

Overview of The Rare Isotope Science Project (RISP)

Young Kwan Kwon

ARIA2019 @ IBS

CONTENTS

PART 1. Project Overview

PART 2. Construction Status

PART 3. System Installation

PART 4. Radiation Safety

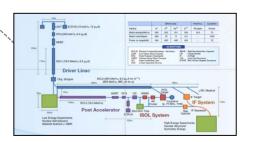
PART 5. Summary & Outlook

Rare Isotope Science Project (RISP)

Goal: To build a heavy ion accelerator complex RAON, for rare isotope science research in Korea.

* RAON - Rare isotope Accelerator complex for ON-line experiments

O Budget: KRW 1,498 billion (US\$ 1.23 billion, 1\$=1,209krw)


- accelerators and experimental apparatus: 502.8 billion won

- civil engineering & conventional facilities : 996 billion won (incl. site 357 billion won)

O Period: 2011.12 ~ 2021.12

System Installation Project

Development, installation, and commissioning of the accelerator systems that provides high-energy (200MeV/u) and high-power (400kW) heavy-ion beam

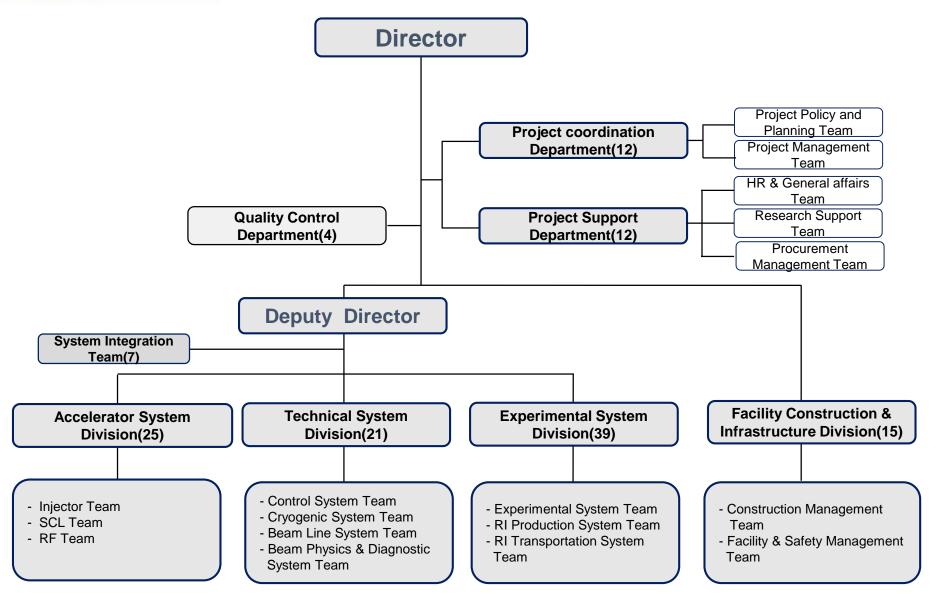
Facility Construction Project

Construction of research and support facility to ensure the stable operation of the heavy-ion accelerator, experiment systems, and to establish a comfortable research environment

X Accelerator and experiment buildings, support facility, administrative buildings, and guest house, etc.

- Providing high intensity RI beams by ISOL and IF ISOL: direct fission of ²³⁸U by 70 MeV proton IF: 200 MeV/u ²³⁸U (intensity: 8.3 pμA)
- Providing high quality neutron-rich beams e.g., ¹³²Sn with up to 250 MeV/u, up to 10⁹ particles per second
- Providing More exotic RI beam production by combination of ISOL and IF

RAON Layout



- SCL1 has been decided to postpone
 - : SCL3 is going to be taking a role of SCL1 in the early operation

RISP Organization

RIBs at RAON

RAON will provide access to unexplored regions of the nuclear chart

Project History

System Installation

Facility Construction

Project General

Jan 2012 Established Master Plan for RISP

June 2012 Submitted Basic Design Summary (BDS)

May 2014 Finalized the Master Plan for the Establishment of the IBS (Heavy-ion Accelerator)

July 2014 Finalized the Implementation Plan for the Construction of the Heavy-ion Accelerator Facility

Dec 2014 Began the basic design of facility construction

June 2016 Constructed the SRF test facility at Munji

Sep 2016 Started detail design of facility construction

March 2018 Completed the SCL3 HWR prototype module performance test

2012

2013

2014

2015

2016

2017

2018

Jan 2009

Finalized the Comprehensive Belt Plan (National Science & Technology Commission)

June 2010

Completed the research to establish the Heavy-ion Accelerator Construction Plan

Feb 2011

Completed the Heavy-ion
Accelerator Conceptual Design

Dec 2011 Launched the Heavy-in Accelerator Project June 2013 Completed Technical Design Report (TDR)

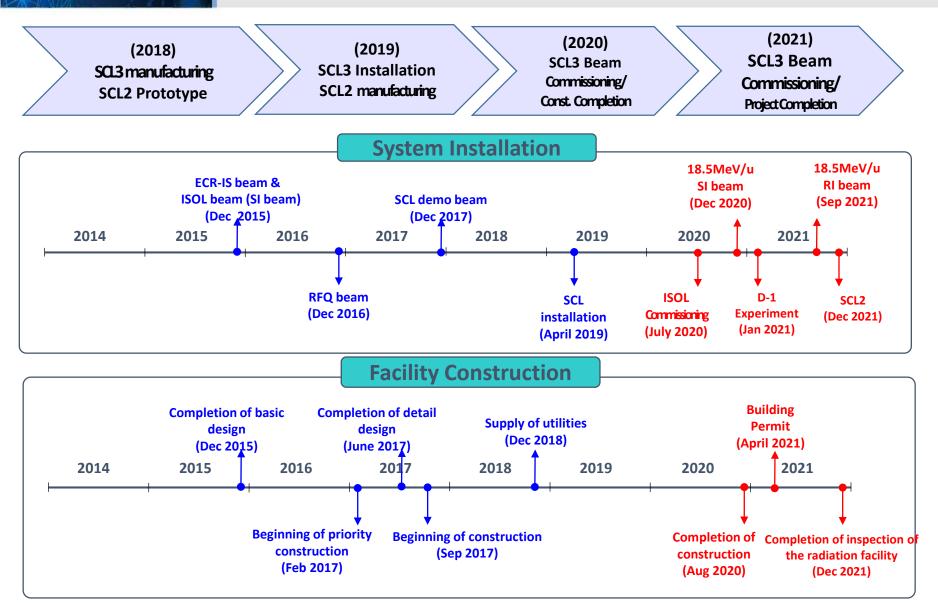
Sep 2013 Revised the Master Plan (1st) (period extension (~2019), implementation schedule change, etc.) April 2015 Revised the Master Plan (2nd) (period extension (~2021), implementation strategy change, etc.)

Dec 2015 Completed the basic design of facility construction

Feb 2017 Began the priority work of facility construction

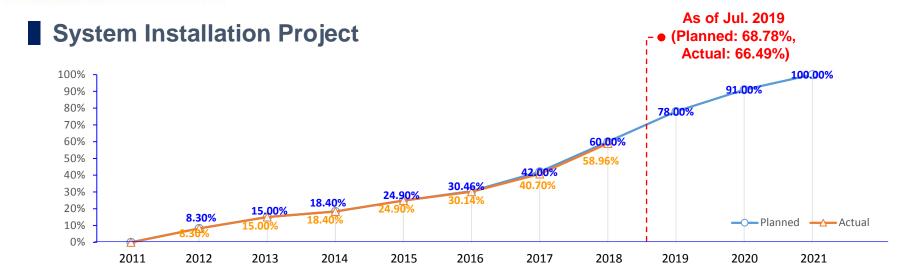
May 2017 Successfully completed the performance test of the SCL3 QWR module

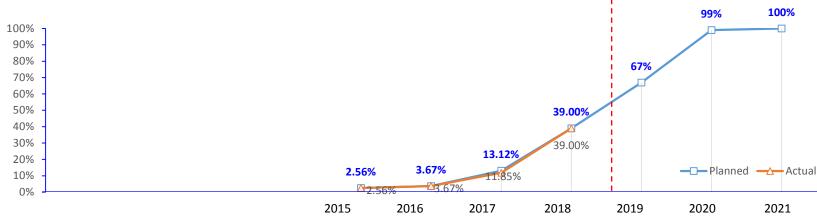
June 2017 Completed the detail design of facility construction
Sep 2017 Began the facility


