

Off-line and On-line Applications

of High Resolution
Laser Spectroscopy
on Exotic Species

Collinear and Alternative Approaches

Klaus D.A. Wendt

Institut für Physik, Johannes Gutenberg-Universität Mainz

Outline

- The Study of Exotic Nuclides from the Periodic Table to the Nuclear Chart
- Scientific Findings and Data from laser spectroscopy

- experimental prerequisites and techniques
- high resolution laser spectroscopy
- line broadenings
- collinear versus other experimental techniques

- Some Specific Results on most Exotic Elements and Isotopes
- Summary and Outlook

nttps://www.nist.gov/pmi/periodic-table-element

The Periodic System 2019 – with todays Exotic Elements

...going on-line — heading for exotic isotopes far off stability...

From the Periodic System to the Nuclear Chart...

The Influence of the Nucleus on the Atomic Structure

$$\sum_{i=1}^{N} \frac{-h^2}{2m} \nabla^2 \qquad U + V \longrightarrow V(\vec{r}_1 \vec{s}_1, \vec{r}_2 \vec{s}_2 \dots \vec{r}_n \vec{s}_n)$$

(Hyperfine Structure)

$$\frac{\vec{p}^2}{2\mu} = \sum \frac{\vec{p}_i^2}{2\mu} + \sum_i \sum_{j>i} \frac{\vec{p}_i \cdot \vec{p}_j}{\mu}$$

Normal Mass Shift

Specific Mass Shift

Field Shift

$$+ C_{ij} V_{ij}^{0} \frac{(A-A')}{AA'} + \frac{\pi a_{0}^{3}}{Z} \Delta |\Psi(0)|^{2} f(Z) \left[\delta \left\langle r^{2} \right\rangle^{AA'} + C_{1} \delta \left\langle r^{4} \right\rangle^{AA'} + \dots \right]$$

$$\Delta v_{IS} = (M_N + M_S) \frac{(A - A')}{AA'} + F\delta \langle r^2 \rangle^{AA'}$$

→ Mean squared nuclear charge radius difference and deformation β

From Hyperfine Structure to the Nuclear Moments μ_{l} and Q_{s}

Atomic Level Splittings by Coupling of Electron Angular Momentum J and Nuclear Spin I via the Moments µ₁ and Q_s

$$\vec{F} = \vec{I} + \vec{J} \quad (|I - J| \le F \le I + J)$$

$$W_F = \frac{1}{2}AC + B\frac{\frac{3}{4}C(C+1) - I(I+1)J(J+1)}{2I(2I-1)J(2J-1)}$$

$$C = F(F+1) - I(I+1) - J(J+1).$$

Nuclear Magnetic

Dipole Moment µ₁

$$A = \mu_I B_e(0) / (IJ)$$
$$B = eQ_S V_{ZZ}(0)$$

$$B = eQ_{S}V_{ZZ}(0)$$

Nuclear Electric

Quadrupole Moment Q_s

Spectral Considerations for Narrowband Laser Excitation

Resolution in laser spectroscopy determined by

- Single free atom at rest →
 natural linewidth =
 Lorentzian of ~10 MHz
- Ensemble of thermally moving atoms in vapor → Gaussian
 500 MHz – 5 GHz
- Additional contribution from laser line width → Gaussian
 1 MHz(cw) - 5 GHz(pulsed)
- Strong linewidth suppression down to natural linewidth by fast beam **Doppler** compression in **collinear laser spectroscopy** (on ions, atoms or molecules)

Lorentzian (homogeneous)

$$L(v) = \frac{1}{\pi [w_L + (v_0 - v)^2 / w_L]}$$

$$w_L = HWHM = \frac{1}{4\pi\tau}$$

Gaussian (inhomogeneous)

$$G(v) = \frac{1}{w_G \sqrt{\pi}} \exp[-(v_0 - v)^2 / w_G^2]$$

$$W_G = HW_{e}^{\frac{1}{e}} = 4.3 \times 10^{-7} v_0 \sqrt{T/M}$$

Voigt (convolution)

$$V(v) = \int_{-\infty}^{\infty} G(v') L(v - v') dv'$$

Principles of Collinear Laser Spectroscopy

Beam velocity [m/s]

The Cradle of Collinear Laserspectroscopy...

