Study on Activity Reduction in Concrete

Mahdi Bakhtiari* (a)

Leila Mokhtari Oranj^(b), Nam-Suk Jung^(b), Arim Lee^(b), Hee-Seock Lee^(a,b)

(a)Division of Advanced Nuclear Engineering (DANE), POSTECH, Korea

(b)Pohang Accelerator Laboratory (PAL), POSTECH, Korea

* <u>bakhtiari@potech.ac.kr</u>

2019.09.23

Contents

1. Introduction

2. Monte Carlo simulations

3. Results for neutron absorbing materials

4. Conclusions and remarks

1. Introduction

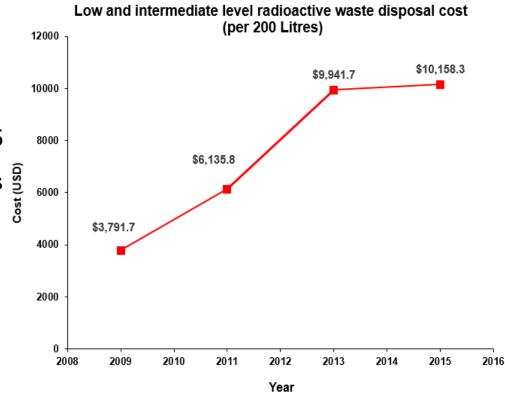
Introduction: Importance of the activity reduction

□ Cyclotrons in Korea

- Totally 41 cyclotrons
- 31 cyclotrons are operating
- 20 non-self-shielded & 21 self-shielded
- Majority of cyclotrons for ¹⁸F production

Cyclotron model name	Number
Cyclone 18/9	6
Cyclone 30	1
CYPRIS HM-7/12S	5
KIRAMS-13/30	8
MC50	1
MINItrace	1
PETtrace	11
RDS 111	1
RDS Eclipse	7
Total	41

Introduction: Importance of the activity reduction



□ Production amount of radioactive waste

Radioactive Waste Generation during	Shielding wall thickness [m]			
Operation [kg/month]	Self-Shielded	Non-self-shielded		
0 ~ 32	0.25 ~ 1	1.5 ~ 1.8		

□ Costs of the radioactive waste

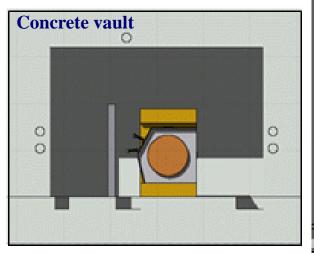
- Radioactive waste cost has almost tripled between 2009 and 2015
- Practical measured must be taken to reduce the amount of wastes

Introduction: Importance of the activity reduction

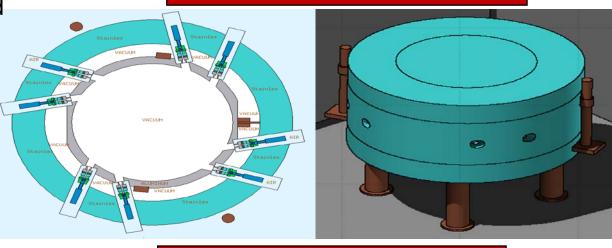
■ Major radionuclides in concrete

- During cyclotron operation, secondary neutrons from (p, n) reaction can activate the concrete
- A huge amount of radioactive waste is generated → increasing the cost of management
- This radioactive waste should be reduced for decommissioning phase

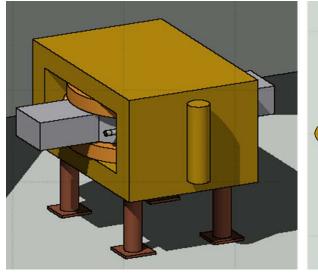
Radionuclide	Reaction	Reaction Half-life Thermal neutron CX [barn]		Abundance [%]	Clearance Level [Bq/g]	
Sc-46	⁴⁵ Sc(n,γ) ⁴⁶ Sc	83.79 d	26.5	100	0.1	
Mo E 4	⁵⁵ Mn(n,2n) ⁵⁴ Mn	242.20.4	0.785	100	0.4	
Mn-54	⁵⁴ Fe(n,p) ⁵⁴ Mn	312.20 d	0.386	5.84	0.1	
Fe-59	⁵⁸ Fe(n,γ) ⁵⁹ Fe	44.495 d	1.15	0.31	1	
Co-60	⁵⁹ Co(n,γ) ⁶⁰ Co	5.271 y	37	100	0.1	
Zn-65	⁶⁴ Zn(n,γ) ⁶⁵ Zn	243.93 d	0.78	48.89	0.1	
Cs-134	¹³³ Cs(n,γ) ¹³⁴ Cs	2.0652 y	29	100	0.1	
Eu-152	¹⁵¹ Eu(n,γ) ¹⁵² Eu	13.517 y	5900	47.7	0.1	
Eu-154	¹⁵³ Eu(n,γ) ¹⁵⁴ Eu	8.601 y	390	52.23	0.1	

