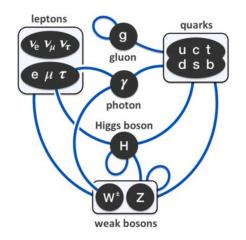
Higgs portal with an ALP

Kwang Sik JEONG

Pusan National University, Korea


IBS Conference on Dark World

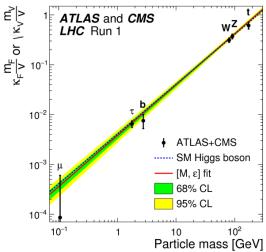
4 Nov 2019

Higgs boson

- Standard Model
 - Successful

up to energy scales around TeV

- But need a more fundamental theory to explain
 - Baryon asymmetry, dark matter, neutrino oscillations, ...
 - Natural EWSB, strong CP problem, flavor structure, unification, cosmic inflation, quantum gravity, ...


- Higgs boson as a window to BSM
 - Higgs mass is sensitive to unknown UV physics

H-----H
$$\delta m_H^2 \sim \frac{(\text{cutoff scale})^2}{16 \pi^2}$$


- New physics around TeV
 - Supersymmetry, extra dimension, composite Higgs, ...
 - Solution to other problems of the SM

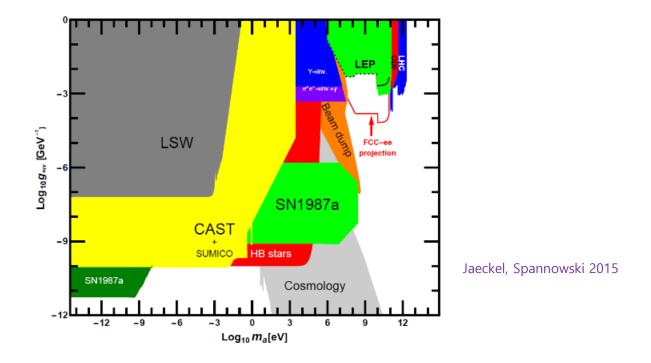
e.g. WIMP as dark matter, unification, ...

- LHC results so far
 - No clear signals for BSM
 - SM-like Higgs boson at 125 GeV

- Direct and indirect dark matter searches so far
 - No evidence of WIMPs

- Hints for BSM
 - SM extension by a particle feebly coupled to it?
 - If then, how to resolve the puzzles of the SM?

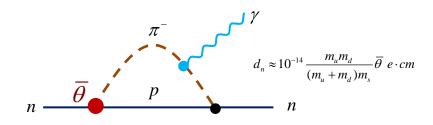
Axion-like Particle


- ALP
 - Pseudo Nambu-Goldstone boson associated with spontaneously broken U(1)
 - Periodic
 - $-\phi \equiv \phi + 2\pi f$
 - Generally, f = U(1) breaking scale
 - Mass and couplings
 - Controlled by perturbative shift symmetry $\phi \rightarrow \phi$ + constant
 - Feebly interacting light particle for large f

- SM extension with an ALP
 - Perturbative shift symmetry
 - 3 types of interaction

$$m_{\psi}e^{i\boldsymbol{c_1}\frac{\phi}{f}}\bar{\psi}\psi + \boldsymbol{c_2}\frac{\partial_{\mu}\phi}{f}\;\bar{\psi}\gamma^{\mu}\gamma_5\psi + \frac{\boldsymbol{c_3}}{16\pi^2}\frac{\phi}{f}F\tilde{F}$$

- Combinations of c_i invariant under chiral field redefinitions


- SM extension with an ALP
 - Potential to be probed by cosmological, astrophysical and laboratory observations
 - e.g. anomalous coupling to photons

Examples

Talk by Jihn E. Kim

- QCD axion
 - Neutron EDM bound

 $d_n \approx 10^{-14} \frac{m_u m_d}{(m_u + m_d)m_s} \overline{\theta} \ e \cdot cm \qquad \frac{\overline{\theta}}{32\pi^2} G \widetilde{G} \text{ with } \overline{\theta} < 10^{-10}$

- $\bar{\theta} \propto \langle \phi \rangle = 0$ if anomalously coupled to gluons
 - \rightarrow natural solution to the strong CP problem
- Dark matter: misalignment, topological defects

