Current status of $a_{\mu}^{\rm SM}$ and $a_{\mu}^{\rm Exp}$

 $(g-2)_{\mu}$ in MSSM

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The muon (g - 2) in SM and MSSM: precision corrections and novel phenomenological scenario

Hyejung Stöckinger-Kim TU Dresden

with M. Bach, H. Fargnoli, C. Gnendiger, J. Park, S. Paßehr, D. Stöckinger

CTPU, 17. August 2015

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Current status of $a_{\mu}^{ m SM}$ and $a_{\mu}^{ m Exp}$

$(g-2)_{\mu}$ in MSSM MSSM loop corrections MSSM: tan $\beta \rightarrow \infty$

Summary

Current status of $a_\mu^{
m SM}$ and $a_\mu^{
m Exp}$

Summary

Muon Anomalous Magnetic Moment

Theory

$$ec{\mu} = g rac{-e}{m_\mu} ec{s}$$
 $\mathbf{a}_\mu = rac{(g-2)_\mu}{2}$

$$\Gamma_{\mu} = \gamma_{\mu} F_{1}(q^{2}) + \frac{i}{2m_{\mu}} a_{\mu} \sigma_{\mu\nu} q^{\nu} + \cdots$$

$$a_{\mu}^{\text{QED},1\text{L}} = \frac{\alpha}{2\pi}$$

Schwinger '48

Experiment

circular motion: ω_c spin precession: ω_s

$$\omega_{s} - \omega_{c} = \frac{a_{\mu}}{m_{\mu}} B$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

• QED 5-loop calculation completed.

[Kinoshita et al '12]

• Convergence of hadronic contributions.

• New BESIII results

- Precision improvement in $a_{\mu}^{\rm EW}$
 - : uncertainty caused by $M_{
 m H}$ eliminated \Rightarrow

[1507:08188]

[Gnendiger, Stöckinger, S-K '13]

[Davier et al; Hagiwara et al; Benavoun et al]

Current status of $a_{\mu}^{
m SM}$ and $a_{\mu}^{
m Exp}$

 $(g - 2)_{\mu}$ in MSSN 0000 00000000 Summary

$a_{\mu}^{ m EW}$ after $M_{ m H}$ measurement

- The only contribution depending on $M_{
 m H}$
- Estimation before $M_{\rm H}$ measurement:

 $a_{\mu}^{\mathrm{EW}} = (154 \pm 1 \pm 2) imes 10^{-11}$

[Czarnecki, Krause, Marciano]

• Electroweak (full 2-loop) contributions: $a_{\mu}^{\rm EW} = (153.6 \pm 1.0) \times 10^{-11}$ with $M_{\rm H} = 125.6 \pm 1.5 \, {\rm GeV}$

[1306.5546][Phys. Rev. D 88 (2013) 053005][Gnendiger, Stöckinger, S-K '13]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Summary

 $(g-2)_{\mu}$ in MSSM

$$a_{\mu}^{\mathrm{Exp}}$$

• The latest result from BNL $a_{\mu}^{\rm E821} = (11659208.9 \pm 6.3) \times 10^{-10}$

[Bennett et al. '06]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• New experiment at Fermilab E989: 0.54 ightarrow 0.14 ppm. Current uncertainty in $a_{\mu}^{\rm SM}$: 0.42 ppm

Summary

Current status of
$$a_{\mu}^{
m Exp}-a_{\mu}^{
m SM}$$

$$\Delta a_{\mu}({
m E821-SM}) = egin{cases} (28.7\pm8.0) imes10^{-10} \ _{ ext{[Davier et al.]}} \ (26.1\pm8.0) imes10^{-10} \ _{ ext{[Hagiwara et al.]}} \end{cases}$$

• This deviation motivates New Physics: SUSY can explain it.

 \sim 3...4 σ

- a_µ is an important constraint on SUSY
- Still, large contributions possible, e.g. if sleptons << squarks (non-traditional models)

[Endo, Hamaguchi, Iwamoto, Yanagida, D.P. Roy, et al]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

a_{μ} in MSSM

 $(g-2)_{\mu}$ in MSSM ••••• ••••••••

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

MSSM loop corrections

1. MSSM one-loop correction

• Parameter dependence: μ , M_1 , M_2 , M_L , M_E , tan β

$$a_\mu^{
m SUSY,1L}pprox 13 imes 10^{-10}\,{
m sgn}(\mu)\,{
m tan}\,eta({100\,{
m GeV}\over M_{
m SUSY}})^2$$

2. $f\tilde{f}$ two-loop corrections

[Fargnoli, Gnendiger, Paßehr, Stöckinger, S-K '13]