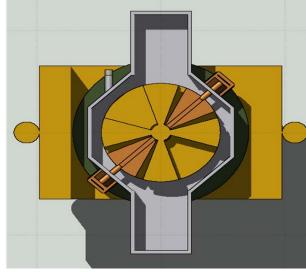


□ FLUKA [1]


- A detailed geometry of different cyclotrons were simulated
- Neutron distributions inside the vault were estimated

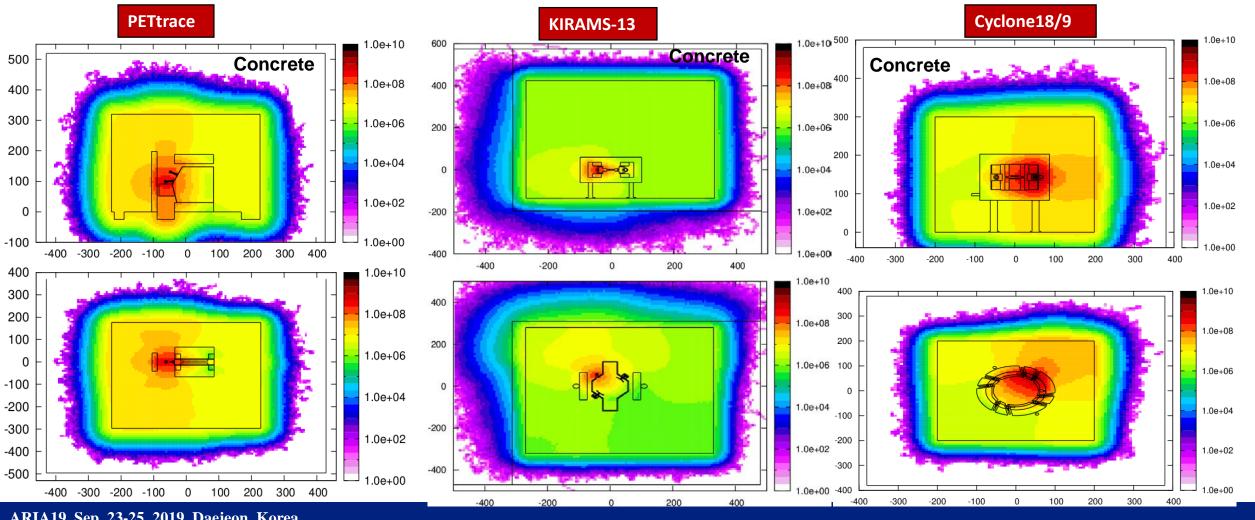
(GE) PETtrace Non-Self-Shielded type





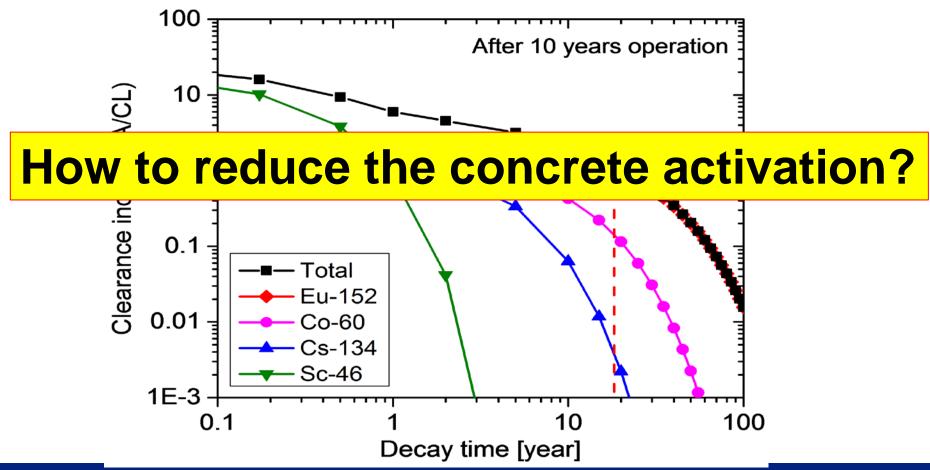
(IBA) Cyclone 18/9-Non-Self-Shielded

KIRAMS-1318/9-Non-Self-Shielded



[1] A. Ferrari, et al, "FLUKA: a multi-particle transport code", CERN 2005-10 (2005), INFN/TC_05/11, SLAC-R-773.