at the MAFIA on-line separator of the TRIGA Research Reactor of UMz in 1978

The first Hyperfine Structure Spectra in Radiocesium

In reactor core ion source limited to alkaline elements

→ Transfer of CLS to ISOLDE CERN in 1980

The Prosperous First 10 Years of CLS at ISOLDE/CERN

1982

O Fast-Beam Laser Spectroscopy on Metastable Atoms applied to Neutron-Deficient Ytterbium Isotopes

F. Buchinger, A.C. Mueller, B. Schinzler, K. Wendt, C. Ekström, W. Klempt, and R. Neugart,

Nuclear Instruments and Methods 202, 159-165 (1982)

1983

1 Spins, Moments and Charge Radii of Barium Isotopes in the Range of ¹²²⁻¹⁴⁶Ba determined by Collinear Fast-Beam Laser Spectroscopy

A.C. Mueller, F. Buchinger, W. Klempt and E.W. Otten, R. Neugart, C. Ekström, J. Heinemeier and The ISOLDE Collaboration,

Nuclear Physics A403 (1983) 234-262

2 Nuclear Moments and Charge Radii of Rare-Earth Isotopes studied by Collinear Fast-Beam Laser Spectroscopy

R. Neugart, K. Wendt, S.A. Ahmad, W. Klempt, and C. Ekström, *Hyperfine Interactions* **15/16**, 181-186 (1983)

Determination of Nuclear Spins and Moments in a Series of Radium Isotopes S.A. Ahmad, W. Klempt, R. Neugart, E.W. Otten, K. Wendt, and C. Ekström, *Phys. Lett.* **133B**, 47-52 (1983)

Ba

Dy

Ra

1984

Nuclear Structure from on-line High Res Laser Spectroscopy

JC U **ISOLDE Experimental Hall with Laser & Mass Spectrometry** 4. GANDALF - Collinear Negative Ion Photo-Detachment **3. RILIS** – Resonance Ionization Laser Ion Source & Mid to High Resolutioon In-Source Spectroscopy I. COLLAPS - Collinear Laser Spectroscopy REX - Post accelerator to NICOLE 2. CRIS Collinear laser 5. VITO - Laser Ion Resonance lonization Beam Polarization

Nuclear Polarization and β-NMR Detection in CLS

NUCLEAR SPIN AND MAGNETIC MOMENT OF ¹¹Li E. Arnold et al., Phys. Lett B 197, 311 (1987)

JG u

Upgrading of Collaps by Ion Beam Pulsing

Resonance Ionization Detection in CLS

The CRIS Collaboration

J. Billowes, T.E. Cocolios, K.T. Flanagan, T.J. Procter, A. Smith, I. Strashnov, K.M. Lynch, S. Franchoo, V. Fedosseev, B. Marsh, G. Simpson, M. Bissell, I. Budincevic, R.P. De Groote, S. De Schepper, R.F. Garcia Ruiz, H. Heylen, J. Papuga, G. Neyens, H.H. Stroke, R.E. Rossel, S. Rothe, K. Wendt

Recent CRIS on-line Experiments

Indium:

→ Laser spectroscopy up to ¹⁰¹In (Z=49,N=52) Yields ~ 100 ions/s

Potassium:

→ Laser spectroscopy of ⁵²K (Z=19, N=33)

Tin:

→ Laser spectroscopy of ¹⁰³⁻¹²²Sn

First on-line Spectroscopy on molecules

→ RaFluoride

Excitation energy of low-lying levels of ²²⁶RaF

The Need of a full Collection of Lasers

Collinear Laser Spectroscopy up to date

Commissioning of the collinear laser spectroscopy facility BECOLA at NSCL/MSU, K. Minamisono et al., Hyp. Int. 230, 57-63 (2015)

Alternative Approaches? Mid-Resolution In-Source Spec.

- Resolution limited by Doppler broadening in the hot ion source and lasers (FWHM ≈ 15 GHz)
- In-RILIS Spectroscopy for heavy elements with large isotope shift & hyperfine structure
- Direct in-source laser spectroscopy on hyperfine structure & isotope shift of 196,199,205,212,217 At