- Maximum complexity: 5 heavy scales + 2 light scales
- Additional parameter dependence: $M_{Q_i}, M_{U_i}, M_{D_i}, M_{L_i}, M_{E_i}, i \in \{1, 2, 3\}$
- solve the one-loop ambiguity caused by $\alpha \Rightarrow$
- Non-decoupling behaviour \Rightarrow

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

Current status of a_{μ}^{SM} and a_{μ}^{Exp}

Summary

α ambiguity solved

1-loop ambiguity

fixed by full 2-L $f\tilde{f}$

(日) (四) (日) (日) (日)

$$\begin{array}{ll} a_{\mu}^{1L} | \alpha(0) &= 29.4 \times 10^{-10} \\ a_{\mu}^{1L} | \alpha(M_Z) &= 31.6 \times 10^{-10} \\ a_{\mu}^{1L} | \alpha(G_F) &= 30.5 \times 10^{-10} \end{array} \implies a_{\mu}^{1L+2Lf\tilde{f}} = 32.2 \times 10^{-10} \end{array}$$

Difference from $\Delta \alpha$ and $\Delta \rho$: 2-loop $f\tilde{f}$ terms.

ff-loop corrections: Non-decoupling behaviour

- $M_2, m_{\tilde{\mu}_L} >> M_1, m_{\tilde{\mu}_R}$
- $M_1 = 140 \text{GeV}$
- $m_{\tilde{\mu}_R} = 200 \text{GeV}$
- $M_2 = m_{\tilde{\mu}_L} = 2000 \text{GeV}$
- $\mu = -160$, tan $\beta = 40$
- $\mathcal{O}(10...30\%)$

$$\begin{array}{c} M_{U3}, _{D3}, _{Q3}, _{E3}, _{L3}\\ M_{U}, _{D}, _{Q}\\ M_{Q3}; M_{U3} = 1 \ TeV\\ -- (\tan \beta)^2\\ \text{photonic}\\ \dots 2 L(a) \end{array}$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

 $(g-2)_{\mu}$ in MSSM 0000 \bullet 0000000

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

MSSM: Radiative muon mass generation $\tan\beta \to \infty$

Novel phenomenological approach

Summary

Radiative muon mass generation: $\tan \beta \to \infty$

$$m_{\mu}^{
m tree} = y_{\mu}v_{d} \;\; \Rightarrow \;\; 0$$

•
$$v_d \rightarrow 0$$
, $\tan \beta \equiv \frac{v_u}{v_d} \rightarrow \infty$,
 m_μ generated via coupling to v_u

[Dobrescu, Fox '10] [Altmannshofer, Straub '10]

 m_μ ≡ y_μv_d + y_μv_uΔ^{red}_μ: y_μ obtained from one-loop self energy.

•
$$a_{\mu}^{\text{SUSY}} = \frac{y_{\mu}v_{\mu}}{m_{\mu}}a_{\mu}^{\text{red}}$$

• $a_{\mu}^{\text{SUSY}} \propto y_{\mu}$ and $m_{\mu} \propto y_{\mu}$

 $\Rightarrow a_{\mu}^{\mathrm{SUSY}} = rac{a_{\mu}^{\mathrm{red}}}{\Delta_{\mu}^{\mathrm{red}}}$

[1504.05500][Bach, Park, Stöckinger,S-K]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Current status of $a_{\mu}^{
m SM}$ and $a_{\mu}^{
m Exp}$

 $(g-2)_{\mu}$ in MSSM

Summary

The limit of $\tan \beta \to \infty$

$$\begin{array}{l} \mathbf{a}_{\mu}^{\mathrm{red}} = \quad \mathbf{a}_{\mu}^{\mathrm{red}}(\tilde{W}\tilde{H}\tilde{\nu}) + \quad \mathbf{a}_{\mu}^{\mathrm{red}}(\tilde{W}\tilde{H}\tilde{\mu}_{L}) + \quad \mathbf{a}_{\mu}^{\mathrm{red}}(\tilde{B}\tilde{H}\tilde{\mu}_{L}) + \quad \mathbf{a}_{\mu}^{\mathrm{red}}(\tilde{B}\tilde{H}\tilde{\mu}_{R}) + \quad \mathbf{a}_{\mu}^{\mathrm{red}}(\tilde{B}\tilde{\mu}_{L}\tilde{\mu}_{R}) \\ \Delta_{\mu}^{\mathrm{red}} = \quad \Delta_{\mu}^{\mathrm{red}}(\tilde{W}\tilde{H}\tilde{\nu}) + \quad \Delta_{\mu}^{\mathrm{red}}(\tilde{W}\tilde{H}\tilde{\mu}_{L}) + \quad \Delta_{\mu}^{\mathrm{red}}(\tilde{B}\tilde{H}\tilde{\mu}_{R}) + \quad \Delta_{\mu}^{\mathrm{red}}(\tilde{B}\tilde{\mu}_{L}\tilde{\mu}_{R}) \end{array}$$

