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Why GR in LSS?

Planned galaxy surveys: DESI, HETDEX, LSST, Euclid, WFIRST...

Larger and larger volumes, eventually accessing the scales
comparable to the horizon: beyond Newtonian gravity, fully general
relativistic approach (or any modification) is necessary
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Why non-linearity and gauge in LSS?

Non-linearity is prominent in large scale structure thus
accurate modeling of of non-linearity is very important

GR is a gauge theory, thus observational quantities only make
sense after choosing the coordinate systems

On large scales where non-linearity can be probed by observations
with improved accuracy, density contrast δ≡ (ρ− ρ̄)/ρ̄ deviates the
Newtonian prediction

Searching for general relativistic signatures on large scales Jinn-Ouk Gong



Introduction Newtonian theory Relativistic theory Relativistic theory with dark energy Geodesic approach Conclusions

Why dark energy in non-linear regime?

DE was negligible at very early times

DE becomes significant at later stage when non-linearities in
cosmic structure are developed

Naturally DE affects the evolution of gravitational instability, so that
its effects emerge more prominently at non-linear level

Thus of our interest are:
1 relevance of GR
2 gauge issue in GR
3 effects of DE in non-linear regime of LSS
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Newtonian theory

3 basic equations for density perturbation δ≡ δρ/ρ̄, peculiar
velocity u and gravitational potentialΦwith a pressureless fluid

δ̇+ 1

a
∇·u =−1

a
∇· (δu) continuity eq

u̇+Hu+ 1

a
∇Φ=−1

a
(u ·∇)u Euler eq

∆

a2Φ= 4πGρ̄δ Poisson eq

Newtonian system is closed at 2nd order

δ̈+2Hδ̇−4πGρ̄δ=− 1

a2

d

dt
[a∇· (δu)]+ 1

a2 ∇· (u ·∇u)

−→ at linear order, δ+ ∝ a (growing) and δ− ∝ a−3/2 (decaying)

(Bernardeau et al. 2002)
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Basic non-linear equations

Based on the ADM metric

ds2 =−N2(dx0)2 +γij

(
N idx0 +dxi

)(
N jdx0 +dxj

)
the fully non-linear equations are (Bardeen 1980)

R−K
i
jK

j
i +

2

3
K 2 −16πGE = 0

K
j
i;j −

2

3
K,i = 8πGJi

K,0

N
− K,iN i

N
+ N ;i

;i

N
−K

i
jK

j
i −

1

3
K 2 −4πG(E +S) = 0

K
i
j,0

N
−

K
i
j;kNk

N
+

K jkN i;k

N
−

K
i
kNk

;j

N
= K K

i
j −

1

N

(
N ;i

;j −
δi

j

3
N ;k

;k

)
+R

i
j −8πGS

i
j

E,0

N
− E,iN i

N
−K

(
E + S

3

)
−K

i
jS

j
i +

(
N2J i

)
;i

N2
= 0

Ji,0

N
−

Ji;jN j

N
−

JjN j
;i

N
−KJi +

EN,i

N
+Sj

i;j +
Sj

iN,j

N
= 0

Fluid quantities: E ≡ nµnνTµν, Ji ≡−nµTµi, Sij ≡ Tij
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Setup and perturbation variables

We consider scalar metric pert in Einstein-de Sitter universe

N = 1+α , Ni = a2β,i , γij = a2 [
(1+2ϕ)δij +γ,ij

]
The dynamical equations to be solved are:

Energy conservation eq → Continuity eq

Trace of the Einstein eq → Euler eq

We identify the perturbation variables as

δ≡ ρ− ρ̄
ρ̄

with ρ ≡−T 0
0

θ ≡ ∇·u

a
=−3H −K
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Strategy for non-linear perturbations

With the linear solution the same as the standard one

δ1(k,a) = D1(a)δ1(k,a0)

we expand δ= δ1 +δ2 +·· · using symmetric kernels

δ(k,a) =
∞∑

n=1
Dn(a)

∫
d3d1 · · ·d3qn

(2π)3(n−1)
δ(3) (k−q1 −·· ·qn

)
×Fn(q1, · · ·qn)δ1(q1) · · ·δ1(qn)

Then correlation functions are〈
δ(k)δ(k′)

〉= (2π)3δ(3)(k+k′)P(k) with P = P11 +P22 +P13︸ ︷︷ ︸
1-loop

+·· ·

〈δ(k1)δ(k2)δ(k3)〉 = (2π)3δ(3)(k123)B(k1,k2,k3)

with B = B112 +B222 +B123 +B114︸ ︷︷ ︸
1-loop

+·· ·
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Comoving gauge

We set the gauge condition as

γ= 0 and T 0
i = 0

Kernels are found to be (Jeong, JG, Noh & Hwang 2011, Biern, JG & Jeong 2014)