JG|u

Suppression of Contaminations in In-Source Spectroscopy

	R	adon	F	Francium	Fr 199 16 ms	Fr 200	Fr 201 48 ms	Fr 202	Fr 203 550 ms	Fr 204	Fr 205 3.92 s	Fr 206	Fr 207 14.8 s	Fr 208 59.1 s	Fr 209 50.0 s	Fr 210 3.18 m	Fr 211 3.10 m	Fr 212 20.00 m	Fr 213 34.6 s	Fr 214	Fr 215 86 ns	Fr 216 700 ns	Fr 217 22 μs	Fr 218	Fr 219 20 ms	Fr 220 27.4 s	Fr 221 4.90 m	Fr 222 14.20 m	Fr 223 21.80 m	Fr 224 3.33 m	Fr 225 4.00 m
		86		87	4		4	4 4	4		4				Ą	4	4	_	4	3.5 11.5			·	4		4	4		_		
Astatine	At 194	At	195	At 196	At 197	At 198	At 199	At 200	At 201	At 202	At 203	At 204	At 205	At 206	At 207	At 208	At 209	At 210	At 211	At 212	At 213	At 214	At 215	At 216	At 217	At 218	At 219	At 220	At 221	At 222	At 223
85 ²	50 ms 40 r l=10 l=	ms 147 ms 3 I=1/2	328 ms 21 1=9/2 1	10 ms 253 ms I=10 I=3	3.7 s 350 m =1/2 =9/2	1.0 s 4.2 s =10 =3	7.2 s I=9/2	3.5 s 47 s 43.2 s N10 N7 N3	1.42 m I=9/2	460 ms 3.03 m 3.07 m	At 203 7.40 m I=9/2	108 ms 9.20 m =10 =7	At 205 26.90 m I=9/2	30.00 m I=5	1.80 h I=9/2	1.63 h I=6	At 209 5.41 h I=9/2	At 210 8.10 h I=5	7.21 h I=9/2	At 212	125 ns I=9/2	558 ns I=1	100 μs I=9/2	300 μs I=1	32.3 ms I=9/2	1.5 s I=1	54 s I=5/2	3.71 m I=3	2.30 m I=3/2	54 s	50 s I=3/2
	4	4 4				A 4	4		4		4	1	/	/	/	/	/	<u> </u>	1	⊿ 🗷					_	_	_	_			

Nuclear Ground State Properties of At from In-RILIS Spec

tine At 194 At 195 At 196 At 197 At 198 At 199 At 200 J. C. 250 At 197 At 198 At 199 At 200 J. C. 250 At 197 At 200 At 20

J. G. CUBISS et al.

PHYSICAL REVIEW C 97, 054327 (2018)

CHARGE RADII AND ELECTROMAGNE

TABLE I. Measured values of the hyper the fitting of the hfs data are given in round of A-constants ratio is added. The values of

Nucleus	I^{π}	$T_{1/2}$
¹⁹⁵ At ^g	(1/2+)	290(20) ms
195Atm	$(7/2^{-})$	143(3) ms
¹⁹⁶ At	(3+)	387(14) ms
¹⁹⁷ At ^g	$(9/2^{-})$	381(6) ms
¹⁹⁷ At ^m	$(1/2^+)$	2.0(2) s
¹⁹⁸ At ^g	(3+)	4.1(3) s
¹⁹⁸ At ^m	(10^{-})	1.03(15) s
¹⁹⁹ At ^g	$(9/2^{-})$	6.92(13) s
199Atm	$(1/2^+)$	310(80) ms
²⁰⁰ At ^g	(3+)	43(1) s
200Atm1	(7+)	47(1) s
²⁰⁰ At ^{m2}	(10^{-})	3.5(1) s
²⁰¹ At	$(9/2^{-})$	83(2) s
²⁰² At ^g	(3 ⁺)	184(1) s
²⁰² At ^m	(7+)	182(2) s
²⁰³ At	9/2-	7.4(2) min
²⁰⁴ At	7+	9.22(13) min
²⁰⁵ At	9/2-	26.9(8) min
²⁰⁶ At	$(6^+)^a$	30.6(8) min
²⁰⁷ At	9/2-	1.80(4) h
²⁰⁸ At	6+	1.63(3) h
²⁰⁹ At	9/2-	5.41(5) h
²¹⁰ At	(5)+	8.1(4) h
211At	0/2-	7.214(7) h

TABLE II. Extracted values of the change in mean-square charge radii, the mean-square deformation extracted from the IS data (see Sec. IV C), and the magnetic and quadrupole moments for a statine isotopes. Errors due to the statistical uncertainties in the extracted hyperfine parameters in Table I are given in round brackets. Systematic uncertainties are given in curly brackets, in $\delta \langle r^2 \rangle$, stemming from the theoretical indeterminacy of the F and M factors for $\delta \langle r^2 \rangle_{A,205}$; in μ , due to the uncertainty in $\mu_{\rm ref}$ and the HFA indeterimnacy; and in Q_S , resulting from the uncertainty in the theoretical B_0/Q_S , and the experimental B_1/B_0 ratios.

