Neutrino Theory

Neutrino Theory: Mass, Interactions, Unification

Oleg Popov Seoul National University of Science and Technology opopo001@ucr.edu

IBS, 6.03.2019

Overview

Neutrino Theory

- 1 Introduction
- 2 Tree level
- 3 Radiative
- 4 Dirac case
- 5 B-L extension
- 6 Unification
- 7 Connection to GW
- 8 Summary

Introduction/Motivation

Neutrino Theory

Introduction

Tree level

Radiative

Dirac ca

B-L extensio

Unification

Connection to GW

- (Naturally) small neutrino masses
- Connection with dark matter existence
- Lepton mixing
- Unification

Standard Model

Neutrino Theory

Introduction

miroductio

Radiative

11.00.00

Unification

GW

Summai

Standard Model of Elementary Particles

Gauge symmetry group $\mathbb{G}_{SM} = SU(3)_c \times SU(2)_L \times U(1)_Y$

$$\mathcal{L}^{Y} = \bar{u}Y_{u}QH + \bar{Q}Y_{d}dH + \text{h.c.}$$
 (1)

$$\langle h^0 \rangle = v \rightarrow m_f = Y_f v$$
 (2)

Requirements for neutrino mass

Neutrino Theory

Introduction

Dadiation

D-L extensio

Unification

Connection to GW

- Majorana or Dirac type?
- Tree level or radiative?
- New particles? (scalar, fermionic, vector)
- New gauge sectors? (U(1), SU(2), SU(N))

Possible effects/ Ways to test

Neutrino Theory

Introduction

Tree level

Radiativ

Dirac case

B-L extension

Unification

Connection to

- Collider (LHC,ILC, FCC)
- Dark matter
- Grand unified theories
- Neutrino mixing
- Leptogenesis (CPV)
- Neutrinoless N−pole beta decay $(0\nu n\beta)$
- GW via scalar sector

Tree level, Majorana

Neutrino Theory

Introduction

madaction

Tree level

rtadiativ

D-L extensi

Unification

Connection to GW

$$\mathcal{L}_{new} = \bar{N} Y_D L H + m_N N_R N_R + \text{h.c.}$$

Seesaw-I

Neutrino Theory

Introducti

Tree level

Radiative

Dirac cas

B-L extension

Unification

Connection to

Seesaw-III

Neutrino Theory

Tree level

Weinberg Operator 1979: $\frac{LHLH}{\Lambda} = \frac{(I^-H^+ - \nu H^0)(I^-H^+ - \nu H^0)}{\Lambda}$ Add $N_R \sim (1, 1, 0)$ under \mathbb{G}_{SM} $\mathcal{L}_{new} = \bar{\Sigma} Y_D L H + m_N \Sigma_R \Sigma_R + \text{h.c.}$

Seesaw variations

Neutrino Theory

Introduction

Tree level

Radiative

Dirac cas

R-I extension

Unification

Connection to

GW

$$\mathscr{M}_{\nu N} = \begin{pmatrix} 0 & m_D \\ m_D & m_N \end{pmatrix},$$

Seesaw[1979]
$$m_{
u}=-m_D^2/m_N$$

Seesaw variations

Neutrino Theory

minoducti

Tree level

Radiative

Dirac cas

R-I extension

Unification

Offincation

Connection t GW

Summary

$$\mathcal{M}_{Vn} = \begin{pmatrix} 0 & m_D & 0 \\ m_D & m_1 & m_N \\ 0 & m_N & m_2 \end{pmatrix}$$

Inverse Seesaw[1986] $m_{
u}=m_{D}^{2}m_{2}/(m_{N}^{2}-m_{1}m_{2})$

Seesaw variations

Neutrino Theory

introductio

Tree level

Radiative

_.

. . . .

Unification

GW

Summary

$$\mathcal{M}_{VN} = \begin{pmatrix} 0 & m_D & m_D' \\ m_D & 0 & m_N \\ m_D' & m_N & 0 \end{pmatrix}$$

Linear Seesaw $m_{\nu} = -2m_D m_{D'}/m_N$

Radiative neutrino mass, Majorana

Neutrino Theory

Radiative

Radiative neutrino mass, Majorana

Neutrino Theory

Introductio

Tree leve

Radiative

Dirac case

11.10

Offincation

Connection to

Scotogenic radiative neutrino mass

Neutrino Theory

Introduct

Tree level

Radiative

Dirac case

B-L extens

Unificatio

Connection to

Add \mathbb{Z}_2 symmetry under which $\eta \sim (1,2,1/2)$ and N_R are ood

Radiative neutrino mass, Majorana

Neutrino Theory

Radiative

Fraser, Ma, OP[2014]

Radiative inverse seesaw neutrino mass, Majorana

Neutrino Theory

Introduction

_ . .

Radiative

Unificatio

Connection to

Add \mathbb{Z}_2 symmetry under which real singlet scalar and $E_{L,R} \sim (1,2,1/2)$ and $N_L \sim (1,1,0)$ are odd

Dirac neutrinos

Neutrino Theory

minoduci

Tree level

Radiative

Dirac case

B-L extension

Unification

Connection to

- Add $N_R \sim (1,1,0)$ under G_{SM}
- N_R MUST transfor under some other symmetry non-trivially
- New symmetry *S* is discrete, global, gauged, dark?

