First Data from DM-Ice17, Prospects for DM-Ice

Reina Maruyama, Yale University
on behalf of the DM-Ice Collaboration

IBS Mini Workshop on Direct Search of Dark Matter
July 7, 2015
Daejeon, Korea
Dark Matter Signal or Background?

DAMA

dam:1308.5109

CDMS-Si

CoGeNT

dam:1304.4279

dam:1401.3295

dam:1304.4279

dam:1401.3295

CRESST

Reina Maruyama

July 7, 2016
A World of Dark Matter Searches

- Homestake: LUX
- SNOLAB: DEAP/CLEAN, PICASSO, COUPP, DAMIC
- Canfranc: ANAIS, ArDM, Rosebud
- Boulby: DRIFT
- Modane: EDELWEISS
- Gran Sasso: CRESST, DAMA/LIBRA, DarkSide, XENON
- Kamioka: XMASS
- YangYang: KIMS
- Jinping: Panda-X, CDEX
- Modane: EDELWEISS
- Canfranc: ANAIS, ArDM, Rosebud
- Homestake: LUX
- SNOLAB: DEAP/CLEAN, PICASSO, COUPP, DAMIC
- Boulby: DRIFT
- Modane: EDELWEISS
- Gran Sasso: CRESST, DAMA/LIBRA, DarkSide, XENON
- Kamioka: XMASS
- YangYang: KIMS
- Jinping: Panda-X, CDEX
- Modane: EDELWEISS
- South Pole: DM-ICE
- ANDES: (planned)
- Stawell: (planned)
Annual Modulation Dark Matter Searches with NaI Detectors

<table>
<thead>
<tr>
<th>Northern Hemisphere</th>
<th>Southern Hemisphere</th>
<th>Y2L KIMS ~200kg</th>
<th>Gran Sasso SaBRE R&D</th>
<th>Canfranc ANAIS 250 kg</th>
<th>Kamioka KamLAND-PICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gran Sasso DAMA/Libra 250kg running</td>
<td>South Pole DM-Ice 17 kg running R&D for 250 kg</td>
<td>Gran Sasso SaBRE R&D</td>
<td>Canfranc ANAIS 250 kg</td>
<td>Kamioka KamLAND-PICO</td>
<td></td>
</tr>
</tbody>
</table>

Several Groups conducting ultra-pure crystal with several vendors to go to the full scale DM-Ice:

- Nal dark matter search in an entirely different environment
- South Pole offers:
 - Ultra-clean and ultra-stable environment
 - Seasonal variation unambiguously different from dark matter modulation
 - IceCube offers muon monitoring and veto as well as experience
 - NSF-run South Pole Station for logistical support
Phased Program for DM-Ice

Directly test DAMA’s assertion that the observed annual modulation is due to dark matter & understand its origin

- probes longest-standing dark matter claim
- NaI(Tl) target
- aims to understand origin of DAMA’s signal
- only experiment with access to both Northern & Southern Hemispheres

A Phased Experimental Program

DM-Ice17

Operating since 2011

17 kg of NaI(Tl) at 2450m depth at South Pole

DM-Ice 250 North

Northern Hemisphere Run

portable 250 kg NaI(Tl) detector, first deployment in the Northern Hemisphere

DM-Ice 250 South

Deployment at South Pole

if modulation seen in North & ice drilling becomes available

see also Cherwinka et al.

Astroparticle Physics **35** (2012) 749
Science and Facilities at the South Pole

- South Pole
- Amundsen-Scott South Pole Station
- IceCube
- AMANDA
- ARA
- SPT, BICEP II
- runway
- IceCube Control Lab

1 km
Advantages of South Pole

- Same dark matter signal in both hemispheres
- Seasonal variation reversed in phase
 - Muon tagging with IceCube/DeepCore
 - Spallation neutrons moderated by ice
- Overburden: 2450 m ice (2200 m.w.e.)
 - Clean Ice
 - ppt 238U/232Th, ppb 40K
 - Enclosed space
- Stable environment under ice
- Support infrastructure of Amundsen-Scott South Pole Station

see also Cherwinka *et al.*
Astroparticle Physics *35* (2012) 749
DM-Ice17: An NaI Detector in IceCube/DeepCore

Deployed at the South Pole in December 2010
- A 17 kg NaI detector
- Operation since Feb. 2011
- Data run from June 2011

Demonstrated:
- Feasibility of deploying a remotely-operable dark matter detector in the Antarctic Ice
- Stability of the environment
- Radiopurity of the antarctic ice / hole ice
- Explore the capability of IceCube to veto muons
DM-Ice-17 Detector

- 2 IceCube mainboards + HV control boards
- PMTs: 5” ETL 9390UKB
- NAIAD NaI Crystal (5”x5”, 8.5 kg)
- quartz light guides
- PTFE light reflectors
- Stainless Steel Pressure Vessel
- 1.0 m, 36 cm (14”)
- IceCube DOM 59
- IceCube DOM 60
- 7 m
DM-Ice-17 Construction & Deployment