ć							
of —	Nucleus	N	I^{π}	$\delta \langle r^2 \rangle_{A,205} (\text{fm}^2)$	β_{DM}	$\mu (\mu_N)$	Q_{S} (b)
	195Atg	110	$(1/2^+)$	-0.171(7){9}	0.21(2)	1.611(25){39}	
	¹⁹⁵ At ^m	110	$(7/2^{-})$	-0.101(7){5}	0.22(2)	3.714(97){90}	$-2.04(25)\{100\}$
┪	¹⁹⁶ At	111	(3+)	-0.262(10){13}	0.17(2)	3.739(110){90}	$-0.64(13)\{35\}$
	$^{197}At^{g}$	112	$(9/2^{-})$	-0.296(7){15}	0.15(3)	3.849(45){54}	$-1.15(8)\{60\}$
	¹⁹⁷ At ^m	112	$(1/2^+)$	$-0.133(7)\{7\}$	0.19(2)	1.546(13){37}	
	198Atg	113	(3+)	$-0.338(7)\{17\}$	0.11(4)	4.037(94){97}	$-0.59(15){30}$
	¹⁹⁸ At'''	113	(10^{+})	$-0.315(7)\{16\}$	0.12(3)	2.554(81){62}	0.44(25){25}
	199Atg	114	$(9/2^{-})$	$-0.265(7)\{13\}$	0.12(3)	3.955(45){56}	$-0.95(8)\{50\}$
	¹⁹⁹ At ^m	114	$(1/2^+)$	$-0.075(10)\{4\}$	0.17(2)	1.595(38){39}	
	$^{200}At^g$	115	(3+)	-0.293(7){15}	0.08(4)	4.279(96){110}	$-0.50(8)\{50\}$
	200At ^{m1}	115	(7+)	$-0.277(7)\{14\}$	0.09(5)	4.74(13){12}	$-0.96(12)\{50\}$
	200At ^{m2}	115	(10^{-})	$-0.258(9)\{13\}$	0.10(4)	2.694(82){65}	0.54(25){30}
	²⁰¹ At	116	$(9/2^{-})$	$-0.197(7)\{10\}$	0.10(4)	4.025(45){57}	$-0.96(15)\{50\}$
	$^{202}At^{g}$	117	(3+)	-0.229(10){11}	0.04(9)	4.16(12){10}	$-0.54(13){30}$
	²⁰² At ^m	117	(7+)	-0.201(10){10}	0.06(6)	4.54(16){11}	$-0.65(13){30}$
	²⁰³ At	118	9/2-	-0.115(7){6}	0.08(5)	4.021(45){57}	$-0.73(8)\{35\}$
	²⁰⁴ At	119	7+	$-0.109(7)\{5\}$	0.05(8)	4.84(13){12}	$-0.62(8)\{30\}$
	²⁰⁵ At	120	9/2-	0	0.08(4)	4.111(34){58}	$-0.61(8)\{30\}$
	²⁰⁶ At	121	$(6^+)^a$	0.020(7){1}	0.06(6)	4.39(13){11}	$-0.42(10)\{20\}$
	²⁰⁷ At	122	9/2-	0.115(7){6}	0.08(4)	4.150(45){59}	$-0.45(8)\{25\}$
	²⁰⁸ At	123	6+	0.155(7){8}	0.07(4)	4.48(14){11}	$-0.40(25)\{20\}$
	²⁰⁹ At	124	9/2-	0.240(7){12}	0.09(3)	4.141(45){59}	$-0.40(8)\{20\}$
	²¹⁰ At	125	(5)+	0.295(7){15}	0.09(3)	4.74(12){11}	$-0.42(12)\{20\}$
	²¹¹ At	126	9/2-	0.372(9){19}	0.09(2)	4.139(37) ^b	-0.33(12){20}

^aFor I = 5, $\delta \langle r^2 \rangle_{A,205} = 0.009(7)\{1\}$ fm², $\mu = 4.34(12)\{11\} \mu_N$, $Q_S = -0.29(10)\{15\}$. Spin assignment for ²⁰⁶At is discussed in Sec. V A 3. ^bReference value.