Examples

Freese, Frieman, Olinto 1990

• Natural inflation

V

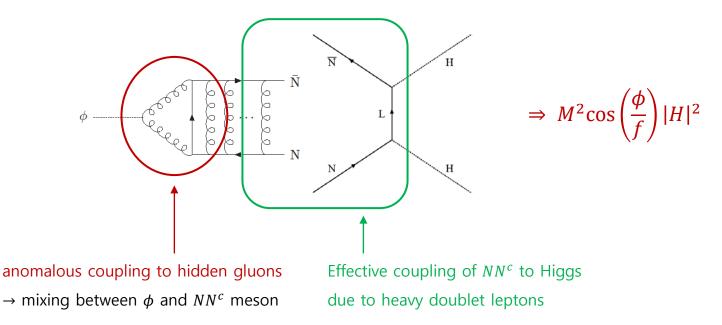
- Inflation: initial conditions for the Big Bang cosmology
- Very flat potential from an ALP

$$= \Lambda^{4} \left(1 \pm \cos\left(\frac{\phi}{f}\right) \right) \text{ with } f \ge M_{Pl}$$

$$\int_{0}^{0} \left(\int_{0}^{0} \int_{0}^{$$

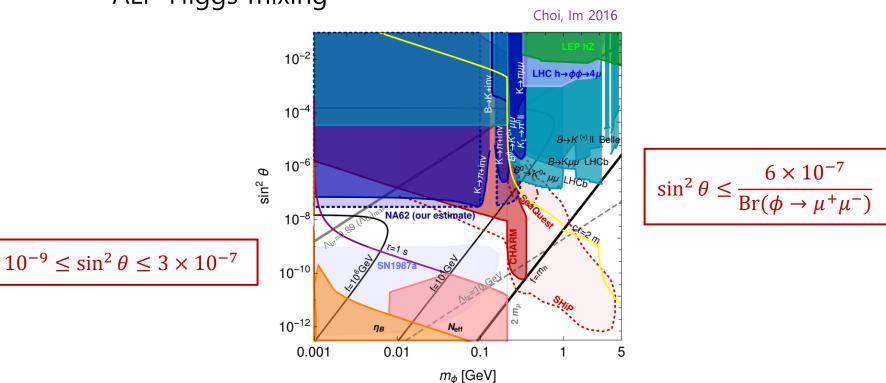
ALPic Higgs portal

- Higgs portal
 - New type of ALP interaction


$\mu_H^2(\phi/f)|H|^2$

- Feeble interaction with the SM via the Higgs field
- Growing interest since 2015

'cosmological relaxation of the Higgs mass'


Graham, Kaplan, Rajendran 2015

- Higgs portal
 - UV completion with perturbative shift symmetry
 - Hidden QCD
 - Vector-like lepton doublets $L + L^c$ and singlets $N + N^c$

- Experimental constraints
 - ALP-Higgs mixing after EWSB
 - Stringent constraints for ALP at sub-MeV to multi-GeV rare K and B meson decays beam-dump experiments
 - Further constraints
 - if anomalously couples to SM gauge bosons

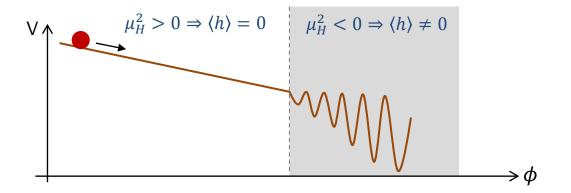
- Experimental constraints
 - ALP-Higgs mixing

Flacke, Frugiuele, Fuchs, Gupta, Perez 2016

- Why ALPic Higgs portal?
 - ϕ can play an important role in electroweak phase transition!

Graham, Kaplan, Rajendran 2015 Lots of works

- New approach to the electroweak hierarchy problem
 - Cosmological relaxation of the Higgs boson mass
- Other roles?
 - First order EWPT for baryogenesis
 - Dark matter

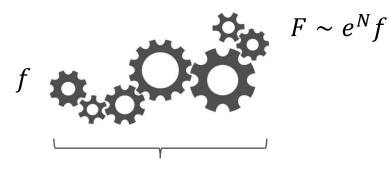

See also, Abel, Gupta, Scholtz 2018 Gupta, Reiness, Spannowsky 2019

Electroweak hierarchy

- Relaxation mechanism
 - Cosmological ALP evolution to select the Higgs mass

 $V = V_0(\phi) - \mu_H^2(\phi)|H|^2 + V_{\rm br}(\phi, H) + \cdots$

- V_0 : slow-rolling of ALP to scan μ_H^2
- V_{br}: barriers formed by EWSB to stop ALP rolling


- Simple model
 - Two periodicities with hierarchy, $F \gg f$
 - $V_0 = V_0(\phi/F)$ and $V_{br} = V_{br}(\phi/f, H)$
 - Barrier potential
 - QCD anomaly: $V_{\rm br} \propto h$
 - c.f. strong CP problem
 - Hidden QCD anomaly: $V_{\rm br} \propto h^2$ due to gauge invariance c.f. coincidence problem