Sep 2017 Began the facility construction

Oct 2017 Successfully completed the SCL demo runs

Dec 2017 Project review by TF


Project Milestone



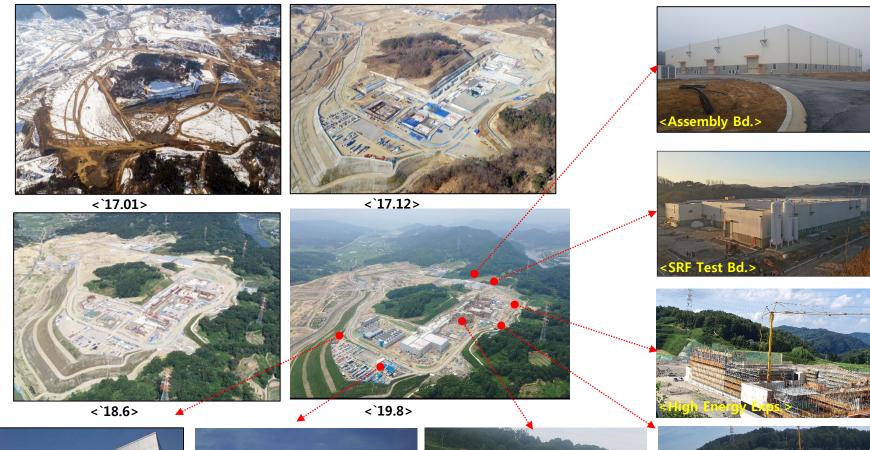
Progress Rate

As of Jul. 2019

(Planned: 53.41%, Actual: 53.67%)

Building Layout

Building Layout



View of Construction Place

View of Construction Place (`19.8)

Conventional Facilities

SCL3

Low Energy A/B

ISOL

IF/ High Energy A

High Energy B

SCL3

Bending Section

SCL3-gallery

Accelerator Bd.

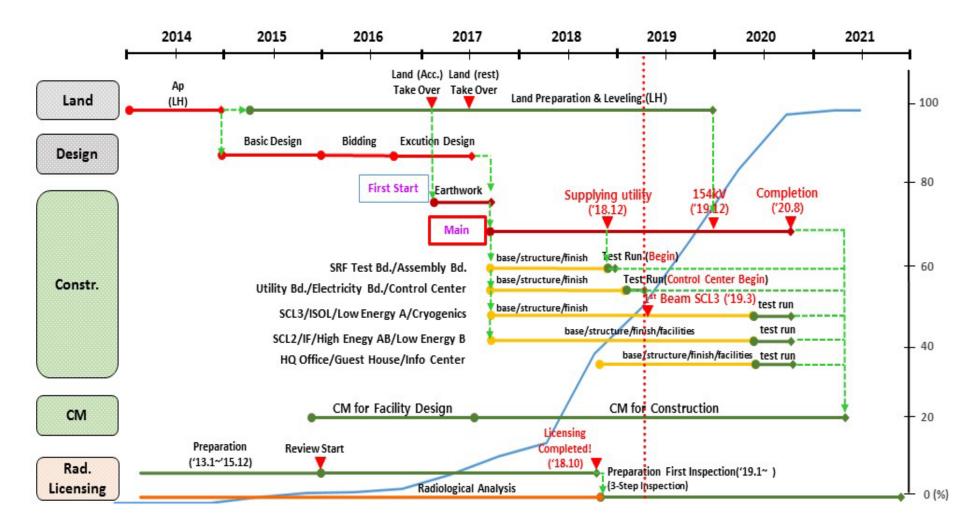
Conventional Facilities

Assembly Bd.

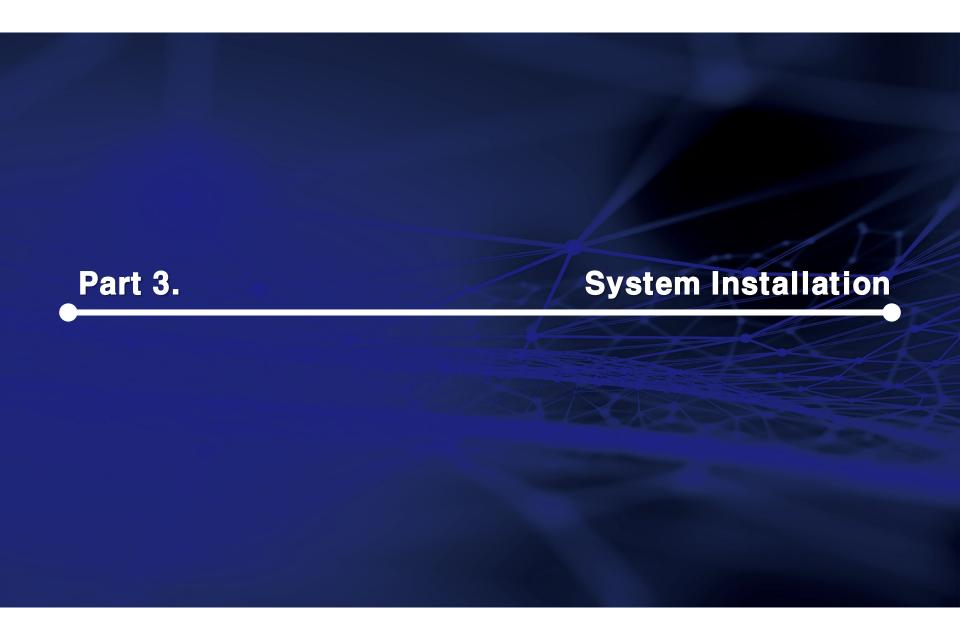
Control Center

HQ Office Bd.

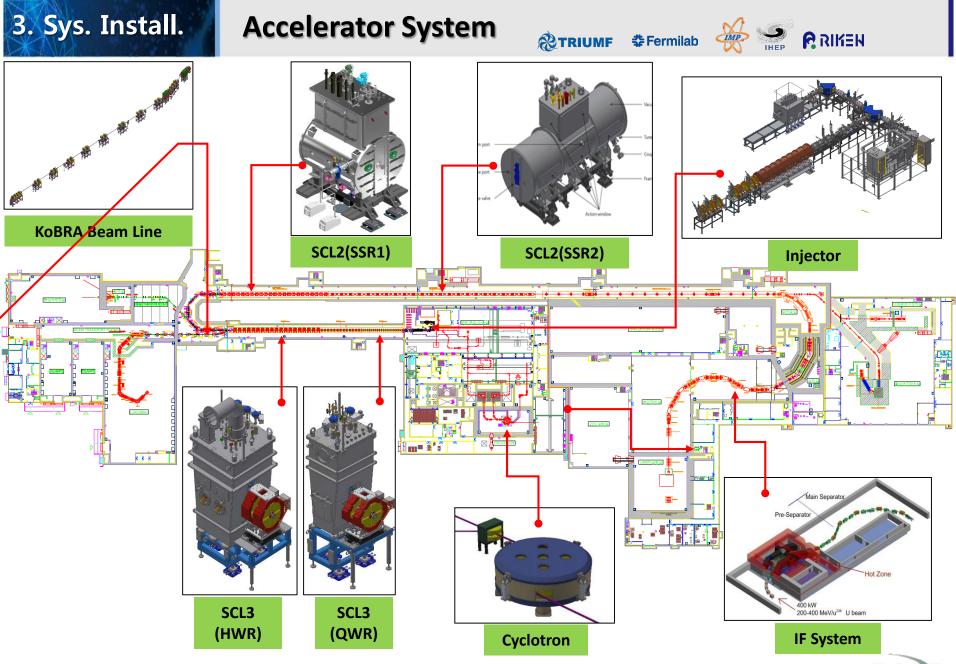
Utility Bd.

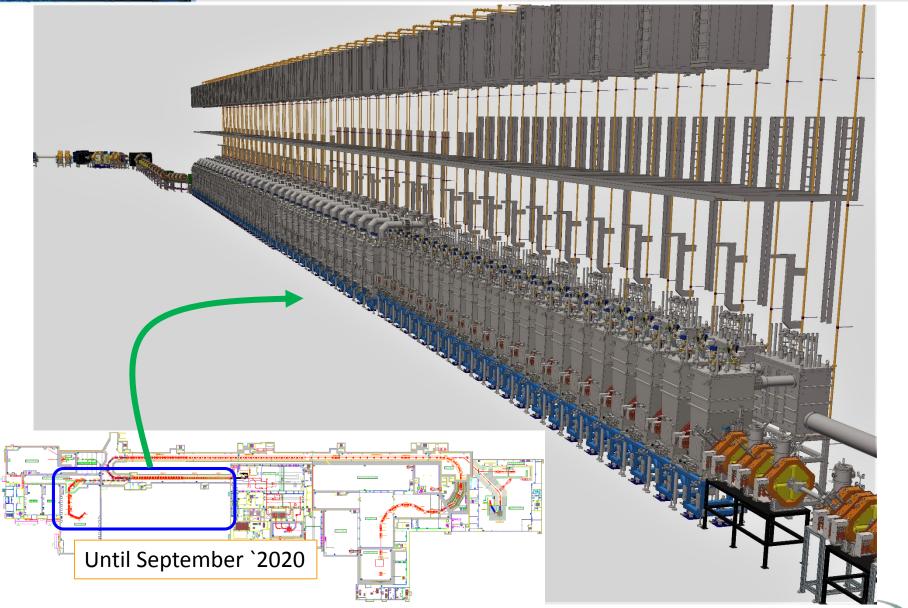


Electricity Bd.