FLUKA


- Neutron flux distribution in different cyclotrons vault
- Walls of cyclotron rooms are expected to be radioactive wastes
- Concrete activation is more sever in non-self-shielded cyclotrons

■ Major radionuclides in concrete

- Eu-152 and Co-60 are the major radionuclides
- Eu-152 clearance index is higher than 1 by a factor of ~3 after shut down
- Around 20 years after shut down, Eu-152 clearance index is 1

□ PHITS-3.02 [1]

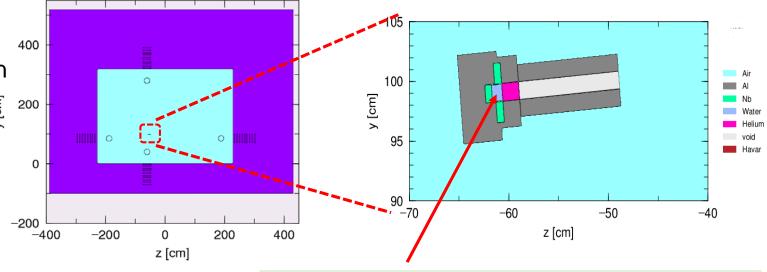
- For saving the time, a simple geometry of PETtrace cyclotron was simulated in PHITS
- INCL4.6 [2] followed by GEM [3] were applied for proton-induced reactions on H₂¹⁸O
- JENDL-4.0 [3] cross sections library was used for neutron interactions
- An optimum neutron absorbing material was determined

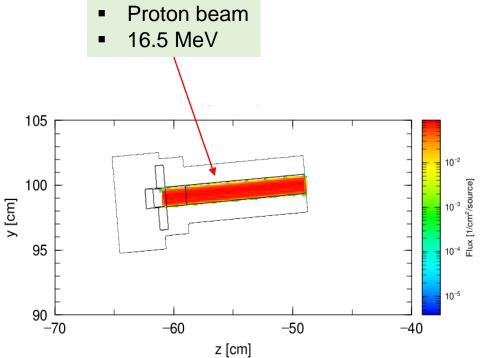
^[1] T. Sato et al, Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol. 55, (2018)

^[2] A. Boudrad, et al, New potentialities of the lieège intranuclear cascade model for reactions induced by nucleons and light charged particles, Phys. Rev. C 87, (2013)

^[3] S. Furihata, Statistical analysis of light fragment production from medium energy proton-induced reactions, Nucl. Instrum. Meth. B171, (2000)

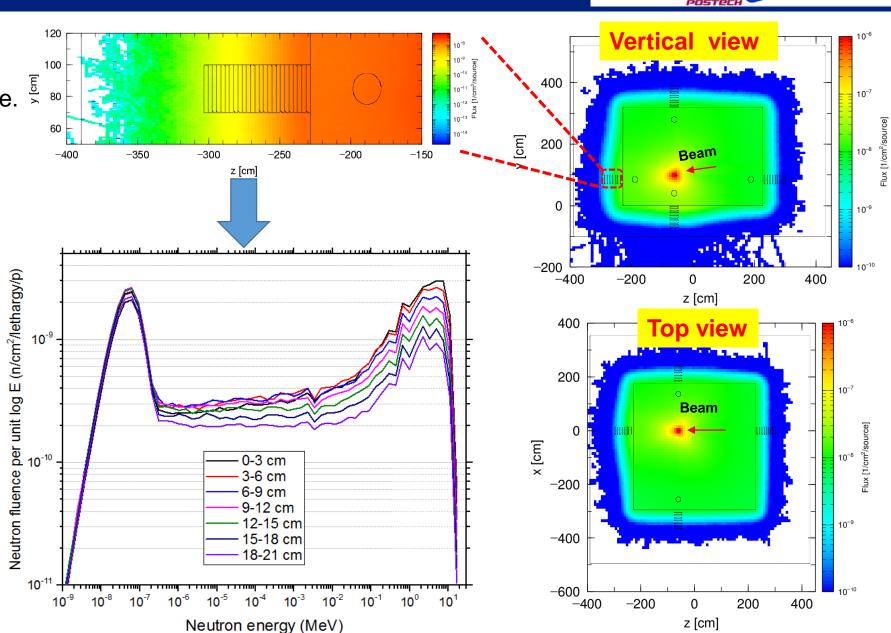
- **□** Concrete composition
- Several types of concrete have been analyzed [1]
- PAL concrete (2017) is used in the simulation


[1] A. Lee, N. S. Jung, H. S. Lee, Composition analysis of Ordinary Concrete to Estimate Residual Isotopes in the Decommissioning of Particle Accelerator, Poster presentation, 14th Specialists' workshop on Shielding aspects of Accelerators, Targets, and Irradiation Facilities (SATIF14), Gyeongju, Korea, 2018.


