Potentially interesting aspects of the effective potential

박재현

KIAS Quantum Universe Center

27.03.2019, IBS-CTPU

Ref.

- JhP, 1902.04559

Effective potential

Essential object, e.g. for studying:

- symmetry breaking
- vacuum stability
- phase transitions at zero and finite temperatures
- cosmic inflation
- radiative corrections to Higgs mass

Generating functionals

"Partition function (Zustandssumme)"

$$
\begin{aligned}
Z[J] & =\int \mathcal{D} \phi \exp \left[i \int d^{4} x(\mathcal{L}(x)+J(x) \phi(x))\right] \\
& =Z[0]\langle\Omega \mid \Omega\rangle_{J}=\exp (i W[J]) \\
& =\text { generating functional for correlation functions }
\end{aligned}
$$

Phase of vacuum to vacuum amplitude

$$
W[J]=-i \ln Z[J]=-T E_{\Omega}[J]
$$

= generating functional for connected correlation functions

1PI effective action

Legendre transform of vacuum energy functional

$$
\Gamma\left[\phi_{\mathrm{cl}}\right]=W[J]-\int d^{4} x J(x) \phi_{\mathrm{cl}}(x)
$$

$=$ generating functional for 1PI correlation functions

$$
\begin{aligned}
\frac{\delta W[J]}{\delta J(x)} & =\frac{-i}{Z[J]} \frac{\delta Z[J]}{\delta J(x)}=\frac{\int \mathcal{D} \phi e^{i \int d^{4} x(\mathcal{L}+J \phi)} \phi(x)}{\int \mathcal{D} \phi e^{i \int d^{4} x(\mathcal{L}+J \phi)}} \\
& =\frac{\langle\Omega| \phi(x)|\Omega\rangle_{J}}{\langle\Omega \mid \Omega\rangle_{J}}=\phi_{\mathrm{cl}}(x)
\end{aligned}
$$

$=$ Expectation value of $\phi(x)$ in the presence of $J(x)$
$\frac{\delta \Gamma\left[\phi_{\mathrm{cl}}\right]}{\delta \phi_{\mathrm{cl}}(x)}=-J(x) \quad=0$ if $\phi_{\mathrm{cl}}=\langle\phi\rangle$

Effective potential or "free energy"

Effective action for x-independent ϕ_{cl}

$$
V_{\mathrm{np}}\left(\phi_{\mathrm{cl}}\right)=-\frac{1}{V T} \Gamma\left[\left.\phi_{\mathrm{cl}}\right|_{\phi_{\mathrm{cl}}=\text { Const. }} ^{\text {Jackiw, PRDO(1974)1686 }}\right.
$$

- real-valued by definition
- depends on gauge and renormalization scale

Fig. from
Andreassen, Frost, Schwartz,
PRD(2015)

Loop expansion of effective potential

$$
V_{\mathrm{np}} \simeq V_{\mathrm{pert}}=V_{0}+V_{1}+V_{2}+\cdots
$$

$V_{0}\left(\phi_{\mathrm{cl}}\right)=$ tree-level potential in \mathcal{L}
$V_{1}\left(\phi_{\mathrm{cl}}\right)=\frac{M^{4}\left(\phi_{\mathrm{cl}}\right)}{64 \pi^{2}}\left(\ln \frac{M^{2}\left(\phi_{\mathrm{cl}}\right)}{\mu^{2}}-\frac{3}{2}\right)$ in $\overline{\mathrm{MS}}$ scheme

- develops imaginary part where V_{0} is concave
- In this talk, allow $V_{\text {pert }}$ to include nonperturbative contributions as in axion or meson potential

Energy interpretation

Kurt Symanzik, CMP16(1970)48

$$
V_{\mathrm{np}}(\phi)=\frac{1}{V} \min \frac{\langle\Omega| H|\Omega\rangle}{\langle\Omega \mid \Omega\rangle} \quad \text { s.t. } \frac{\langle\Omega| \Phi|\Omega\rangle}{\langle\Omega \mid \Omega\rangle}=\phi
$$