Construction Schedule

Construction Schedule



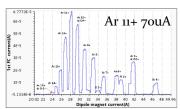


Accelerator System

Accelerator System - Injector

Injector

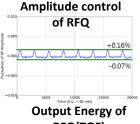
- Two ECR ion sources on high voltage platforms
 14.5 GHz ECR ion source
 28 GHz superconducting ECR ion source
- LEBT (E = 10 keV/u)
 Beam energy 10 keV/u, Dual bending magnet
 Chopper & Electrostatic quads, Instrumentation
- RFQ (E = 500 keV/u)
 Frequency 81.25 MHz, Transmission Eff. ~98%
 CW RF Power 94 kW (SSPA: 150 kW)
- MEBT (E = 500 keV/u)
 Four RF bunchers (SSPA: 20, 15, 4×2 kW)
 Simple quadrupole magnets, Instrumentation

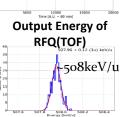

MEBT RFQ

SC ECRIS commissioning

- · Beam experiment for the performance enhancement
- · Basic metal beam experiment

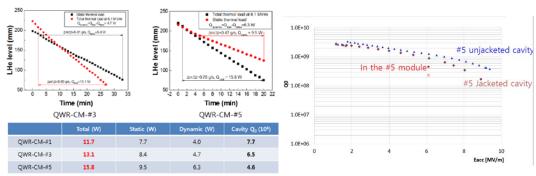
Ar beam experiment Charge distribution


♦ RFQ commissioning

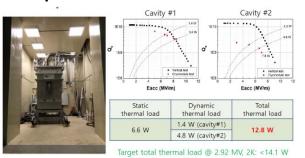

SC ECRIS

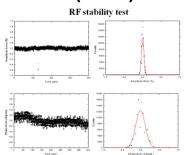
 RFQ has been conditioned to 40kW, sufficient to accelerate A/q=4.5 beams

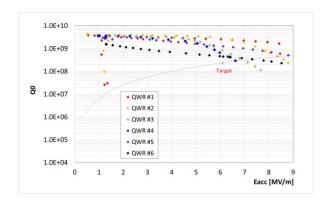
Amplitude cor



Accelerator System – SCL3

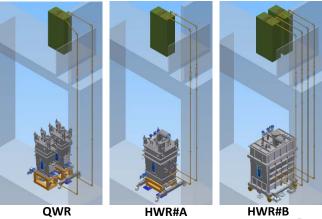

◆ SCL31(QWR)


- Designed performance was achieved with prototypes (2017.5)
- Oxygen beam was accelerated with injector and one QWR module(2017.10)
 500 keV/u → ~700 keV/u, Successful long-tem operation of cryomdoule
- Mass production was contracted with domestic vendor(2017.12)
 Pre-production cavities and cryomodules passed qualification
 Thermal load <20W@6.1MV/m, 4.2 K



◆ SCL32(HWR)

- Designed performance was achieved with prototypes (2017.10) Thermal load <14.1W@6.6MV/m, 2.1 K (HWR type A)
- Mass production was contracted with domestic vendor(2018.5)



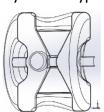
◆ RF System

- SSPA (4kW): 2018.07~2020.04
 Prototype performance test
- HPRF transmission line (1-5/8")
 Installation start (2019.08)
- LLRF control system (2019.07~2020.06)
- · RF reference line (81.25MHz) : ~2019.12

Accelerator System – SCL2

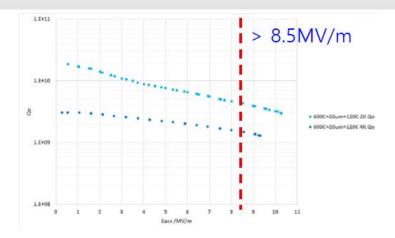
SCL21(SSR1)

- · 1st prototype was manufactured by TRIUMF(2019.6) Balloon type(less multipacting, better mechanical characteristics) Accelerating gradient over 8.7MV/m, Multipacting below 2MV/m
- · 2nd prototype with domestic vendor is under fabrication

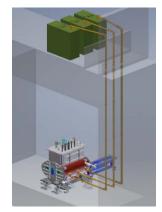


SCL22(SSR2)

- · 1st prototype of cavity is under fabrication Designed by RISP, being fabricated by domestic vendor Balloon type, Deep drawing (depth ~280mm)
- · 2nd prototype with IHEP is in design stage


Cylindrical type

K

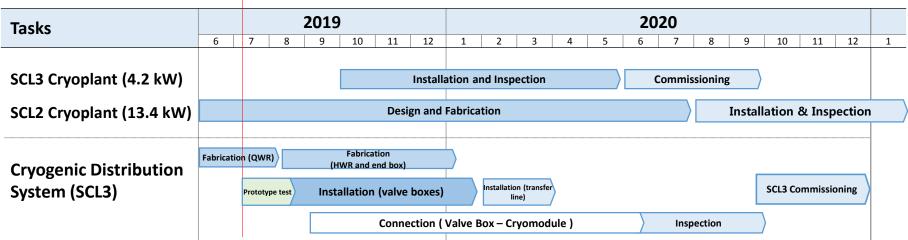

Parameters	Value
β	0.51
f [MHz]	325
$L_{eff}(=\beta_o\lambda)[mm]$	~470
Beam tube diameter [mm]	50
$E_{acc}[MV/m]$	8.7
V_{acc} [MV]	4.1

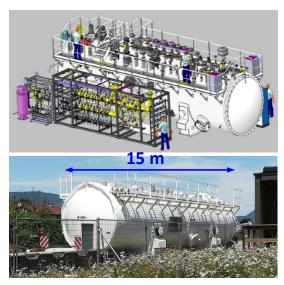
RISP design(balloon type)

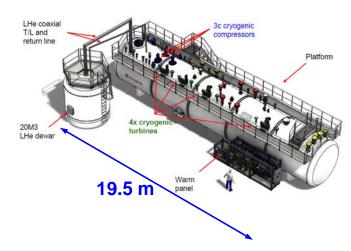
RF System

- SSPA (8, 20 kW): 2020.01~2021.06 Requirement for RF power being optimized
- · HPRF transmission line 3-1/8", 4-1/16" rigid coaxial
- LLRF control system (2020.04~2021.06)
- RF reference line (81.25MHz): ~2020.12

SSR1


SSPA Prototype




Cryogenic System

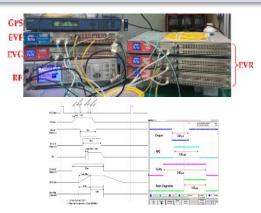
Now

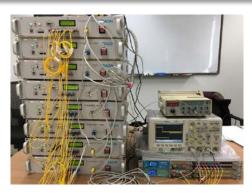
SCL3 Cold Box (95 ton)

SCL2 Cold Box (130 ton)