	Concrete com <u>positio</u> n							l연구소				
	18 Mpa 21 Mpa 27 Mpa 27 Mpa 2017 2018 2016							. — . —				
		Conc. 1	Conc. 2	Conc. 3	Conc. 4	KOMAC	PAL	IBS		AL Conc.		R LABORATORY
	원소	Conc. 1	Conc. 2	Conc. 5	Conc. 4	Conc.	Conc.	Conc.		AL COIIC.		
Į					%					1		
I	0	*******	43.2462	45.6507	45.7017	44.4873	43.1286	45.4904	43.5674	lr	0.0761]
I	Si	*******	29.3021	29.8340	28.9250	27.5505	25.6873	28.9840	26.7925	Ho	0.0689]
I	Al	6.867994	6.3052	6.2499	6.8007	7.1568	5.6702	7.0504	5.6657	Er	0.0547	1
I	Ca	6.139519	8.9241	8.4203	6.4807	10.8648	13.5019	7.5489	9.4130	Pt	0.0462]
I	Fe	3.175370	1.5846	2.0201	3.0730	2.3268	2.3696	2.3042	3.5867	Re	0.0260	1
Į	Na	2.374914	4.2661	1.9034	2.0741	1.8672	1.7181	2.2220	2.0027	U	0.0255	1
Į	Mg	1.627494	1.3932	1.0979	1.5270	1.5130	1.6448	1.3626	0.8358	Mo	0.0205	1
Į	K	1.542515	2.7691	2.0219	1.8048	2.0928	1.8744	2.5875	6.1570	Os	0.0164	1
Į	С	1.304503	0.9755	1.1254	1.7732	0.5879	2.4771	0.7374	0.2697	Br	0.0090	1
Į	Н	0.635594	0.5785	0.9153	0.9497	0.7751	0.9942	0.5640	0.1268	Se	0.0058	1
Į	Tí	0.345638	0.2065	0.2606	0.3473	0.3208	0.3111	0.2729	0.2102	Ge	0.0031	1
I	S	0.165519	0.2103	0.2218	0.2029	0.1580	0.2991	0.1306	0.1621			
Į	Mn	0.071807	0.0516	0.0599	0.0691	0.0695	0.0755	0.0367	0.0721			
Į	P	0.064210	0.0382	0.0428	0.0645	0.0525	0.0661	0.0539	0.0560			
I	Ba	0.048562	0.0464	0.0523	0.0476	0.0639	0.0457	0.0802				
I	N	0.037413	0.0155	0.0182	0.0384	0.0034	0.0154	0.2311				
l	Sr	0.030093	0.0177	0.0236	0.0288	0.0322	0.0231	0.0340	0.0217			
L	Zn	0.029954	0.0181	0.0275	0.0300	0.0261	0.0479	0.0320	0.0282			
I	Zr	0.015448	0.0160	0.0148	0.0152	0.0143	0.0116	0.0164	0.0150			
	٧	0.007750	0.0032	0.0046	0.0071	0.0055	0.0045	0.0043				
	Rb	0.006185	0.0078	0.0072	0.0070	0.0056	0.0063	0.0105	0.0132			
	Cr	0.005183	0.0014	0.0022	0.0045	0.0021	0.0026	0.0030	0.0026			
	Li	0.004848	0.0031	0.0034	0.0045	0.0027	0.0029	0.0027	0.0020			
	Ce	0.004773	0.0052	0.0044	0.0049	0.0039	0.0035	0.0044				
	Ni	0.003981	0.0017	0.0027	0.0038	0.0028	0.0038	0.0023	0.0035			
	Ga	0.003311	0.0031	0.0033	0.0032	0.0036	0.0027	0.0051	0.0134			
	Co	0.003273	0.0013	0.0010	0.0013	0.0009	0.0009	******	0.0437			
	Cu	0.002567	0.0013	0.0038	0.0027	0.0049	0.0048	0.0735	0.0430			
	Pb	0.001889	0.0014	0.0023	0.0016	0.0011	0.0025	0.0018	0.0829			
	Y	0.001383	0.0016	0.0013	0.0011	0.0010	0.0008	0.0007	0.0086			
	Sc	0.000961	0.0007	0.0007	0.0009	0.0008	0.0005	*******				
	As	0.000946	0.0012	0.0007	0.0013	0.0009	0.0011	0.0011				
Ī	Nb	0.000902	0.0009	0.0007	0.0009	0.0006	0.0007		0.0108			
Ī	Th	0.000809	0.0008	0.0008	0.0007	0.0005	0.0005		0.0296			
Ī	Cs	0.000745	0.0006	0.0004	0.0007	0.0002	0.0002	******	0.0002			
Ī	Eu	0.000113	9.15E-05	9.36E-05	1.01E-04	9.17E-05	7.00E-05	9.99E-05	6.26E-05			
Ī	W							0.1476		W	0.4116	Ī
t	Pd							2.76E-05				Î
	합계	100	100	100	100	100	100	100		100		12
	_ "											