For I=5, $\delta v_{705}^{205}=-117(75)$ MHz, $A=-\frac{547(10)}{100}$ with $I=-\frac{170(00)}{100}$ in the symmetry of the suscessed in Sec. v. A.5.

Frequency detuning $v - v_0^{211}$ (GHz)

Charge Radii and Deformations in Astatine

- Ground state & isomer nuclear charge radii almost a renaissance of the Hg shape staggering?
- Decrease in odd-even staggering points to onset of octupolar deformed nuclei around N = 145

Next Generation – High-Resolution In-RILIS/LIST Spec.

Ultimate Background Suppression by Double Repeller LIST Design

 π -LIST efficiency estimated to 0.1 - 1 %

High Resolution In-LIST Spectroscopy

measured off-line at the RISIKO RIB facility at JGU Mz on samples < 10^{11} atoms in the π -LIST

Off-line High-Resolution Laser Spec on Pm

Sample specs from γ spectroscopy

Ratio Pm/Nd ≈ 1/100 after radiochemistry

Isotope	Handling limit (kBq)	A total (kBq)	total atom number
Pm-143	1000	56	2.04 e12
Pm-144	1000	85	3.83 e12
Pm-145	10000	? (no γ)	?
Pm-146	1000	8.5	1.87 e12
Pm-147	10000	? (no γ)	?
Pm-148m	1000	21	1.25 e12

The Nuclear Chart

Cutout of the Lanthanides

^{145,147}Pm (II): G.D. Alkhazov et al., J. Phys. B **25** (1992) 571-576

High Resolution In-Source Laser Spectroscopy

142

144

146

mass (amula) D.A. Wendt

148

4f⁵6s² ⁶H^o_{5/2}

HFS spectra of 143-147Pm

Isotope	ν – ν ₁₄₇ (MHz)	A _{GS} (MHz)	A _{FES} (MHz)	B _{GS} (MHz)	B _{FES} (MHz)
147	0(6)	619.9(2)	499.6(2)	-409(2)	-119(3)
146	225(6)	42 <mark>9</mark> .0(3)	345.7(4)	5(3)	1.5(10)
145	347(5)	1255.5(2)	1011.9(1)	-139(2)	-40(1)
144	596(6)	329.0(2)	265.1(2)	127(3)	37(1)
143	736(7)	1368.8(7)	1103.2(6)	-66(6)	-19(2)

- exp. linewidth FWHM ~100 MHz
- extracted A and B parameters agree
 for 452 nm and 468 nm transition

jci|u

Nuclear Charge Radii in Pm

- Electronic factor ratio from King-Plot
- SMS neglected, F interpolated from neighboring elements
- Indication of small odd-even staggering

I. Angeli, K.P. Marinova / Atomic Data and Nuclear Data Tables 99 (2013) 69–95

Conclusion and Outlook

- High resolution laser spectroscopy delivers most valuable nuclear ground state properties as well as atomic physics information within long isotopic chains up to the most exotic, short-lived isotopes
 - Experimental resolution in the order of natural atomic line widths needed
- Collinear Laser Spectroscopy still is the most versatile technique
- Various sensitive detection techniques are in use
 - Standard fluorescence detection still very prosperous after 40 years of use
 - Nuclear polarization and β-NMR detection
 - Resonance ionization enables efficient detection of ions or nuclear decays
 - Cooler and buncher combinations for background reduction
 - On-line Collinear Photodetachment Spectroscopy for study on exotic negative ions
- Alternative techniques found in high resolution in-source spectroscopy

Acknowledgements

Thank you for your attention - and these gentlemen and their actual colleagues for their work

Ultra Trace Analysis by Collinear Fast Beam Laser Spectroscopy

^{89,90}Sr Ultra Trace Analysis by RIMS

Isotopic Selectivity: $\geq 10^{10}$

(background limited)

Overall Efficiency: ~ 10⁻⁵

30 keV

Ion-Source + Acceleration

> Magnetic Sectorfield

Mass-Separator

(laserpower limited)

Detection Limit : $\sim 3 \times 10^6$ atoms 90 Sr

per sample (~ 2 mBq)

Neutralization

Optical Excitation

Field-Ionization

1-Step Quasi-collinear RIS

5s 4d ${}^{3}D_{J} \rightarrow 5s 23f {}^{3}F_{J}$ (363.8 nm)

17 keV field ionization

Isotope Selection by Collinear Fast Beam Laser Spectroscopy

No isotope resolution - no selectivity

Selectivity > 109 per excitation step