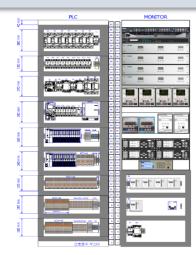
QWR Valve Box

Control System

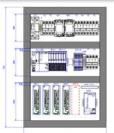

Control Center



Integrated Control System



Timing System



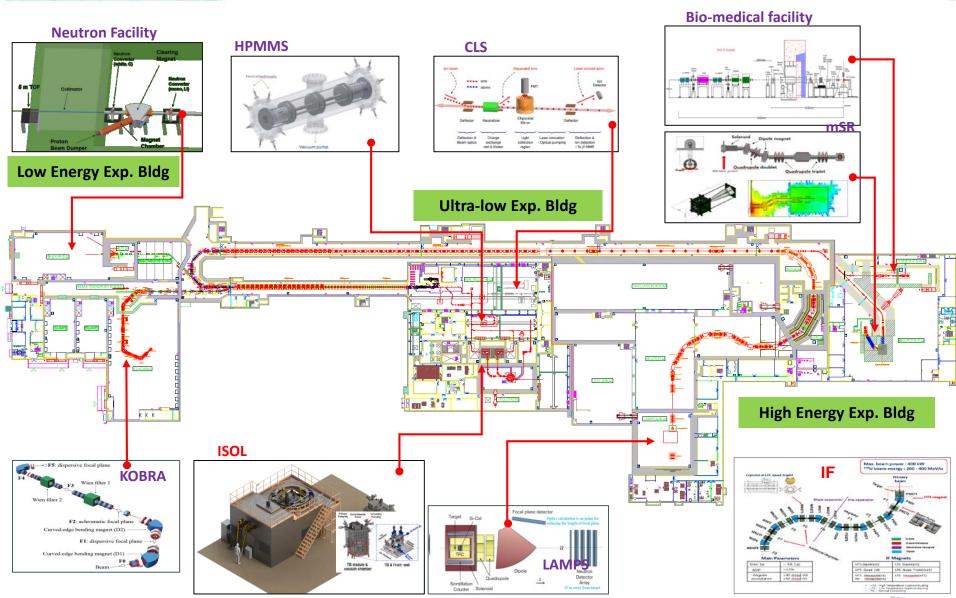
Fast Protection System

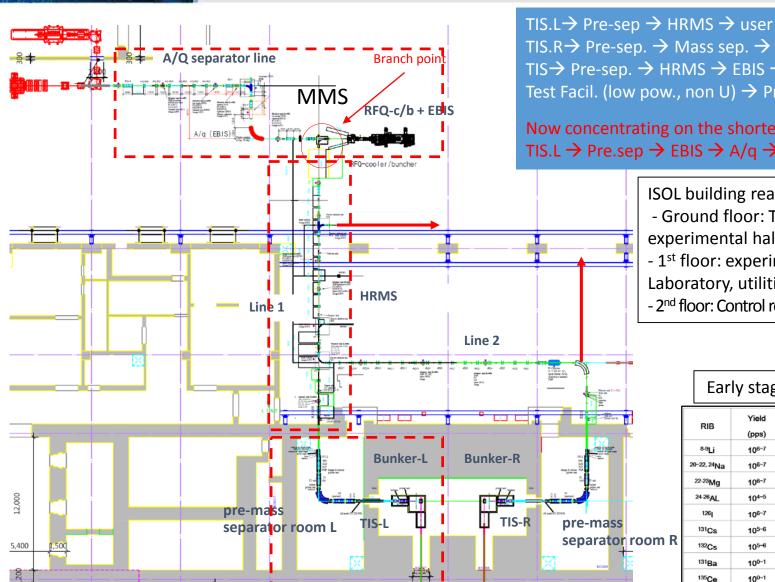
Local Control System

SCL3 Control System

Beam Diagnostics Control System

Embedded EPICS IOC Controller


RI & Experimental System



ISOL system

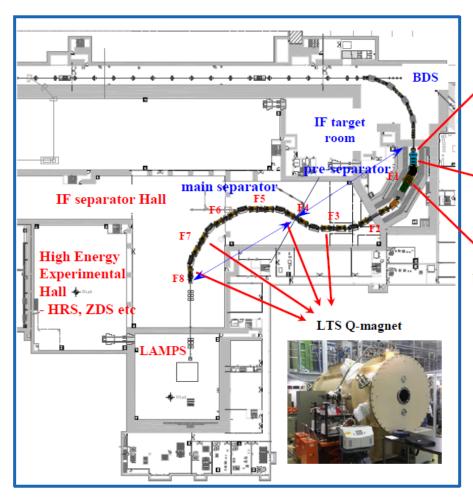
 $TIS.R \rightarrow Pre-sep. \rightarrow Mass sep. \rightarrow HRMS \rightarrow user$ TIS \rightarrow Pre-sep. \rightarrow HRMS \rightarrow EBIS \rightarrow a/q \rightarrow post acc. Test Facil. (low pow., non U) → Pre-sep → user

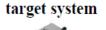
Now concentrating on the shortest line TIS.L \rightarrow Pre.sep \rightarrow EBIS \rightarrow A/q \rightarrow Post.acc

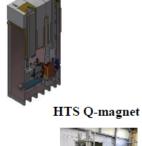
ISOL building ready by '19.12

- Ground floor: TIS, beamline, experimental hall
- 1st floor: experimental hall, Laboratory, utilities
- 2nd floor: Control room, Analysis room

Early stage operation


RIB	Yield (pps)	Target material	1 kW proton
⁸⁻⁹ Li	106~7	BN	SI
20~22, 24Na	106~7	MgO, SiC	SI
²²⁻²³ Mg	106~7	SiC	SI+LIS
²⁴⁻²⁶ AL	104~5	SiC	SI+LIS
126	106~7	LaC ₂	FEBIAD
¹³¹ Cs	10 ^{5~6}	LaC ₂	SI
¹³² Cs	10 ^{5~6}	LaC ₂	SI
¹³¹ Ba	100~1	LaC ₂	SI
¹³⁵ Ce	100~1	LaC ₂	SI





IF system

In-Flight separator layout

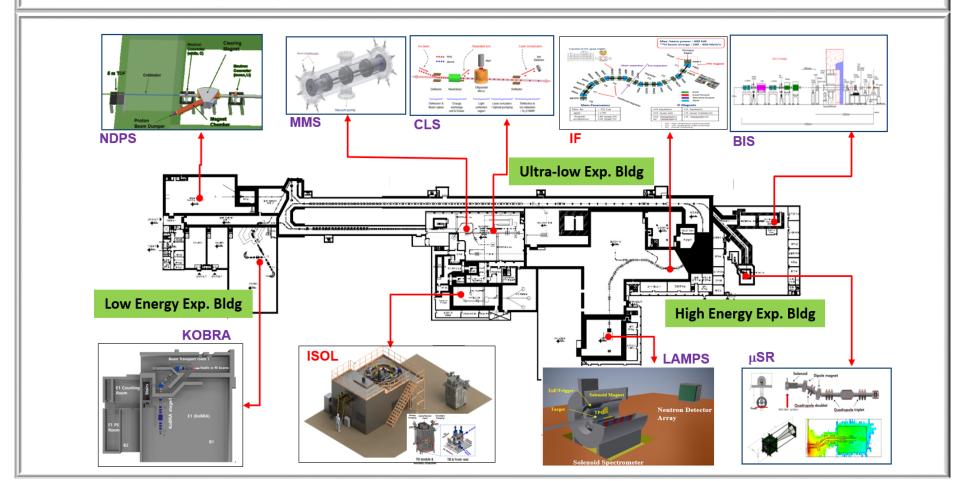


beam dump system

Focal plane chamber

Configuring device list

- Target system
- Beam dump system
- Collimator
- Q-pole magnet(HTS) 6 ea
- Dipole(MIC, NC) 8 ea
- Q-pole triplet(LTS) 13 ea
- Vacuum chamber
- Vacuum pump
- Valve, pipe, tube etc.
- Radiation shielding block


Total length~ 120 m

Layout of Experimental System at RAON

- Nuclear science KOBRA, LAMPS, NDPS, MMS, CLS (based on atomic physics)
- Applied science μSR (Material science), BIS (Bio & Medical application)
- **7** (at the beginning of RAON operation) + upgrade + ?? (in the future, space reserved)

Current Status of Experimental System

1. KOBRA

(KOrea Broad acceptance Recoil spectrometer & Apparatus)

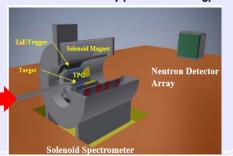
- Research Studies of nuclear structure and nuclear astrophysics in the energy range of < a few tens of MeV/u
- · Current status Under fabrication (start installation from Sep. 2019)

	KoBRA stage1 (RAON)	KoBRA stage1 + stage2 (RAON)
Layout	Description banks and the second of the seco	Improve a mass resolution & primary beam
Magnetic Rigidity	0.25 - 3.0 Tm	rejection with cleanup section
Max. Electric Rigidity	2.0 - 18.5 MV	cleanup section
Spectrometer Length	38 m	(Under Discussion)
Angular Acceptance	80 mrad (H), 200 mrad (V)	Discussion)
Energy Acceptance	16%	•
Mass Resolution	≈ 650	•
Primary Beam Rejection	> ~10 ⁻¹³	•

2. LAMPS

(Large Acceptance Multi-Purpose Spectrometer)

- Research Studies of nuclear matter and nuclear reactions with stable and RI beams at intermediate energy regime
- · Current status Under fabrication (start installation from Jan. 2021)