□ Geometry

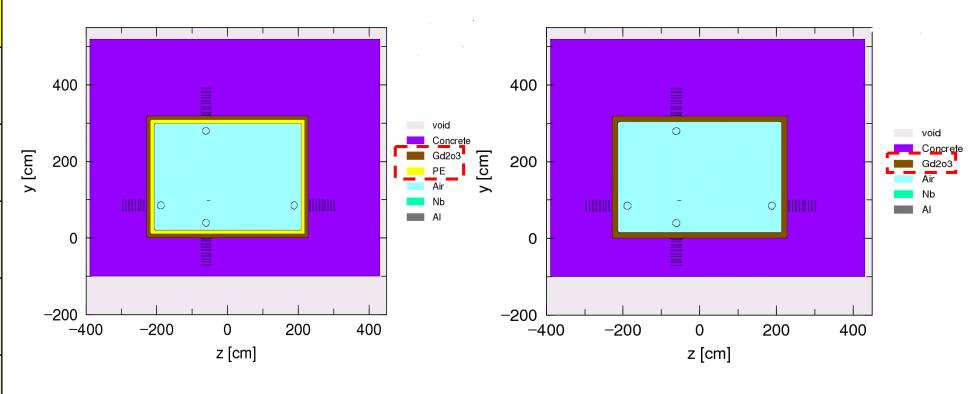
A simplified geometry of a PETtrace cyclotron

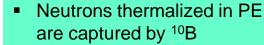

y [cm]

H₂O is used as the target with enriched O-18 for F-18 production via: ¹⁸O(p,n)¹⁸F reaction

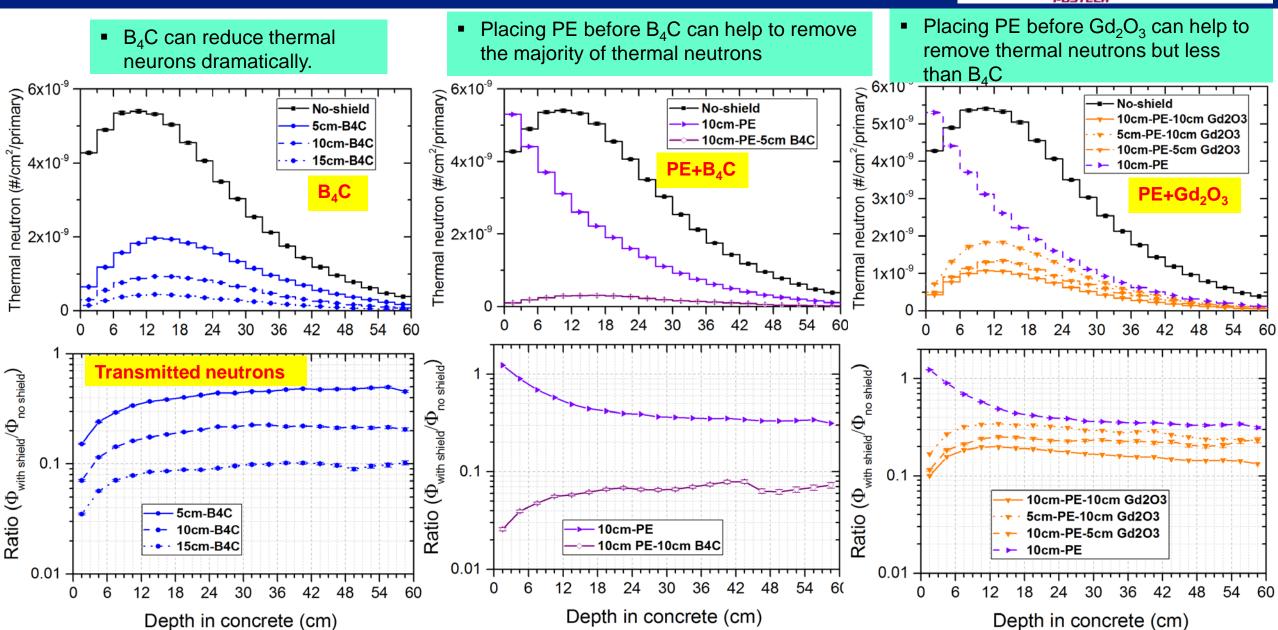
- T-Track tally was activated in PHITS to score neutron fluence.
- Detector size: 30*30*3 [cm³]