- Design begin Feb. 2010
- Revive NAIAD xtals
 - July 2010
- Detector assembly
 - Sep - Oct. 2010
- Shipment to Antarctica
 - Dec. 1, 2010
- Deployment
 - Dec. 11, 2010
- Detector in the hole
DM-ICE17 Assembly
Pressure Vessel Testing

Integrity of steel pressure vessel tested against >7000 psi (freeze-in test)
DM-ICE17 Assembly

Final assembly and wiring. Lower volume purged with nitrogen and sealed from electronics.
Data from DM-Ice17

IceCube Lab

IceTop

IceCube Below

SPT/BICEP-II

DM-Ice17 Below
DM-Ice17: Detector Operations

- **Physics data taking since June 2011**

- Monitored quantities:
 - Temperature of the boards
 - ~10°C above surrounding ice
 - Fast (2-3 weeks) decrease during freeze-in
 - slower decrease over a few months after freeze-in
 - Pressure follows similar trend as temperature (ADC resolution limited)
 - Values recorded every 2 sec. before March 2012. Every 60 sec. since March 2012.
Low Energy Spectrum

- Spectrum below 10 keV dominated by “thin” pulses.
- Below 2 keV: combination of single-photoelectrons & electronics noise.

<table>
<thead>
<tr>
<th>Energy (keV)</th>
<th>Counts / day / keV / kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thin Pulse Model</td>
<td>Data (no cuts)</td>
</tr>
<tr>
<td>EMI Noise Model</td>
<td>Data (cuts applied)</td>
</tr>
<tr>
<td>SPE Noise Model</td>
<td>Thin Pulse Model</td>
</tr>
</tbody>
</table>

DM-Ice Collaboration
arXiv:1401.4804v1

Signal: < 100 keV

SPE

Reina Maruyama
IBS, Korea - July 7, 2015
Event Selection: “Thin” pulses

- Characteristics:
 - high pulse-height relative to charge
 - asymmetric between two PMTs
- 90% of events between 5-10 keV are “thin”
- Current cut effective above 7 keV

Energy spectrum: before & after thin pulse cut

Before cut

After cut

pulse height vs. charge

Energy (keV)

charge: PMT1 vs. PMT2

Charge: PMT-1

Charge: PMT-2
Low Energy Background Model

Largest contamination from NaI(Tl) and PMTs

^{210}Pb

^{125}I X-rays

^{40}K

^{125}I

^{210}Pb

^{212}Pb

7.9±0.4 dru

DM-Ice 2014
Spectrum vs. Simulation

- Good agreement with simulation
- Simulation based on:
 - NaI from alphas and K from data
 - radioassay of spare parts

alphas in DM-Ice17 NaI (5 mBq/kg)

Pulse-shape discrimination (1 - 9 MeVee)
Cosmogenic Activation for DM-Ice17

<table>
<thead>
<tr>
<th>Location</th>
<th>Relative Neutron Rate (to sea level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madison, WI</td>
<td>1.38</td>
</tr>
<tr>
<td>South Pole</td>
<td>11.1</td>
</tr>
<tr>
<td>Commercial Flight</td>
<td>100 – 600</td>
</tr>
</tbody>
</table>

Commercial flights at ~36,000+ ft

Polar program flights

Storage at 9,301 ft

Low geomagnetic rigidity
Confirm identity of cosmogenic peaks:
Match simulated spectral features
Expect 65.3 keV full-energy and 37.6 keV L-shell capture peaks for 125I
Measuring decay time
Expect 59.4 day half-life for 125I

DM-Ice17 Det-1 Data and Residual

113Sn, 121mTe X-rays

125I L-capture, full-energy

Count Rate for 125I Peak

Det-1 $t_{1/2} = 59.2 \pm 1.8$ days
Det-2 $t_{1/2} = 60.9 \pm 2.6$ days
Lit. $t_{1/2} = 59.400 \pm 0.010$ days
Looking Ahead: Activation for DM-Ice

- Transport by sea/overland
 - Polar program flights remain
 - Reduce storage time at 9,301 ft
 - Low geomagnetic rigidity
Simulated Activation Event Rate

Event rate one month after deployment

Event rate vs. time

Cosmogenic contribution to ROI:
- 126I ($t_{1/2} = 13$ days)
- lead contribution at deployment
- 113Sn ($t_{1/2} = 115$ days)
- dominates rate over physics run

- Multiple strong cosmogenic lines
- Significant contributions to 2 – 6 keV region of interest & must be minimized
Cosmogenic Mitigation

“Exposure budget” for 113Sn in DM-Ice250S:

- After “easy” 40% reduction
- Major contributions remain from NZL-McM flight and South Pole

Further reductions:
- 50% reduction in low-altitude NZL-McM cargo flight (15% of total)
- 90% reduction in South Pole activation from under-ice storage:
Antarctic Ice: Overburden at -2500 m (2200 m.w.e.)