Solenoid Spectrometer

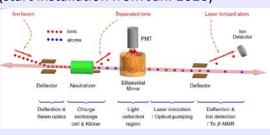
- Max. 1T solenoid magnet
- TPC (~ 3π sr acceptance, charged particle tracking)
- ToF & Trigger
- Neutron Detector Array (neutron tracking)

IF separator

Current Status of Experimental System

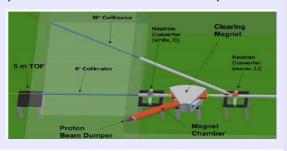
3. MMS (Mass Measurement System)

- Research High precision mass measurement of short lived rare isotopes
- Current status Under assembly and test (start installation from Feb. 2020)



MR-TOF-MS

$$\frac{\delta m}{m} = \frac{1}{R - \sqrt{N}} \sim 6.67 \times 10^{-7}$$

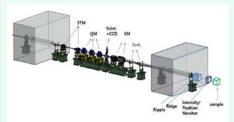

4. CLS (Collinear Laser Spectrometer)

- Research Model independent Studies of nuclear ground and isomeric state properties
- Current status Restart development (start installation from Jan. 2020)

5. NDPS (Neutron Data Production System)

- Research Measurement of neutron induced reaction data for nuclear science
- Current status Restart development (start installation from Jan. 2021)

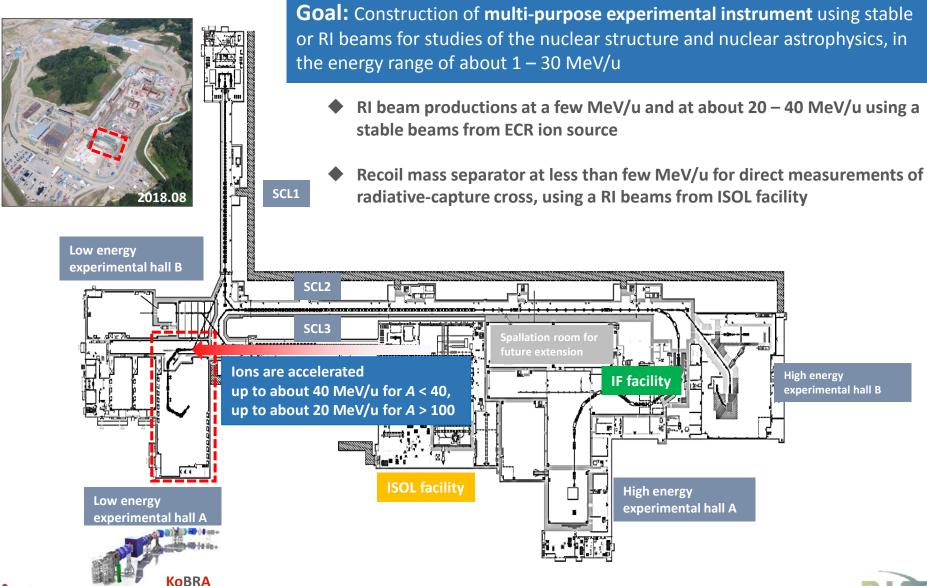
6. μSR (Muon Spin Rotation/Relaxation/Resonance)


- Research Studies of local electromagnetic structures and exotic properties of material by using polarized muons
- · **Current status** Restart development (start installation from Nov. 2020)

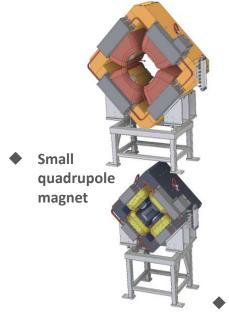
Contents	Requirement
Species and polaization	μ*, ~100%
Yield on Sample	> 10 ⁵ pps
Beam energy (muon)	< 4,000 keV
Beam energy (primary beam)	> 500 MeV
Beam current (primary beam)	> 0.06 mA
Transport efficiency (surface muon beamline)*	> 1.5%
system specification	

7. BIS (Beam Irradiation System)

- Research Biomedical studies such as cancer treatment, human body effect by space radiation and cell mutation
- Current status Restart development (start installation from Feb. 2021)



Uniformity on sample	< 3%
Dose rate on sample	2Gy/min ~ 2000Gy/min
Irradiation area on sample	< 20 cm × 20 cm
Primary Beam energy	310 MeV/u for 12C6+
Primary Beam current	1 nA for early BIS, increased up to several puA



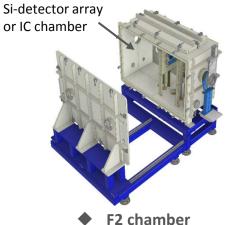
KOBRA

KOBRA

Empty space for

DANFYSIK (Denmark)

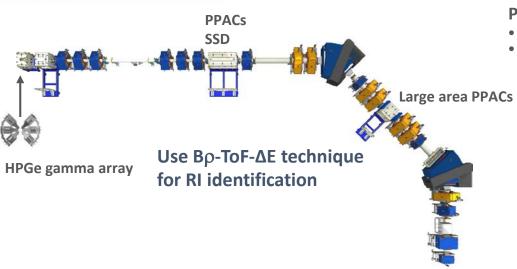

Project management Designs of all magnets Productions of bending magnets and swinger



Productions of quadrupole and sextupole magnets

VITZRO TECH (Korea)

Designs and productions of diagnostic chambers, beam pipe, beam dump, and etc.



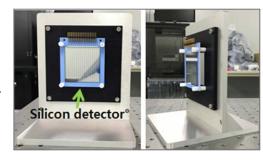
KOBRA

HPGe gamma ray detectors

- 32 segmented HPGe detectors (6set)
- Compton suppressor BGO crystals (6set)
- Complete set of TIGRESS electronics

PPACs

- Six 10 x 10 cm², two 20 x 20 cm², two 40 x 20 cm² active area PPACs
- Position resolution: < 1 mm in FWHM, (C₄H₁₀ gas, ¹⁶O beam at 2x10⁶ pps)


Plastic scintillator detectors

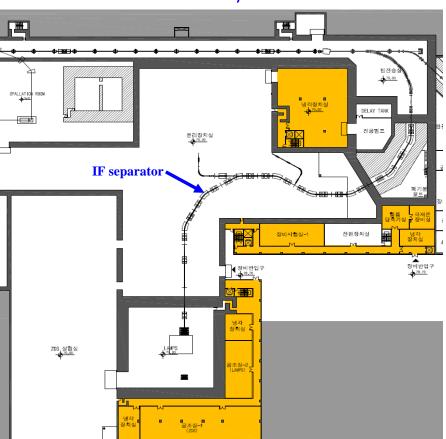
- \bullet One 10 x 10 cm^2 active area, 100 μm thick both side readout plastic detector
- \bullet One 10 x 10 cm2 active area, 100 μm thick one side readout plastic detector
- <u>Time resolution < 42 ps</u> for 5.486 MeV α in vacuum

SSD

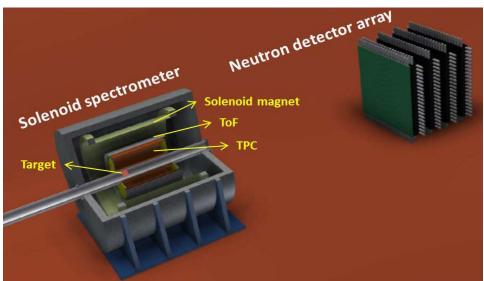
- Two 5 x 5 cm² active area, 50 µm-thick, 16 channel SSD
- Energy resolution ~ 0.7%, S/N ~ 272 for 5.486 MeV α in vacuum

- All of detectors are fulfilled KoBRA detection system requirements
- Complete KOBRA detection system including spare detectors, Ion Chamber, HPGe gamma array and DAQ system will be ready by the middle of 2019

- 33 -


LAMPS

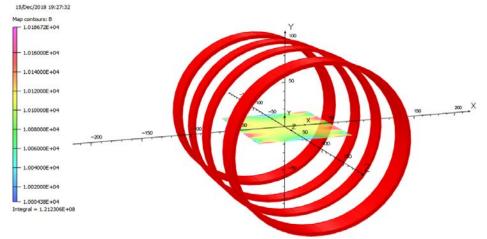
Main facility for nuclear matter and nuclear reaction studies with stable and rare isotope beams at intermediate energy


• Main Research Subject

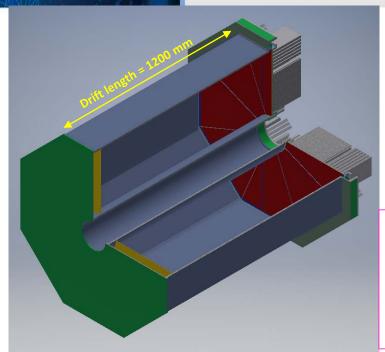
Study of nuclear symmetry energy at supra-saturation density via heavy-ion collision experiment using rare isotope beam with varying beam energies and collision systems