 Neutron fluence obtained at different depths in concrete

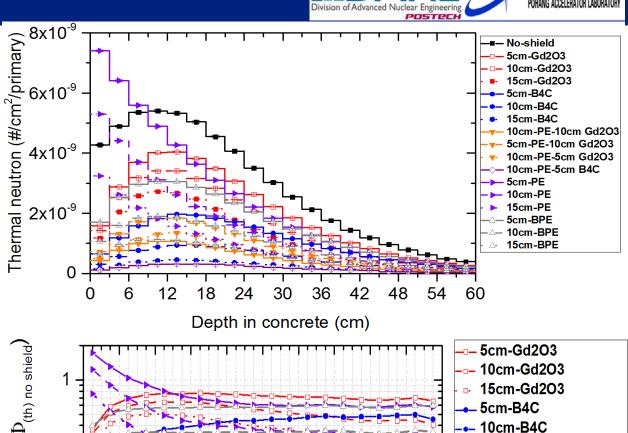


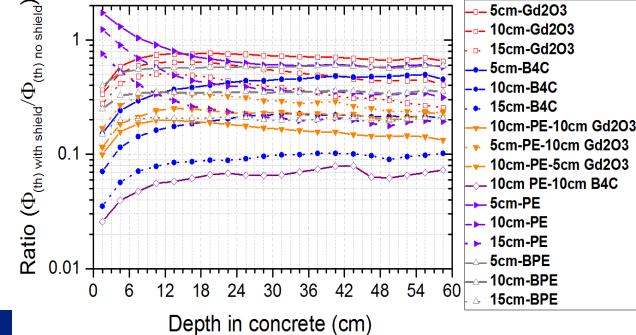

- Gd, Polyethylene (PE) and B are well-known absorbing materials
- All cyclotron vault walls were covered

Material	Thickness (cm)
Gd ₂ O ₃	5 10 15
B ₄ C	5 10 15
PE	5 10 15
BPE (5%wt)	5 10 15
PE+ Gd ₂ O ₃	10+10 5+10
PE+ B ₄ C	10+10



- Reduction of thermal neutrons using Gd
- PE thermalizes fast neutrons
- At concrete surface, thermal neutrons increase

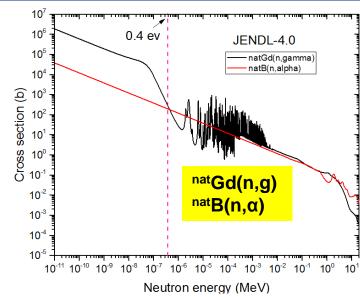


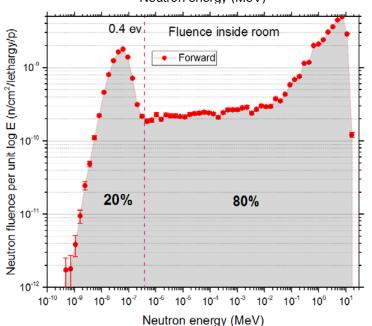


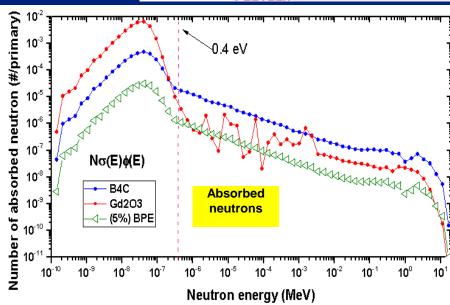
TS 가속기연구소
Division of Advanced Nuclear Engineering
PDSTECH
POHANG ACCELERATOR LABORATORY

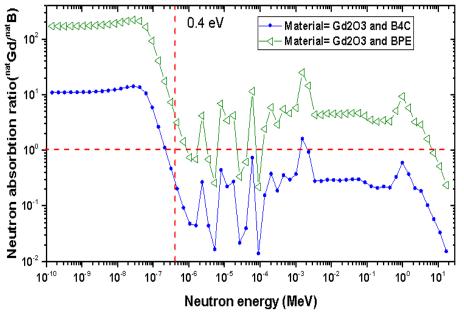
- B₄C seems to reduce the thermal neutrons better than Gd₂O₃.
- By placing 10 cm Polyethylene, it thermalizes fast neutrons and then can be captured by Gd or B isotopes dramatically.

Material	Thickness (cm)	Transmitted neutrons (%)
	5	74
Gd_2O_3	10	63
	15	52
	5	34
B_4C	10	20
	15	10
	5	68
PE	10	42
	15	25
	5	58
BPE (5%wt)	10	35
,	15	20
PE+ Gd ₂ O ₃	10+10	20
	5+10	23
PE+ B ₄ C	10+10	7