- $a_{\mu}^{\rm SUSY}$ sign depends on the mass ratios.
- $sgn(\mu)$ and $tan \beta$ dependence disappears.
- $a_{\mu}^{red}(\tilde{W}\tilde{H}\tilde{\nu})$ and $\Delta_{\mu}^{red}(\tilde{W}\tilde{H}\tilde{\nu})$ have opposite signs.
- For the equal mass case, $a_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu})$ and $\Delta_{\mu}^{\text{red}}(\tilde{W}\tilde{H}\tilde{\nu})$ dominate \implies negative a_{μ}^{SUSY}

$a_{\mu}^{ m SUSY}=rac{a_{\mu}^{ m red}}{\Delta_{\mu}^{ m red}}$
$egin{aligned} & a_{\mu}^{\mathrm{SUSY}} \ &pprox -72 imes 10^{-10} \left(rac{1\mathrm{TeV}}{M_{\mathrm{SUSY}}} ight)^2 \end{aligned}$

э

・ロト ・四ト ・ヨト ・ヨト

Current status of a_{μ}^{SM} and a_{μ}^{Exp}

Summary

However! a_{μ}^{SUSY} can be positive, if any of $\tilde{B}\tilde{H}\tilde{\mu}_{L}$, $\tilde{B}\tilde{H}\tilde{\mu}_{R}$, and $\tilde{B}\tilde{\mu}_{L}\tilde{\mu}_{R}$ dominates.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

1

At the equal mass limit,

 $a_{\mu}^{\mathrm{SUSY}} \approx -72 \times 10^{-10} \left(\frac{1 \,\mathrm{TeV}}{M_{\mathrm{SUSY}}}\right)^2$

$$egin{aligned} \mathsf{Generally,} \ \mathfrak{g}^{\mathrm{NP}}_{\mu} &= \mathcal{C}_{\mathrm{NP}} rac{m_{\mu}^2}{M_{\mathrm{NP}}^2}, \ \mathcal{C}_{\mathrm{NP}} &= \mathcal{O}(\delta m_{\mu}^{\mathrm{NP}}/m_{\mu}) \ & (\mathrm{model\ dependent}) \end{aligned}$$

What can be the *C*-value/ $a_{\mu}^{\rm SUSY}$ for the given parameter ratio space?

(日) (四) (日) (日) (日)

Current status of $a_{\mu}^{
m SM}$ and $a_{\mu}^{
m Exp}$

Summary

 $M_{
m SUSY,min}$ evaluated using $a_{\mu}^{
m SUSY}=$ 28.7 imes 10⁻¹⁰.

Current status of a_{μ}^{SM} and a_{μ}^{Exp}

Summary

Further constraints

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Current status of a_{μ}^{SM} and a_{μ}^{Exp}

 $\tan \beta \rightarrow \infty$: Benchmark points

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Summary

$a_{\mu}^{ m SUSY}$ simple approximation

MSSM one-loop approximation with finite $\tan \beta$:

$$a_{\mu}^{\mathrm{SUSY},\mathrm{1L}} pprox 13 imes 10^{-10} \mathrm{sgn}(\mu) \tan eta \left(rac{\mathrm{100 \, GeV}}{M_{\mathrm{SUSY}}}
ight)^2$$

MSSM in the limit of $\tan \beta \to \infty$:

1. The equal mass case,

$$a_{\mu}^{
m SUSY} pprox -72 imes 10^{-10} \left(rac{1\,{
m TeV}}{M_{
m SUSY}}
ight)^2$$

2. $|\mu| \gg |M_1| = m_L = m_R \equiv M_{\mathrm{SUSY}}, \ m_L \gg |\mu| = |M_1| = m_R \equiv M_{\mathrm{SUSY}}$

$$a_{\mu}^{
m SUSY}pprox 37 imes 10^{-10}\left(rac{1\,{
m TeV}}{M_{
m SUSY}}
ight)^2$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

 $(g - 2)_{\mu}$ in MSSN 0000 00000000 Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary

- 3σ deviation in a_{μ} motivates New Physics.
- Precision improvement in a_{μ}^{EW} : Uncertainty in a_{μ}^{EW} caused by $M_{\rm H}$ eliminated.
- MSSM $f\tilde{f}$ two-loop corrections solve the α ambiguity in one-loop result and show non-decoupling behaviour $\mathcal{O}(10...30\%)$.
- Radiative muon mass generation in the limit of $\tan\beta \to \infty$
 - Relevant parameter regions different from the usual MSSM
 - TeV-scale SUSY masses can explain a_{μ} .
 - "large μ -limit" and " μ_R -dominance" regions:

$$a_{\mu}^{
m SUSY}pprox 37 imes 10^{-10} \left(rac{1\,{
m TeV}}{M_{
m SUSY}}
ight)^2$$