(e.g. measure n/p ratio & collective flow at the same time in the combination of 50,54 Ca+ 40 Ca, 68,70,72 Ni + 58 Ni, 106,112,124,130,132 Sn + 112,118,124 Sn)

- Beam Energy: up to 250 MeV/u for ¹³²Sn (≤ 10⁸ pps)
- Solenoid Spectrometer
 - Max. 1T solenoid magnet
 - TPC (~ 3π sr acceptance, charged particle tracking)
 - Scintillation counter (trigger & ToF)
- Neutron Wall (neutron tracking)



LAMPS



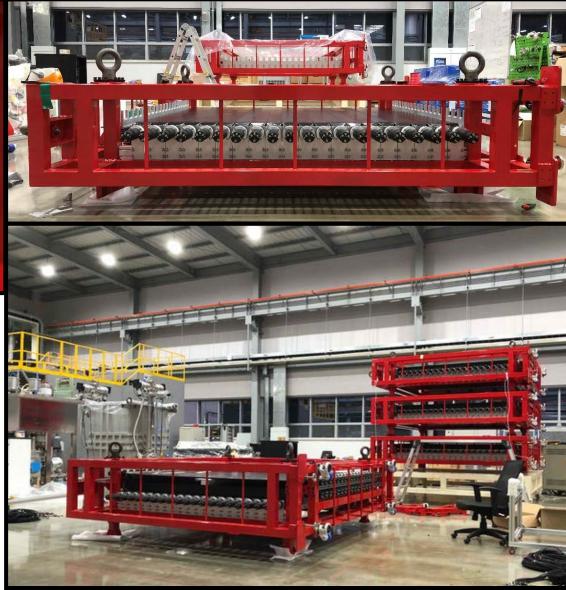
- Fine tuning on the design parameters by experts
 - Cylindrical SC magnet
 - Dim.: 3300 mm (L) \times 2200 (W) \times 2600 mm (H)
 - Fit into the pit
 - Diameter of bore = 1600 mm
 - Max. B-field > 1 T
 - Variation of B-field over TPC volume = $\pm 0.94\%$
 - Passive quench protection
 - Conduction cooled with 4K vessel thermal shield and vacuum vessel
- Contracted with Tesla Engineering Ltd. UK by RISP magnet-vacuum
 R&D group in Feb. 27, 2019
- Production design is ongoing

LAMPS

of Ch.: 2,618/sector ×8 sectors = 20,944

 FEE: 11 AsAD/sector × 8 sectors = 88 AsAD

- Readout will be only at the upstream end
- $-\,$ P20 gas with v_{drift} > 6 cm/µs meets entire readout time of GET electronics over full drift length (120 cm)
- Octagonal outer barrel and circular inner barrel
- Inner radius: 150 \rightarrow 100 mm, Outer radius: 500 \rightarrow 535 mm
- Maximize the active region for R = 105 \sim 503.5 mm
- Test of the real-size GEM foil is underway
 - If gain is too small, an option for quadruple GEMs may be explored
- LAMPS TPC will be constructed in 2019 and tested by 2020



LAMPS

- Installation of all modules
 (160 neutron detectors + 20
 veto detectors) in the frame
 were completed in December,
 2018
- Preparation of cosmic muon test is almost ready
- Detector operation will be done remotely at Korea University Lab. in Seoul

MR-TOF

RI beam of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

**Total Condition of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

**Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

**Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

**Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

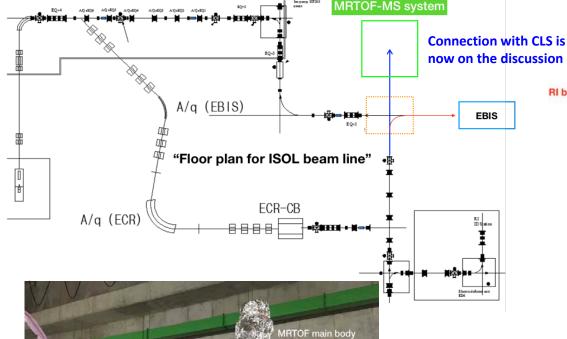
Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

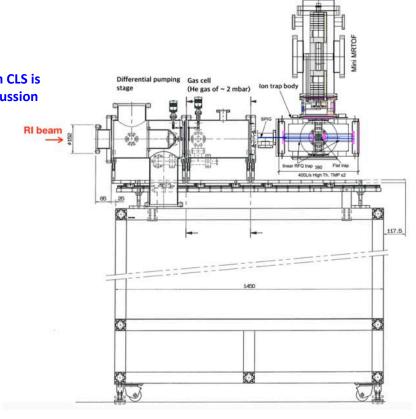
Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).


Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).


Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

Total Condition Of A < 150 and E = 40 ~ 60 keV requires windowless Gas catcher/Differential pumping system (similar beam condition to KISS).

**Total Condition Of A

- Low energy beam of < 60 keV
- Differential pumping stage
- Windowless helium gas catcher
- Trap and bunching system
- MRTOF reflection chamber

Differential pumping

MR-TOF

MR-ToF-MS can provide a high mass resolving power of > 10⁵ even with short measure

ment time of 10 ~ 30 msec

It is more suitable for the short-lived nuclei region

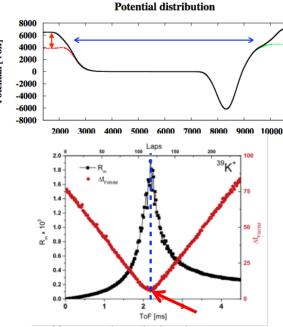
"Fast and Precise"

Mass measurement, but also Beam purification lon trap & Lens

Pulse Drift Tube

Mirror electrodes

Lens



a few hundreds laps ~ a few hundreds meter :

Typically,
$$R_m = \frac{t_{tof}}{2\Delta t}$$
 > 150000

Assuming mass resolving power (Rm) of 1.5×10 5 and total counts (N) of 100 :

$$\longrightarrow \frac{\delta m}{m} = \frac{1}{R_m \sqrt{N}} \sim 6.67 \times 10^{-7}$$

After some laps, the ions become time-focused. (P. Schury et al, NIM B 335 (2014) 39)

Mirro

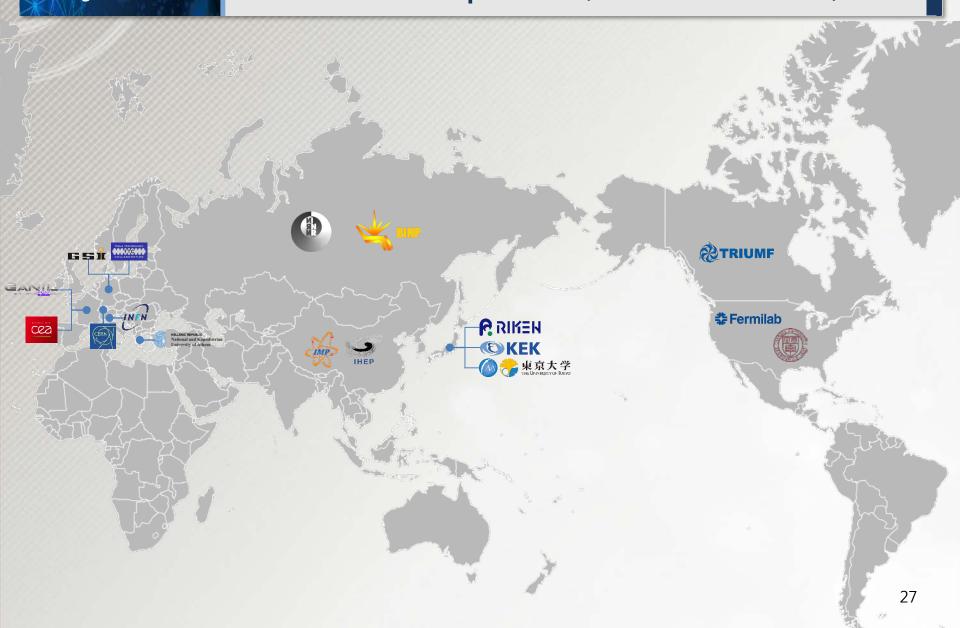
Lens

$$m_1 = m_2 \left(\frac{t_1 - t_0}{t_2 - t_0}\right)^2 = m_2 \rho,$$

$$\rho = \left(\frac{t_1}{t_2}\right)^2 + 2\frac{t_1(t_1 - t_2)}{t_2^3}t_0 + O\left(\frac{t_0}{t_2}\right)^2.$$