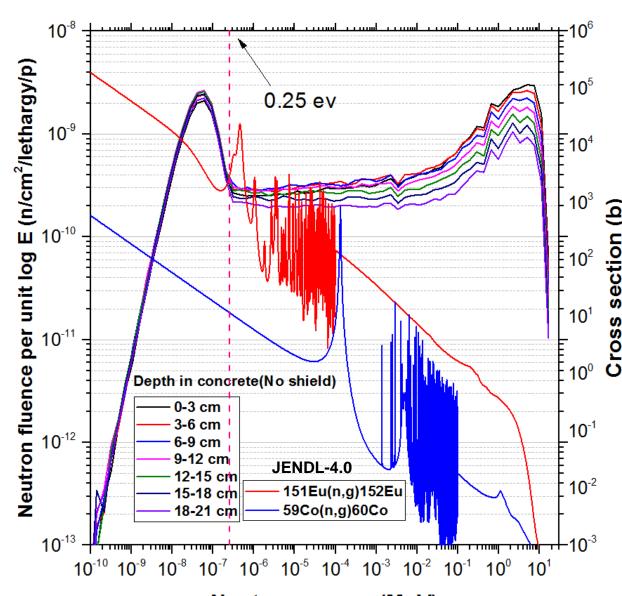

Division of Advanced Nuclear Engineering POHANG ACCELERATOR LABORATORY


- Gd has high thermal neutron CX below 0.4 eV
- Many resonances above 0.4 eV in natGd CX
- B has no resonances in the CX
- Average CXs above 0.4 eV for natGd and natB are approximately equal
- Number density of B in B₄C is higher than Gd in Gd₂O₃ by factor of 4.5


- 80% of neutrons are in the epithermal and fast areas
- B can block more neutrons in these areas than Gd



Therefore, B₄C seems to reduce the thermal neutrons better than Gd₂O₃

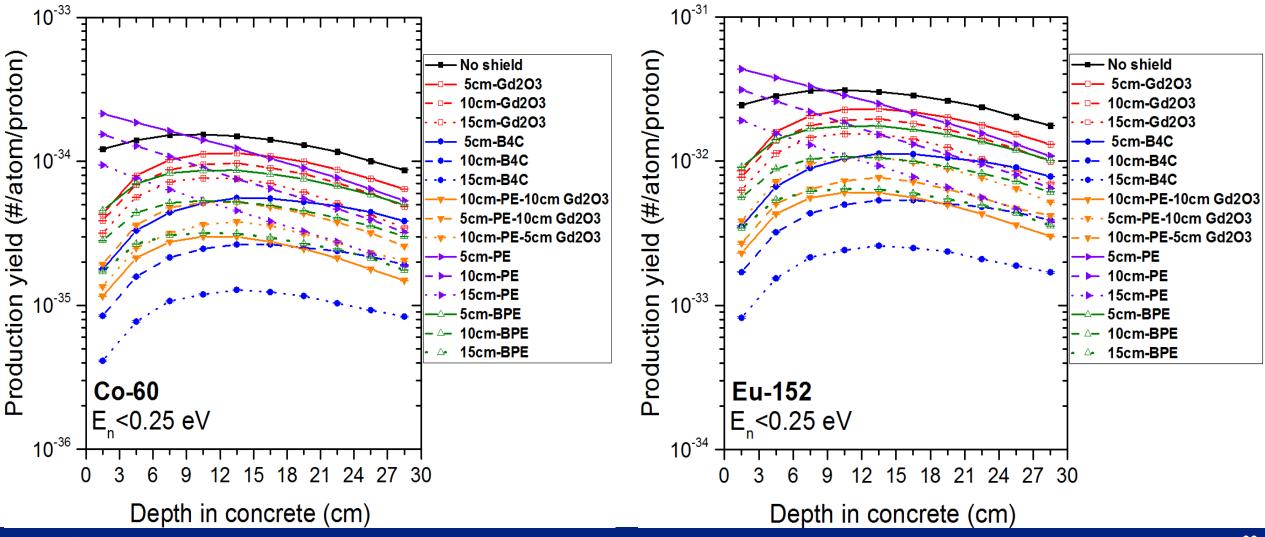


☐ Estimating production yield of (Eu-152 & Co-60)

- I. Calculating the thermal neutron flux using PHITS
- II. Applying JENDL-4.0 library
- III. Folding thermal neutron flux and the cross section $(E_n < 0.25 \text{ eV})$

$$R = \sum N\sigma(E)\Phi(E)\Delta E$$

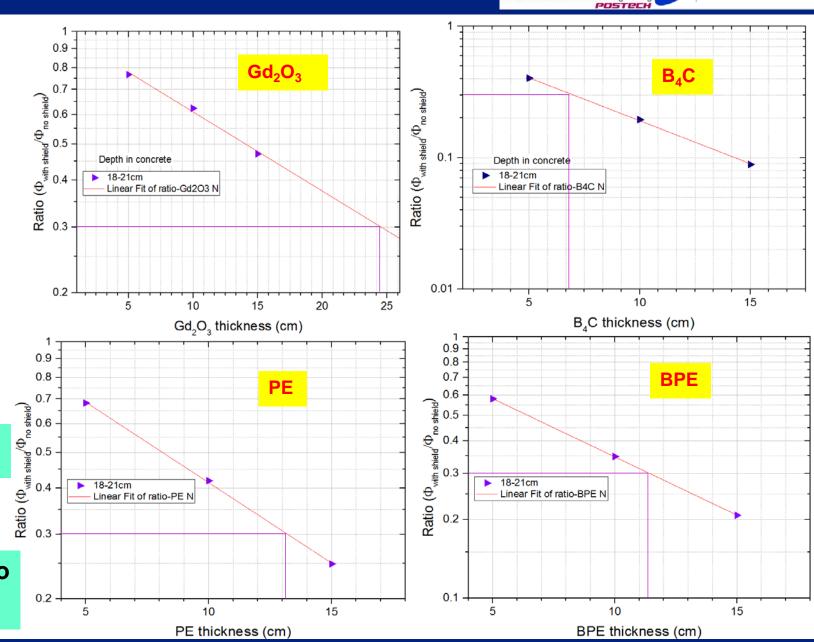
- R: production yield
- N: number of atoms of the target nuclei
- σ: production cross section of the interested nuclei [cm²]
- Φ: Thermal neutron flux [n/cm²/MeV/source]
- ΔE: Energy bin (MeV)