Tree Dirac case

Neutrino Theory

Introductio

Radiative

Dirac case

Unification

Offinication

Connection to GW

Summar

• Insert a Dirac fermion singlet N which does not transform under S, then break S softly by the dimension-three $\bar{\nu}_R N_L$ term.

• Insert a Dirac fermion triplet $(\Sigma^+, \Sigma^0, \Sigma^-)$ which does not transform under S, then break S and $SU(2)_L \times U(1)$ together spontaneously to obtain the dimension-three $\bar{\nu}_R \Sigma_L^0$ term.

Dirac case

Neutrino Theory

Introducti

+ . .

Radiative

Dirac case

Unification

011111011

Connection to GW

Summary

• Insert a Dirac fermion doublet (E^0, E^-) which transforms as ν_R under S, then break S softly by the dimension-three $(\bar{E}^0\nu_L + E^+e^-)$ term.

• Insert a scalar doublet (η^+, η^0) which transforms as ν_R under S, then break S softly by the dimension-two $(\eta^-\phi^+ + \bar{\eta}^0\phi^0)$ term.

Dirac case

Neutrino Theory

Introductio

Tree level

Radiative

Dirac case

Unification

Connection to

$U(1)_{B-L}$ case

Neutrino Theory

IIIIIOGUCLI

Tiee level

_ .

B-L extension

Unification

Connection to GW

- Add 3 $N_R \sim (1, 1, 0)$ which carry L = (1, 1, 1)
- Add 3 $N_R \sim (1,1,0)$ which carry L = (4,4,-5)
- Other variations are possible
- Makes $U(1)_{B-L}$ anomaly free.
- $U(1)_{B-L}$ can global or gauged
- Global: softly or spontaneously broken(Majorana, Dirac)
- Gauged: spontaneously broken(Majorana, Dirac)

Scotogenic model in SU(6) GUT*

Neutrino Theory

Introduction

Tree level

_

Unification

Unification

Connection to GW

ummar

Simple case: Extend SU(5) to SU(6) to incude BSM particles needed

 $\underline{5}_F^* \times \underline{10}_F \times \underline{5}_S^*$, $\underline{10}_F \times \underline{10}_F \times \underline{5}_S$ SU(5) Yukawa terms are extended to

 $\underline{6}_F^* \times \underline{15}_F \times \underline{6}_S^*$, $\underline{15}_F \times \underline{15}_F \times \underline{15}_S$ SU(6) Yukawas Anomaly free combinations: $5_+^* + 10_F$ for SU(5)

Anomaly free combinations: $\underline{5}_F^* + \underline{10}_F$ for SU(5),

 $\underline{6}_F^* + \underline{6}_F^* + \underline{15}_F$ for SU(6). New SU(6) $\underline{21}_S$ scalar is added to obtain 2'nd Higgs doublet $(\mathbb{Z}_2 \sim -)$ with new interactions

$$\underline{6}_F^* \times \underline{6}_F^* \times \underline{21}_S$$
, $\underline{15}_S^* \times \underline{15}_S^* \times \underline{21}_S \times \underline{21}_S$

Scotogenic model in SU(7) GUT[†]

Neutrino Theory

Introduction

Tree level

Radiative

Dirac case

B-L extension

Unification

Connection to GW

ummar

Less simple case: Extend SU(5) to SU(7) to incude BSM particles needed $\underline{5}_F^* \times \underline{10}_F \times \underline{5}_S^*$, $\underline{10}_F \times \underline{10}_F \times \underline{5}_S$ SU(5) Yukawa terms are extended to $\underline{7}_F^* \times \underline{21}_F \times \underline{7}_S^*$, $\underline{21}_F \times \underline{21}_F \times \underline{35}_S$ SU(7) Yukawas Anomaly free combination for SU(7): $\underline{7}_F^* + \underline{7}_F^* + \underline{7}_F^* + \underline{21}_F$. New $\underline{28}_S$ scalar needed to accomodate $SU(2)_N$ doublet, with new interactions: $\underline{7}_F^* \times \underline{7}_F^* \times \underline{28}_S$, $\underline{21}_S^* \times \underline{21}_S^* \times \underline{28}_S \times \underline{28}_S$

• Insert a Dirac fermion singlet N which does not transform under S, then break S so by the dimension-three $\bar{\nu}_R N_L$ term.

Connection to GW signals

Neutrino Theory

Introductio

Radiative

Dirac ca

B-L extension

.

-

Connection to GW

oummary

- Neutrino mass requires new scalars or gauge bosons
- Strong first order phase transition (BSM gauge symmetry)
- Strong first order phase transition gives GW
- Some possible models: LR models, SU(N) scotognic symmetry

Leptogenesis

Neutrino Theory

Introduction

Trop lovel

Radiative

Dirac case

Unification

Connection to

Summary

Neutrino Theory

Neutrino masses can be Majorana or Dirac

Tree or radiative

Reuire BSM fields and symmetries (globa or gauged)

Connection with DM

Connection with GW

Leptogenesis

Jirac case

B-L extension

Connection to

GW

Summary

Thank you!