$V_{\mathrm{np}}(\phi)$ is the minimum of the expectation value of the energy density for all states constrained by the condition that the scalar fields Φ have expectation values ϕ

Convexity of effective potential
$V_{\mathrm{np}}\left(x \phi_{1}+(1-x) \phi_{2}\right) \leq x V_{\mathrm{np}}\left(\phi_{1}\right)+(1-x) V_{\mathrm{np}}\left(\phi_{2}\right)$ for $0 \leq x \leq 1$

- Can be understood by taking linear combination of states

$$
\begin{aligned}
& \sqrt{x}\left|\Omega_{1}\right\rangle+\sqrt{1-x}\left|\Omega_{2}\right\rangle \quad \text { with } \quad\left\langle\Omega_{1,2} \mid \Omega_{1,2}\right\rangle=1 \\
& \left\langle\Omega_{1,2}\right| \Phi\left|\Omega_{1,2}\right\rangle=\phi_{1,2}, \quad\left\langle\Omega_{1,2}\right| H\left|\Omega_{1,2}\right\rangle / V=V_{n p}\left(\phi_{1,2}\right)
\end{aligned}
$$

or by imagining a state with volumes in different phases

- Convexity of Gibbs free energy is also known in statistical mechanics

"Maxwell construction"

- $V_{\mathrm{np}}(\phi)$ is linear between two local minima of $V_{\text {pert }}(\phi)$

Fujimoto, O'Raifeartaigh, Parravicini, NPB212(1983)268

- Approximation by linear interpolation

$$
\begin{aligned}
& V_{\mathrm{np}}\left(x \phi_{1}+(1-x) \phi_{2}\right) \simeq x V_{\text {pert }}\left(\phi_{1}\right)+(1-x) V_{\text {pert }}\left(\phi_{2}\right) \\
& \text { for } 0<x<1
\end{aligned}
$$

guaranteed to be real

- QFT analogue of Maxwell construction for free energies in thermodynamics
dS swampland conjecture
- A low energy effective theory belongs to landscape if it has string theory as its UV completion
- Otherwise it belongs to swampland
- Scalar potential of a low energy effective theory in landscape satisfies

Obied, Ooguri, Spodyneiko, Vafa (2018)

$$
M_{\mathrm{PI}}|\nabla V|>c V, \quad 0<c \sim \mathcal{O}(1)
$$

- Excludes de Sitter extrema
- Refined to include alternative condition

Ooguri, Palti, Shiu, Vafa (2018)

$$
M_{\mathrm{PI}}^{2} \min \left(\nabla_{i} \nabla_{j} V\right) \leq-c^{\prime} V, \quad 0<c^{\prime} \sim \mathcal{O}(1)
$$

Old dS swampland conjecture vs HEP models

- Quintessence could accommodate observed cosmological constant and local maximum of Higgs potential

Denef, Hebecker, Wrase (2018)

- Severely constrained by a long-range force and time dependence of proton-to-electron mass ratio

Hamaguchi, Ibe, Moroi (2018)

- Quintessence + pion extremum requires $c<1.4 \times 10^{-2}$
K. Choi, D. Chway, C. S. Shin (2018)
- QCD axion becomes difficult

Murayama, Yamazaki, Yanagida (2018)

- Root of problems is exclusion of positive local maxima of V

QFT questions about dS conjectures

- Which V ? $V_{n p}$? V_{0} ? $V_{\text {pert }}$?
- How to interpret inequalities

$$
\begin{aligned}
M_{\mathrm{PI}}|\nabla V|>c V, \quad 0<c \sim \mathcal{O}(1) \\
M_{\mathrm{PI}}^{2} \min \left(\nabla_{i} \nabla_{j} V\right) \leq-c^{\prime} V, \quad 0<c^{\prime} \sim \mathcal{O}(1)
\end{aligned}
$$

if $\quad \operatorname{Im} V \neq 0$?