Neutron energy (MeV)

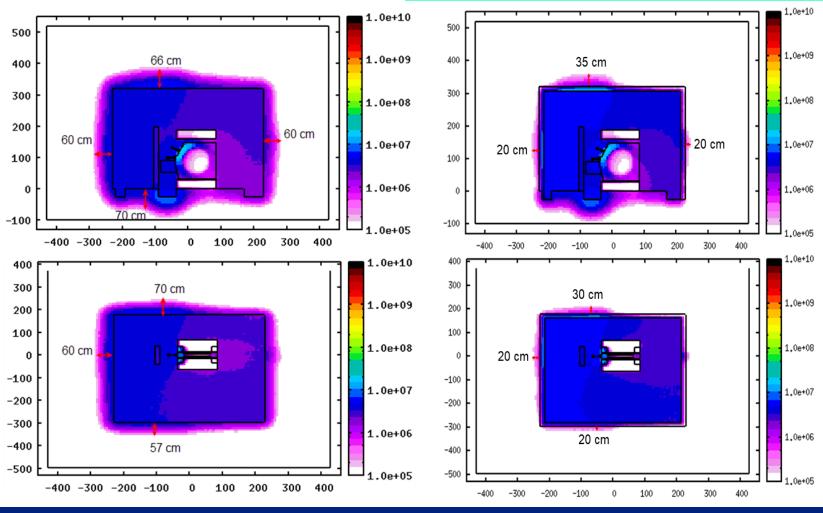
Using different neutron absorbing materials:

→ decreasing thermal neutron flux→ Reducing of concrete activation

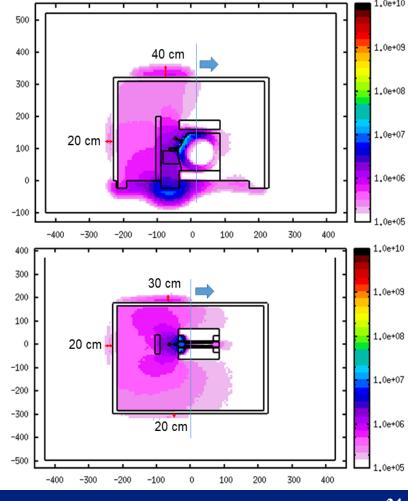

☐ Attenuation of thermal neutrons

- Required thickness to reduce thermal neutrons by a factor of 3 @ concrete depth of 20 cm:
 - ~ 24.5 cm of Gd₂O₃
 - ~ 7 cm of B₄C
 - ~ 14 cm of PE
 - <u>~12 cm</u>B(5%wt)PE

Less expensive than Gd_2O_3 and B_4C

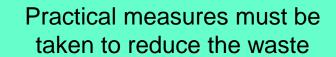


Applied in a real geometry in FLUKA to re-evaluate the neutron distribution



T양가속기연구소
Division of Advanced Nuclear Engineering POHANG ACCELERATOR LABORATORY

- Expected concrete thickness to be radioactive waste in the PETtrace, without shielding
- Reduced concrete thickness to be radioactive waste in the PETtrace, with 14 cm PE shielding
- Thermal neutrons inside the room is not reduced


- Reduced concrete thickness to be radioactive waste in the PETtrace with 12 cm BPE shielding
- Thermal neutrons inside the room are reduced as well

Conclusions and remarks

- Radioactive waste management is a crucial issue
- There are totally 41 cyclotrons in Korea of which 31 cyclotrons are in operation, generating huge amount of radioactive waste

- Different cyclotrons were simulated in details using FLULA
- A simple geometry of a PETtrace was simulated in PHITS

 Materials with high neutron absorption cross sections are suitable to reduce the activated concrete (Gd₂O₃, B₄C, PE, and BPE)

~14 cm of PE

~12 cm of BPE

are needed to reduce the neutrons

by a factor of 3 @ 20 cm depth

 \sim 24.5 cm of Gd₂O₃

~7 cm of B₄C

PE and BPE are proved to be acceptable according to the price and neutron absorption capability

BPE can reduce the concrete activation and also the thermal neutrons inside the room

Thank you for your attention!