F2 = 5

7
+ q1 ·q2

2q1q2

(
q1

q2
+ q2

q1

)
+ 2

7

(
q1 ·q2

q1q2

)2

F3 = F3N +F3GR where F3GR ∝ k2
H with kH ≡ aH

F4 = F4N + (· · · )k2
H + (· · · )k4

H

Those w/o ϕ are identical to the Newtonian kernels

Newtonian kernels are the same as those found in the standard
perturbation theory based on the Newtonian gravity

GR contributions appear from 3rd order, prop to kH ≡ aH
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Power spectrum with leading corrections in CG

(Jeong, JG, Noh & Hwang 2011)
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Bispectrum with leading corrections in CG
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(Biern, JG & Jeong 2014)
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Leading bispectrum in various gauges

kH

Btree
SG

Btree
UCG

Btree
ZSG

Btree
CG

10-4 0.001 0.01 0.1 1
1

104

108

1012

1016

1020

k@h�MpcD

B
Hk

,k
,k
L@

M
p
c�

h
D6

kH

Btree
SG

Btree
UCG

Btree
ZSG

Btree
CG

10-4 0.001 0.01 0.1 1
1

104

108

1012

1016

1020

k@h�MpcD

B
Hk

,k
,2

k
L@

M
p
c�

h
D6

10kH

Btree
SG

Btree
UCG

Btree
ZSG

Btree
CG

10-4 0.001 0.01 0.1 1
1

104

108

1012

1016

1020

k@h�MpcD

B
Hk

,k
,k
�1

0
L@

M
p
c�

h
D6

100kH

Btree
SG

Btree
UCG

Btree
ZSG

Btree
CG

10-4 0.001 0.01 0.1 1
1

104

108

1012

1016

1020

k@h�MpcD

B
Hk

,k
,k
�1

0
0
L@

M
p
c�

h
D6

(Biern, JG & Jeong 2014)
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Synchronous gauge

We set the gauge condition as

g00 =−1 and g0i = 0

Kernels are found to be (Hwang, Noh, Jeong, JG & Biern 2014)

F2 = 5

7
+ 2

7

(q1 ·q2)2

q2
1q2

2

F3 = F3N +F3GR,ϕ+F3GR,no ϕ

Newtonian kernels are different from standard ones

Some GR contributions are not from ϕ but from non-linear
coupling w/o kH (thus time independent)
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Power spectrum with leading corrections in SG
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(Hwang, Noh, Jeong, JG & Biern 2014)
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Newtonian interpretation of CG and SG

The problem lies in the Newtonian contributions

δ̇+ 1

a
(1+δ)∇·u = 0, θ̇+2Hθ+4πGρ̄δ+ 1

a2 ui,juj,i = (NL terms)

wwÄ d

dt
→ d

dt
+ 1

a
u ·∇ transformation to convective derivative

δ̇+ 1

a
∇· [(1+δ)u] = 0, θ̇+2Hθ+4πGρ̄δ+ 1

a2 ∇· [(u ·∇)u] = (NL terms)
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Newtonian interpretation of CG and SG
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Putting dark energy on the table

Previous strategy is not complete

ΛCDM power spectrum in EdS background

Matter domination all the way

But we know the universe has been dominated by DE for a long time

ρ = ρm −→ ρ = ρm +ρde with pde = wρde

For simplicity

1 No DE perturbation: ρdm = ρ̄de (cf. Park, Hwang, Lee & Noh 2009)

2 Comoving gauge: T 0
i = 0
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Dark energy changes the game

DE provides different BG from both EdS andΛCDM:

H 2 = 8πG

3
a2 (

ρ̄m + ρ̄de
)

and H ′ =−1

2
H 2(1+3w)

DE permeates all order in perturbation: e.g. energy conservation

δ′−κ(1−λ) = (non-linear terms) where λ≡ (1+w)

(
1− 1

Ωm

)
Thus away from EdS (Ωm = 1) andΛCDM (w =−1) the effects of
general, dynamical DE are manifest: we use the parametrization
(Chevallier & Polarski 2001, Linder 2003)

w(a) = w0 + (1−a)wa
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Non-linear solutions with DE

Curvature perturbation is not conserved: from energy constraint

ϕ=−H 2f

1−λ
[

1+ 3

2
(1−λ)