- ~85 muons/m2/day at bottom of IceCube (2/day for DM-Ice17)
- IceCube/DeepCore veto reduces rate by ~1-2 orders of magnitude.

Preliminary
Identifying Muons in DM-Ice

Muons are identified with their high energy depositions and pulse shape variable using the pulse height (h_i) at time (t_i):

$$
\tau = \frac{\sum h_i t_i}{\sum h_i}
$$

Expect 0 α, 3 γ in muon sample/year
IceCube - DM-Ice Coincidence

Events that trigger both DM-Ice and IceCube Found!

Muon rate in DM-Ice (appear as mip): 2/day

81 events in 11 months pass IceCube’s muon trigger. (expect more events in less stringent triggers)

Muon events result in elevated event rate at low energies in DM-Ice17 persisting for > 10 sec.

December 2012 – Event #14
2012-12-21 RunID: 121431, EventID 79868923
Seasonal Muon Rate Modulation

The muon rate at the South Pole well measured by IceCube

Temperature of the stratosphere in pressure layers, T^p [K]

IceCube muon rate [Hz] (K)

Muon rate modulation with a single IceCube DOM

IceCube Collaboration, arXiv:1108.0171
Muon Rate in DM-Ice and IceCube

- The muon rate observed in DM-Ice tracks IceCube’s rate

![Graph showing muon rate comparison between DM-Ice and IceCube](graph.png)

DM-Ice
- DM-Ice Fit
- DM-Ice17: 14±3% mod.

IceCube
- IceCube: 8.6±1.2% mod.
Muon Energy Distribution

- Energy & direction of the muons measured by IceCube
- DM-Ice anchors muons in IceCube to 13 cm
- Studies underway to help improve IceCube reconstruction
DM-Ice250 Simulations

Close-Packed Detector Array

inner crystal

outer crystal

Sensitivity to DAMA Modulation Signal

DM-Ice250 Background

2-6 keV region: 3 dru w/o xtal-xtal veto, 1.75 dru average with veto

DM-Ice250

DM-Ice250 Background

DAMA
New Low-Background NaI(Tl) Crystals

Development of NaI(Tl) detectors with Alpha Spectra, Inc (ASI) in CO, USA
Three groups work with Alpha Spectra: DM-Ice, ANAIS, KIMS.
Communication and sharing of R&D results

- 2 x 18 kg crystals from Alpha Spectra, first ran at Fermilab MINOS near hall for testing, then moved to Boulby

Backgrounds are within acceptable levels for an experiment with 2 counts/day/keV/kg.
DM-Ice37 Contamination

• Collective NaI(Tl) effort (DM-Ice, ANAIS, KIMS)
 • Goal set by DAMA: 1 dru in ROI
 • Currently: 3 dru above noise energies
 • Noise removal in progress
 • DM-Ice17: 8 dru
 • 2 mBq/kg alphas
What do we need to test DAMA?

• 500 kg-yr, 1 cnt/keV/kg/day at various thresholds
What do we need to test DAMA?

- 500 kg-yr, 1, 2 & 5 cnt/keV/kg/day, 2 - 20 keV
What If...

- 1000 kg-yr, 0.1 cnt/keV/kg/day
Summary

Directly test DAMA’s assertion that the observed annual modulation is due to dark matter & understand its origin

- Successful installation and running of DM-Ice17 at the South Pole
- IceCube gives additional information on muons in DM-Ice, DM-Ice may help IceCube’s reconstruction
- DM-Ice37 at Boulby, crystal R&D going forward
- 11x reduction in 40K, 8x in 210Pb
- DM-Ice250: unique position in global effort to definitively test DAMA
DM-Ice Collaboration

Yale University
Reina Maruyama, Karsten Heeger, Kyungeun Lim, Walter Pettus, Zachary Pierpoint, Antonia Hubbard

University of Wisconsin – Madison
Francis Halzen, Albrecht Karle, Matthew Kauer, Mike DuVernois, Bethany Reilly

University of Sheffield
Neil Spooner, Vitaly Kudryavtsev, Anthony Cole, Anthony Ezeribe, Calum Macdonald, Christopher Oates, Frederic Mouton, Matt Robinson, Sam Telfer, Dan Walker

University of Alberta
Darren Grant

University of Illinois at Urbana-Champaign
Liang Yang

Fermilab
Lauren Hsu

Shanghai Jiao Tang University
Xiangdong Ji, Changbo Fu

NIST-Gaithersburg
Pieter Mumm

University of Stockholm
Chad Finley, Per Olof Hulth, Klas Hultqvist, Christian Walck

DigiPen
Charles Duba, Eric Mohrmann

Boulby Underground Science Facility
Sean Paling