- Gauge and scale dependence of V

Could free energy interpretation save old dS conjecture?

Suppose V is V_{np} in dS swampland conjecture

$$
\begin{equation*}
M_{\mathrm{PI}}\left|\nabla V_{\mathrm{np}}\right|>c V_{\mathrm{np}}, \quad 0<c \sim \mathcal{O}(1) \tag{1}
\end{equation*}
$$

- $V_{n p}$ is real-valued, as quantum as possible
- More permissive than old and refined dS criteria as local maxima of $V_{\text {pert }}$ are flattened in $V_{n p}$
- Global minima still need to be AdS
- We are not living in a true vacuum, i.e. we are living in
! (true \&\& vacuum) == (false || !vacuum)

Option ! vacuum: living on a slope

- Quintessence solution to cosmological constant with $\left|\nabla V_{\text {pert }}\right|>0$
- Enough to add quintessence terms to Higgs potential as $V_{n p}$ has no local maximum
- No problem with a long-range force or time dependence of proton-to-electron mass ratio

Option false vacuum: $V_{\text {pert }}$ with only two minima

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{c}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{c}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{c}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{c}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{c}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|$,

$$
V_{\text {pert }}\left(\phi_{-}\right)<0
$$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: $V_{\text {pert }}$ with only two minima

Disallowed

Use Maxwell

 construction to represent condition (1) by
$V_{\text {pert }}\left(\phi_{+}\right)<\frac{M_{\text {PI }}}{C}\left|\frac{V_{\text {pert }}\left(\phi_{+}\right)-V_{\text {pert }}\left(\phi_{-}\right)}{\phi_{+}-\phi_{-}}\right|, \quad V_{\text {pert }}\left(\phi_{-}\right)<0$

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Option false vacuum: symmetric $V_{\text {pert }}$

Option false vacuum: symmetric $V_{\text {pert }}$

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Option false vacuum: symmetric $V_{\text {pert }}$

Disallowed Allowed

Maxwell construction is a constant between global minima

Implications for $V_{\text {pert }}$

- Our EW vacuum is required to be metastable
- Maybe due to an extra field such as in:
- supersymmetry with CCB minima

Claudson, Hall, Hinchliffe (1983)

- metastable supersymmetry breaking sectors

Intriligator, Seiberg, Shih (2006)

- relaxion mechanism

Graham, Kaplan, Rajendran (2015)

- scalar extensions of the Higgs sector
- Otherwise metastability is due to SM Higgs

Near-criticality of Higgs potential

- RG-improved effective potential
$V_{\text {pert }}(h)=\frac{\lambda(\mu=|h|)}{4} h^{4}$
- Condition (1) + distance conjecture + UV cutoff of SM suggest $\lambda(\mu)$ should turn negative at $\mu \lesssim M_{\mathrm{PI}}$

Near-criticality of Higgs potential

- RG-improved effective potential
$V_{\text {pert }}(h)=\frac{\lambda(\mu=|h|)}{4} h^{4}$
- Condition (1) + distance conjecture + UV cutoff of SM suggest $\lambda(\mu)$ should turn negative at $\mu \lesssim M_{\text {PI }}$

Buttazzo, Degrassi, Giardino, Giudice, Sala,

Connection to string theory?

- Hard to judge if condition (1) has something to do with string theory
- Admits false dS vacua contrary to original motivation for dS criteria
- Conjectures have not been proved

Summary

Yet another refinement of dS swampland conjecture

- Form is identical to original but effective potential integrates all (non)perturbative quantum effects
- V_{np} is real \leadsto no inequality on complex numbers
- $V_{n p}$ is convex \leadsto allows local maxima and false dS vacua in $V_{\text {pert }}$ if slope of $V_{n p}$ is everywhere steep enough \leadsto compatible with HEP models
- True vacua must still be AdS \leadsto quintessence or metastable EW vacuum
- Reason for near-criticality of SM Higgs potential?