Mirror electrodes

- 1: mass of interest
- 2: mass of reference


Scientific program at early phase operation(candidate)

Facility	Subject for early phase operation
KOBRA	 Transfer reaction measurements in inverse kinematics (²⁹P(d,p)³⁰P, ²⁶Al(α,p)²⁴Si) Radiative capture reactions using batch mode RI beams (^{26g}Al(p,γ)²⁷Si) RI beam production via quasi-projectile-like fragmentation for ¹⁶O or ⁴⁰Ar
LAMPS	· Ar+KCl or Xe+CsI in case of IF separator commissioning not completed
MMS	· Isomer separation with using ^{26g.s.} Al and ^{26m} Al beams
CLS	· Laser ionization and measurement of isomeric property for ²⁶ Al
NDPS	 Activation experiments with a quasi mono energy neutrons for light and heavy nuclei Surrogate reactions for fission
μSR	\cdot One of research areas of $superconductivity$ and $quantum\ magnetism$ with their scientific significance at the time of the μSR instrument completion
BIS	· Physical dose distribution and linear energy transfer measurements with a ¹² C+6 beam (310 MeV/u)

International Cooperation (MOUs with 17 Intl Institutes)

4. Rad. Safety

Radiological Features of the Facility

High Power Targets

- IF: 400 kW, ISOL: 30 ~ 70 kW
- induce high activation in concrete, air, cooling water, machine parts
- need robust remote handling in target areas

Use of Uranium Material

- fission products contaminate ISOL target system, IF beam dump, etc.
- generation of radioactive waste containing actinides-> need a long-term storage space of the waste until ready to transfer to the national site

Various Reactions to analyse

- various beam and target combination
- wide energy range (low 18~40MeV/u, high 200~320 MeV/u, 600 MeV p)
- need to find correct simulation codes and conditions

Experiments	Beams	Targets
IF	O, Ca,, Kr,, Sn, Xe, U, ~20 species	С
ISOL	р	UC
KOBRA	He, B, O, Ar, U	Be, Cu
Bio-medical	С	Fe
muSR	P	С
LAMPS	Ca, Ni, Zr, Sn	Ca,
Neutron Exp.	p, d	С

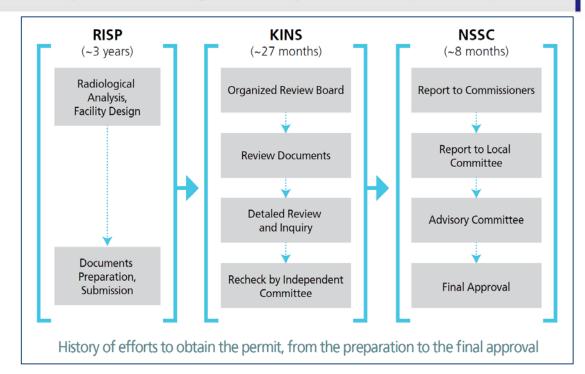
4. Rad. Safety

Radiation Safety Licensing: Completed!! (18.10)

Preparation

- many domestic experts joined radiological analysis
- facility basic design by a experienced company

Documents for Review

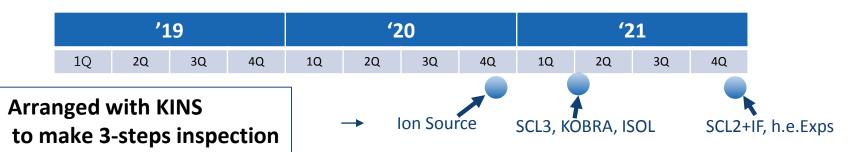

radiation safety report

(shielding, activation, env. Influence, RMS/PSIS, exhaust, accident analysis, radioactive waste, etc..)

- description of accelerators and experiments
- details in radiological analysis (codes, input/output)
- geological survey report
- stability assessment of building and ground
- quality assurance plan/procedures
- fire hazard analysis

Extensive Reviews

- by more than 30 KINS reviewers
- 382 cases of answers/further assessment/correction/design improve and changes
- multilevel review(KINS, NSSC, Advs..)



4. Rad. Safety

Plan – First Facility Inspection

mandatory step before operation (every year after the first inpection)

check items

- safety organization / manpower
- record of quality assurance activity
- performance of all RMS & PSIS systems
- implementation of fire protection
- performance of exhaust/draining/remote system
- readiness of preventive and mitigative measures for possible accidents of more once in 30 years
- procedures to handle radioactive wastes
- etc..

RMS Equipments in the site		
Environment Monitor	12	
Area Monitor	94	
Area Air Monitor	11	
Stack Monitor	6	
Hand & Foot Monitor	11	
Nuclide Analyser	6	
Paging Phone	88	
CCTV camera	101	
Emergency Stop & Alarm	174	
Vehicle Radiation Monitor	2	

Safe Facility for workers & vistors & citizens!

5. Summary

Summary & Outlook

Accelerator

- Mass production for SCL3 is under way
- SCL2 is under pre-production phase
- From April, 2019, installation for SCL3 has been started

By the end of 2021, we will achieve

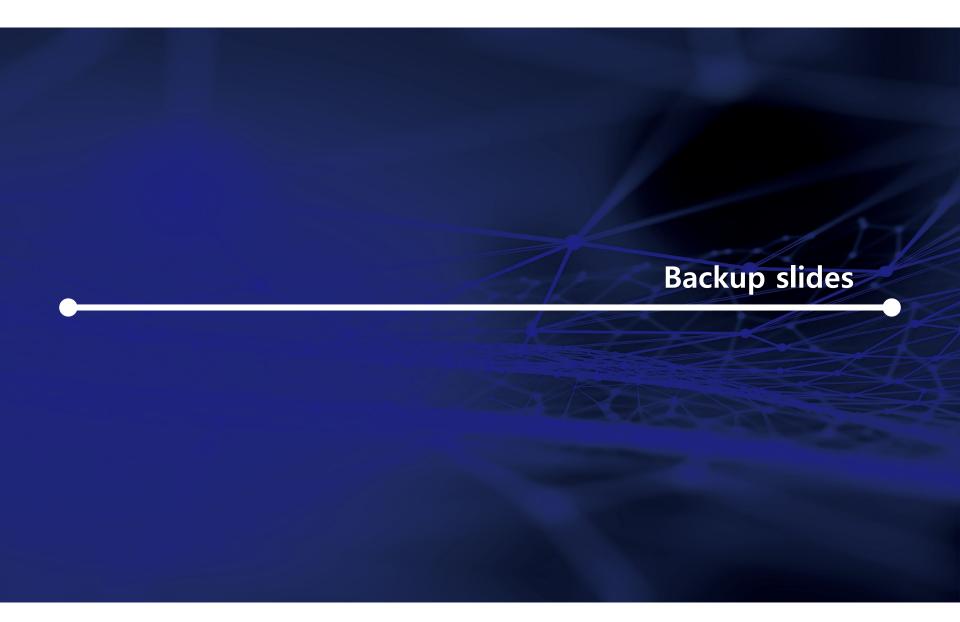
- SI beams: Stable ion beams (16 O, 40 Ar) from ECRIS \rightarrow SCL3 \rightarrow low E exp hall
- RI beams: RIBs extraction from ISOL → re-acceleration through SLC3 → low E exp hall
- Stable / RI beams will be delivered to low-E experimental hall
- Early phase experiments are going to be performed using KOBRA
 - → RIBs production at KOBRA (A<~50, beam energy < 20 MeV/u) using SI beams from SCL3
- Beam commissioning starts for SCL2
- Installation and commissioning for IF, LAMPS, Neutron, bio-medical and muSR
 - → Collaborative works with RUA (RAON Users Association) via RULC (RAON Users Liason Center)

Post RISP (2021 ~)

- Beam acceleration for ISOL → SCL3 → SCL2 → IF (ISOL+IF)
- Beam commissioning and experiments for IF, LAMPS, Neutron, bio-medical and muSR
- Ramping-up to get the 400kW beams (more than 5 yrs)
- Energy upgrade to 400MeV/u (requires budget)

5. Summary

News



The 1st CM is ready for installation in the tunnel.