Ωm

f

]
∆−1δ 6= constant

Thus δ receives a) curvature evolution effects from 3rd order and
b) general, dynamical DE effects from BG and linear order:

δ′′+
(
H + λ′

1−λ
)
δ′− 3

2
(1−λ)H 2Ωmδ=NN +Nϕ+Nϕ′ +Nλ︸ ︷︷ ︸

=non-linear source terms

Newtonian EdS ΛCDM DE
NN O O O O
Nϕ X O O O
Nϕ′ X X X O
Nλ X X X O
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Relativistic kernels

2nd and 3rd order solutions are (Biern & JG 2015)

δ2(k,a) = D2
1

b∑
i=a

c2i(a)
∫

d3q1d3q2

(2π)3 δ(3)(k−q12)F2i(q1,q2)δ1(q1)δ1(q2)

δ3(k,a) = D3
1

f∑
i=a

c3i(a)
∫ [

· · ·F3i · · ·3 δ′1s
]

cni ≡ Dni

Dn
1

+D3
1H

2
b∑

i=a
cϕ3i(a)

∫ [
· · ·Fϕ3i · · ·3 δ1’s

]
cϕ3i ≡

Dϕ

3i

D3
1H

2

In the EdS universe c’s are fixed as certain numbers (c2a = 3/7...)
and (also inΛCDM) cni terms become purely Newtonian [Kamionkowski &

Buchalter 1999 (2nd) and Takahashi 2008 (3rd)] and only cϕ3i terms remain relativistic

N. B. λ is completely entangled and cannot be separated like ϕ
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One-loop corrected power spectrum: versusΛCDM
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Overall almost constant deviation on large scales
(k . 0.1h/Mpc)

Deviation becomes significant on k & 0.1h/Mpc, close to
baryon acoustic oscillations

w0 >−1 / wa > 0 (w0 <−1 / wa < 0) give smaller (larger) P(k)
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One-loop corrected power spectrum: versus EdS

In Newtonian studies, usually EdS power spectrum is transferred to
an arb model by replacing a → D1(a):

P(k,a) = D2
1(a)P11(k)+D4

1(a)[P22(k)+P13(k)]EdS
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ForΛCDM, only ϕ drives difference so almost identical to EdS
For general DE, the difference notably increases from
k ≈ 0.1h/Mpc
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To redshift space

Observations are made i.t.o. redshift (Kaiser 1987, Heavens, Matarrese & Verde 1998

δs = δr −∂‖U +higher order terms

where δr = bδ , U ≡ n̂ ·v

H
and ∂‖ ≡ n̂ ·∇

Then the observable galaxy power spectrum in the redshift space

Ps(k,µ,a) = Ps11(k,µ,a)+Ps22(k,µ,a)+Ps13(k,µ,a)

with µ≡ n̂ ·k/k, thus no longer isotropic

µ= 1: line-of-sight direction, most dominant

µ= 0: perp to LoS

Thus the deviation fromΛCDM becomes larger for LoS spectrum
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One-loop corrected LoS power spectrum

Deviation is enhanced as large as 10% at around BAO scales

wa = 0 and varying w0 w0 =−1 and varying wa

k [h/Mpc] w0 =−1.2 w0 =−0.8 k [h/Mpc] wa =−1.0 wa =−0.5 wa = 0.5
0.1 6.8% -10.2% 0.1 9.5% 5.8% -11.5%
0.2 11.6% -15.0% 0.2 14.9% 8.8% -15.3%
0.3 16.0% -19.4% 0.3 20.1% 11.6% -19.0%
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Observable galaxy number density

We observe as if photons come to us along a straight, unperturbed
geodesic...

but in fact the path is distorted due to perturbations at
the locations of the observer and the source, and in between
(Yoo et al. 2009, Bonvin & Durrer 2011, Bertacca, Maartens & Clarkson 2014, Yoo & Zaldarriaga 2014...)

𝑥𝑜 =  (𝜂0, 0) 

𝑥𝜇 = (𝜂0 − 𝜒,𝜒𝑛�) 

𝑥 

𝜂 

See S. G. Biern’s presentation for detail
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Conclusions

As galaxy surveys become deeper and deeper, fully GR
description is relevant

Gauge dependence at non-linear order:
In CG the standard perturbation theory is reproduced
Pure GR corrections are heavily suppressed in almost all cases
Naively using SG leads to pathologies
Transformation by hands cures the problem

With general dark energy:
Dark energy background greatly affects GR contributions
Notable difference of a few percent near BAO scales
Detectable signatures of judgingΛ or not

Geodesic approach based on observable quantities should
help
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