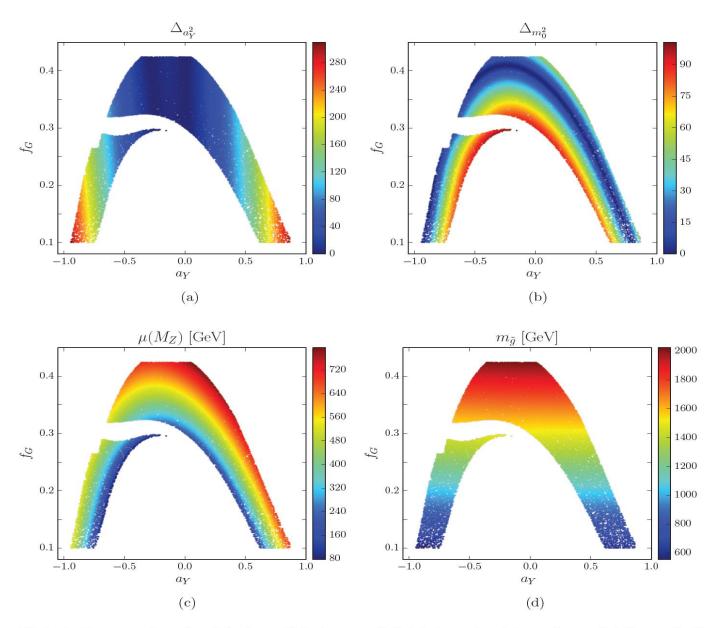


FIG. 4: Scatter plots for (a) $\Delta_{a_Y^2}$, (b) $\Delta_{m_0^2}$, and (c) $|\mu|$ at the M_Z scale, and (d) on-shell gluino mass when $m_0^2 = (4 \text{ TeV})^2$ and $\tan \beta = 50$. Here we set $M_G = 1.7 \times 10^{16}$ GeV. The stop mass scale is about 3.0 TeV.

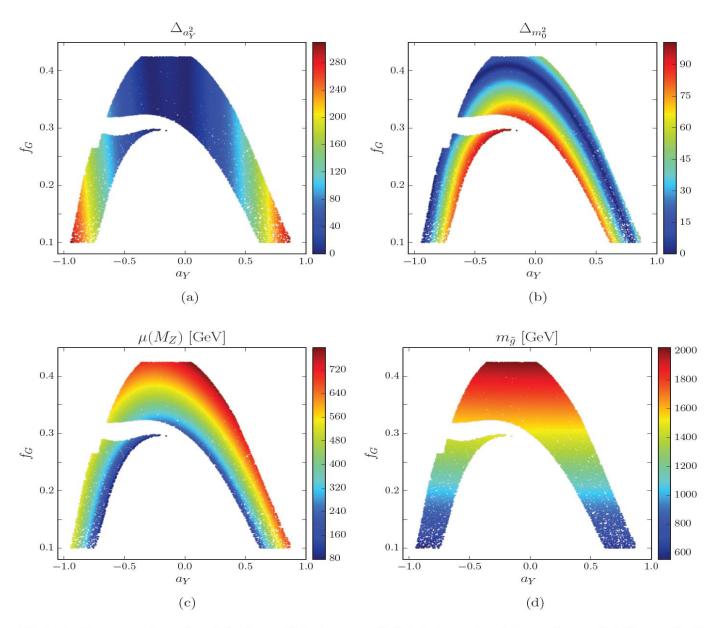
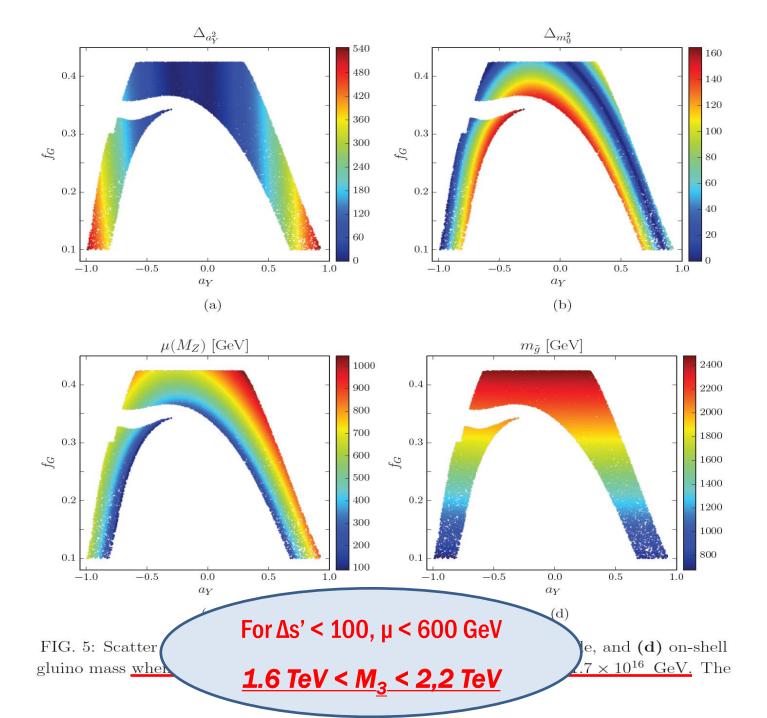



FIG. 4: Scatter plots for (a) $\Delta_{a_Y^2}$, (b) $\Delta_{m_0^2}$, and (c) $|\mu|$ at the M_Z scale, and (d) on-shell gluino mass when $m_0^2 = (4 \text{ TeV})^2$ and $\tan \beta = 50$. Here we set $M_G = 1.7 \times 10^{16}$ GeV. The stop mass scale is about 3.0 TeV.

Conclusion

- minimal Gravity medi. + minimal Gauge medi. at the GUT scale
 - = precise focusing of m_{hu}^2 around stop mass scale.
- m_{hu}² is insensitive to trial m₀² or heavy stop masses.
- m₀² happens to be ≈ (4.5 TeV)², which yields
 3-4 TeV stop and 126 GeV Higgs masses.

Conclusion

- The fine-tuning measures significantly decrease well-below 100 even for 3-4 TeV stop masses.
 - → predictively small EW scale
- The fine-tuning associated with zero C.C.
 would be responsible for the fine-tuning required in the little hierarchy problem (F_S= m₀M_P).
- Gluino mass is predicted to be about
 1.6 TeV 2.2 TeV.
 - → It could readily tested at LHC run2.