Temperature 5

Type: Temperature

2098 7 Max

2049.3

1999.8

1950.3

1900.8

1851.3

1801.9

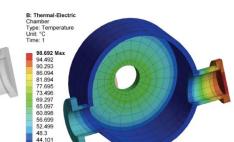
1752.4

1702.9

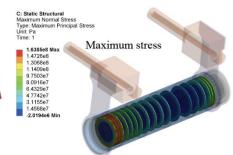
1653.4

1603.9

1554.4

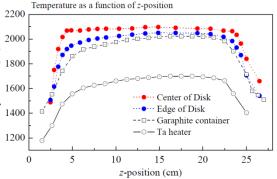

1455.5

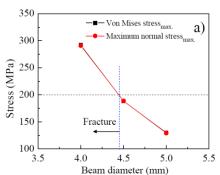
1505


ISOL system

10 kW Ucx target system design

Temperature of the target Temperature of the chamber


Thermal stress of the target


Proton Beam				
Energy	70 MeV			
Power	10 kW			
Beam size	45 mm			

Temperature distribution

Maximum thermal stress

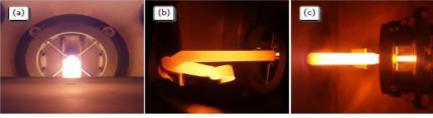
Target	
Material	UCx
Density	2.5 g/cm ³
U weight	101 g
# of disk	19
Disk thickness	1.3 mm
Disk diameter	50 mm

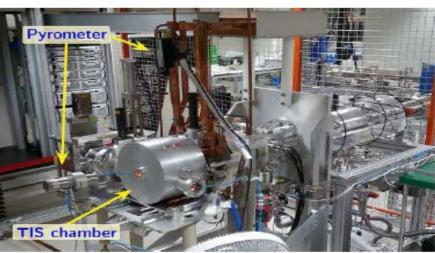
Total length

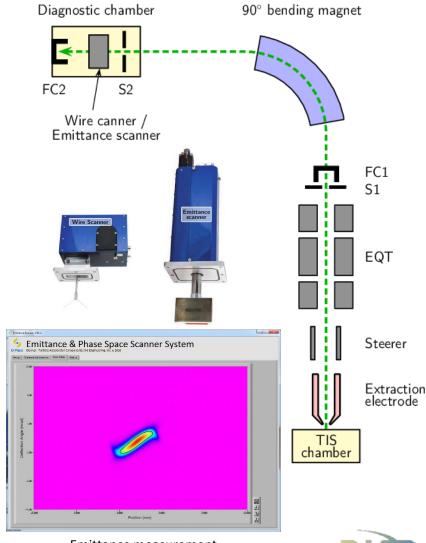
Release time of ¹³²Sn

benchmarking SPES 8 kW target system

Expected In-target fission rate = 1.6×10^{13} /s

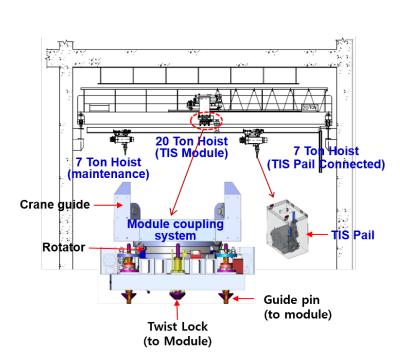

22 cm

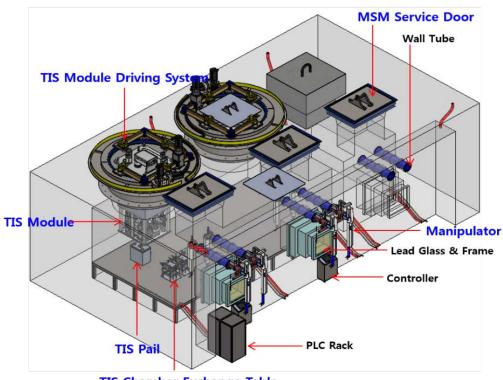

ISOL system


ISOL Test Facility

Ion beam extraction experiment

- SIS: Cs and Rb ion beam extraction
- RILIS: Sn ion beam extraction
- Ionization efficiency measurement
- Mass resolving power $M/\Delta M > 400$

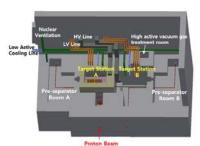


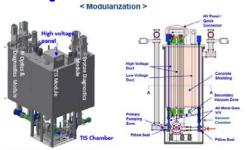

Emittance measurement

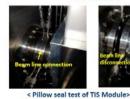
ISOL system

- Hot cell: TIS replace, maintenance
 - four manipulator, two module driving system, TIS exchange device
 - TIS chamber insert to pail and the pail move to storage
- Remote crane for module & TIS transfer.
 - three hoist: 20 ton(module transfer & shield block removal) / 7 ton(TIS pail transfer) / 7 ton(maintenance)
 - position accuracy : < 5 mm
- On manufacturing

TIS Chamber Exchange Table

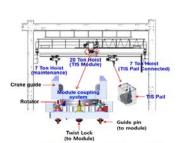

< Hot cell & remote handling system >




ISOL system

TIS Bunker/Module

< TIS Bunker >

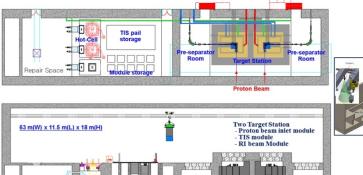


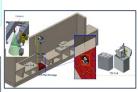
- Primary & secondary vacuum zone → prevent contamination spread
- Two special all metal gate valves
- 60 kV High voltage platform
 - HV tray Insulation : BN or Alumina powder
 - Insulator & HV feedthroughs & Quick connectors

Module Interface: Pillow seals (leak rate : < 1.2E-12 Parm³/sec)

Remote Handling

- · Hot cell : TIS replace, maintenance
- four manipulator, two module driving system, TIS exchange device
- TIS chamber insert to pail and the pail move to storage
- Remote crane for module & TIS transfer
- three hoist: 20 ton(module transfer & shield block removal) / 7 ton(TIS pail transfer) / 7 ton(maintenance)
- position accuracy : < 5 mm
- On manufacturing





< Remote crane & interface system >

< Hot cell & remote handling system >

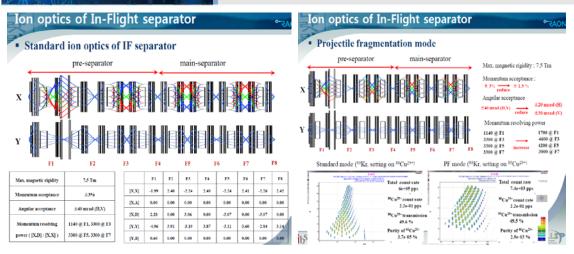
Hot Cell

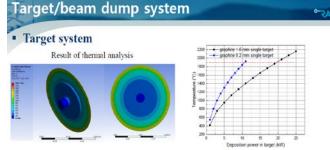
RH Mock-up

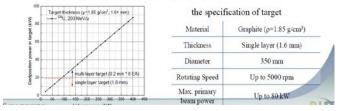
- Mock-up test was performed, hot cell and remote handling system
- TIS module system proven at mock-up, allowing for repair and maintenance of
- critical components
 Remote maintenance
 and repair of modules
 in hot cell
- Operation scenario for TIS & modules including risk analysis created and is being upgraded
- Module beamline remote connect/disconnect : pillow seal (test completed at mock-up)

< Crane to TIS chamber coupling>

< TIS chamber exchange device >



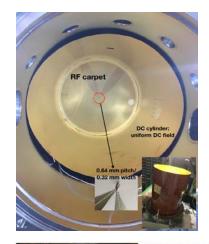

< TIS pail & storage >



IF system

- When the deposited power at target (thickness : 1.6 mm) is 19 kW, the maximum temperature is about 1900 $^{\circ}$ C
- In the case of the beam power is less than 80 kW, the single layer target can be used

Magnet to be combined with IF slide

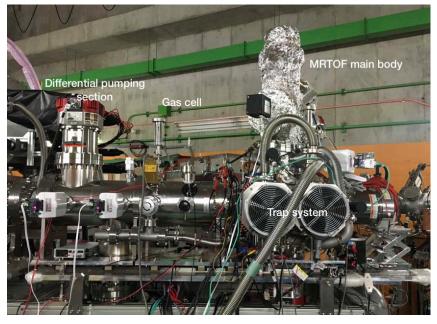

MR-TOF

Differential pumping section : $450L/\sec x 2$, two rooms (w/ \emptyset 8 mm aperture)

Gas catcher: Ø2 mm aperture, Ø190 mm x 250 mm (cylindrical), RF carpet + DC cylinder

Triplet trap system: Linear Paul trap x 2, Flat trap x 1

MRTOF analyzer: Au-plated Al electrodes (18), 520 mm (including base)



CEM (Yaxia)

AAGHUM (CEM)

CEM (Yaxia)

Others: quadrupole ion guide, channeltrons x 3, IS x 2

- Performance test for individual parts is completed
- Tuning of total system is ongoing

ion from the gas cell

