# Investigation for activation of accelerators at various synchrotron radiation facilities in Japan

Go Yoshida<sup>1</sup>, Hiroshi Matsumura<sup>1</sup>, Kazuyoshi Masumoto<sup>1</sup>, Hajime Nakamura<sup>1</sup>, Akihiro Toyoda<sup>1</sup>, Koichi Nishikawa<sup>1</sup>, Taichi Miura<sup>1</sup>, Kenji Hayashi<sup>2</sup>, Jun Ishioka<sup>3</sup>, and Hirofumi, Hanaki<sup>4</sup>

<sup>1</sup> High Energy Accelerator Research Organization (KEK)
 <sup>2</sup> Institute for Molecular Science, National Institutes of Natural Sciences
 <sup>3</sup> SPring-8, RIKEN
 <sup>4</sup> Japan Synchrotron Radiation Research Institute

"Clearance of materials from the decommissioning of accelerator facilities" Radiation Safety Research Promotion Fund by Japan Nuclear Regulation Authority.

# Outline

#### □ Introduction

- ✓ Problem for decommissioning of accelerator facility
- ✓ Research for activation of radiation synchrotron facility
- Facilities
- **D** Experimental
  - ✓ Evaluation for activation of beamline and concrete
- Results and Discussion
  - ✓ Current status of activation of each facility
  - ✓ Contact dose-rate, Identified nuclides, neutron flux
- Conclusion

# Introduction

#### Problem for decommissioning of accelerator facility

In Japan, there are over 1000 large and small accelerator facilities.



- ✓ They need updating or decommissioning.
- Guidelines were not prepared (except small scale medical facilities)

investigating the activation of large scale accelerator facilities

| Aim of the research | <u>establishment of more reasonable</u>           |
|---------------------|---------------------------------------------------|
|                     | decommissioning process of accelerator facilities |

- (1) clarification of the target facilities for assessment of activation
- (2) development of novel technique for assessment of activation
- (3) provide a guideline for decommissioning as a manual book.

Various type of facilities (synchrotron, cyclotrons,...) were investigated.

# Introduction

#### Activation of accelerator facility



- ✓ Beam loss occurs during operation
- ✓ Bremsstrahlung photon
- ✓ Secondary particles (n, p, e<sup>-</sup>, e<sup>+</sup> etc..)
- $\checkmark$  Activation

Important things for investigation of activation of accelerator

- Where are the activated areas (beam loss points)?
- How much radionuclides are generated?
- What kind of nuclides are generated?

Focusing on beam-line components and concretes (occupy large volume).

### Facilities

□ Target facilities for activation assessment

We investigated these five facilities, including the largest SPring-8 to the smallest SR center in Japan.

Not only differ in the maximum energy but also differ in the type of pre-accelerator up to the storage ring.

| Facility       | Energy    | Туре       | Operation mode |
|----------------|-----------|------------|----------------|
| Spring-8       | 8 GeV     | L – B – MR | Storage/Top-up |
| Photon factory | 2.5 GeV   | L – MR     | Storage/Top-up |
| UVSOR          | 0.75 GeV  | L – B – MR | Storage/Top-up |
| Hisor          | 0.7 GeV   | MR         | Storage        |
| SR-center      | 0.575 GeV | MR         | Storage        |

L : Linear accelerator (Linac)

B : Booster synchrotron

MR : Main ring (Storage ring)

### Experimental

Evaluation for activation of beamline

These were conducted just after the accelerator operation was stopped.

- Where is activated and how much activated?
  - → Contact dose-rate measurement with a Nal survey meter Scanning the activated area and strength of radiation
- What kind of nuclides are generated in the activated areas?
  - → Gamma-ray spectrometry with a LaBr<sub>3</sub> scintillation detector Nuclide identification at each activated place





# Experimental

- Evaluation for activation of concrete
  - ⇒ Ambient neutron flux measurement
  - Setting various dosimeters in the whole facility
    - Solid track detectors (CR-39)
    - Thermo-luminescent dosimeters (TLD)
    - Gold foil (bare/covered with Cd plates)

Mapping the thermal and epithermal neutron flux.

In-situ measurement of <sup>24</sup>Na activity

<sup>24</sup>Na reflects ambient thermal neutron flux. We measured <sup>24</sup>Na using a Ge detector with thick radiation shield, just after accelerator operation.







#### Results

Α

#### Spring-8 (beamline)



Almost beamline components are not activated! (dose-rates don't exceed BG)

Activated areas (over 1 µSv/h)

Contact dose-rate : 1.30 µSv/h

Detected nuclides : <sup>57</sup>Co, <sup>57</sup>Ni

dose rate : 2.14 μSv/h (max.) B nuclides : <sup>44</sup>Sc, <sup>51</sup>Cr, <sup>54</sup>Mn, <sup>57</sup>Co, <sup>57</sup>Ni

dose rate : **10.0 μSv/h** (max.) C nuclides : <sup>44</sup>Sc, <sup>48</sup>V, <sup>51</sup>Cr, <sup>52</sup>Mn, <sup>54</sup>Mn, <sup>56</sup>Co, <sup>57</sup>Co, <sup>57</sup>Ni

D dose rate : 10.4 µSv/h (max.) nuclides : <sup>22</sup>Na, <sup>54</sup>Mn, <sup>57</sup>Co, <sup>57</sup>Ni

#### Results

#### Spring-8 (concrete)



#### Thermal neutron flux

42.3 n/cm<sup>2</sup>/s (beamline)

A 6.45 n/cm<sup>2</sup>/s (wall) < 3.2 n/cm<sup>2</sup>/s (floor)

B **187 n/cm<sup>2</sup>/s** (beamline) **63.7 n/cm<sup>2</sup>/s** (floor)

C 52.4 n/cm<sup>2</sup>/s (floor)

113 n/cm²/s (beamline)
15.6 n/cm²/s (floor)

Accumulated activity of <sup>60</sup>Co and <sup>152</sup>Eu in the concrete floor at 30 years later

**B: 8.4** × **10**<sup>-4</sup> **Bq/g** (< C.L. : 0.1 Bq/g)

Concrete will not be activated!

### Conclusion

- We have been investigating the activation of large scale accelerator facilities to establish more reasonable decommissioning process.
- We conducted investigation of the activation for typical synchrotron radiation facilities.
  - ✓ Activated area is limited, and long lived nuclides such as <sup>60</sup>Co and <sup>152</sup>Eu were not detected.
  - ✓ It is not necessary to treat almost materials in the Synchrotron radiation facility as radioactive wastes
- These result will be reflected to decommissioning guideline that we editing as the manual book.