Conditions

• High enough barriers to stop the ALP

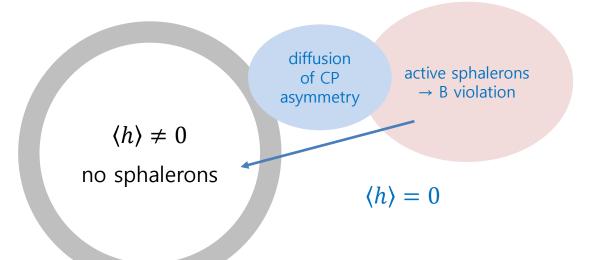
$$\rightarrow \frac{F}{f} \sim \frac{(\text{cutoff scale})^4}{\langle V_{\text{br}} \rangle} \gg 1$$

collective rotations of N axions

- Conditions
 - Evolution dominated by classical rolling
 - Hubble scale \leq GeV during inflation
 - Scanning of μ_H^2 from large positive to negative
 - Large number of *e*-folds

Need progress to construct a viable inflation model and clarify issues related with the barrier potential and low reheating temperature See e.g. Choi, Kim, Sekiguchi 2016, Event, Chardwarth, Nagata, Poloco 2017

e e.g. Choi, Kim, Sekiguchi 2016, Evans, Gherghetta, Nagata, Peloso 2017 Son, Ye, You 2018


EW phase transition

- EWPT
 - Last period affecting baryon asymmetry
 - Rapid EW sphaleron transition in symmetric phase
 - \rightarrow B+L violation
 - Baryogenesis
 - Nonzero B-L above EW scale: Leptogenesis, Affleck-Dine, ...
 - B+L generation at EW scale and sphaleron decoupling

\rightarrow EWBG

Lots of works since 1985

- EWBG
 - EW bubbles

- Requirements
 - Strong first-order phase transition to avoid washout

SM: crossover if $m_h > 80 \text{ GeV}$

- Sufficient CP violation beyond SM

- Conventional scenarios
 - Strong first-order PT
 - e.g. thermal or effective Higgs cubic term, log potential
 - higher dim operator with low cutoff
 - \rightarrow New particles coupled to *H* or sizable modification of Higgs sector
 - Non-local baryogenesis
 - CP violation in front of wall, B violation away from wall
 - Probe of EWBG
 - LHC (direct searches) and EDM experiments
 - c.f. ACME II constraint on electron EDM

ALP induced EWPT

- ALPic Higgs portal
 - Scalar potential
 - Function of ϕ/f due to the periodic nature $V = \lambda |H|^4 + \mu_H^2(\phi/f)|H|^2 + V_0(\phi/f)$
 - ALP dependent Higgs mass squared
 - ALP can play an important role in EWPT!

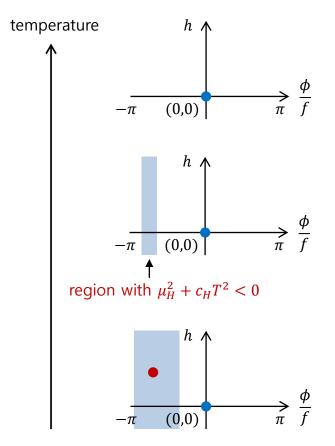
- ALPic Higgs portal
 - Distinctive features
 - Small thermal and quantum corrections to *V* from ALP interactions for large *f*

 \rightarrow Potential $V(h, \phi/f)$ is insensitive to f

- μ_H^2 is bounded both from below and above
- Certain relations between ALP-Higgs couplings

- ALPic Higgs portal
 - Scalar potential

$$-V = \lambda |H|^4 + \left[\mu^2 - M^2 \cos\left(\frac{\phi}{f} + \alpha\right)\right] |H|^2 - \Lambda^4 \cos\left(\frac{\phi}{f}\right)$$

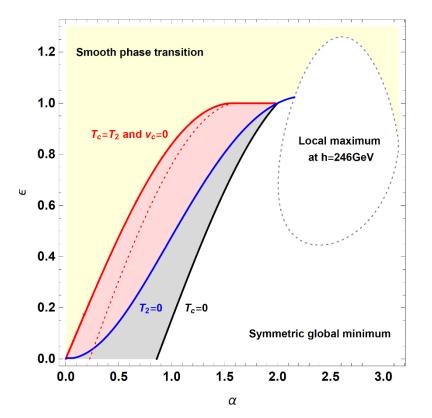

- Thermal corrections: $\Delta V = c_H T^2 |H|^2$

• In terms of 3 positive parameters

$$\alpha$$
, $\epsilon \equiv \frac{\sqrt{2\lambda}\Lambda^2}{M^2}$, $r \equiv \frac{\sqrt{2}\Lambda^2}{\sqrt{\lambda}v_0^2}$

with λ and μ^2 fixed by $m_h = 125 \text{GeV}$ and $v_0 = 246 \text{GeV}$

- EWPT
 - Phase transition

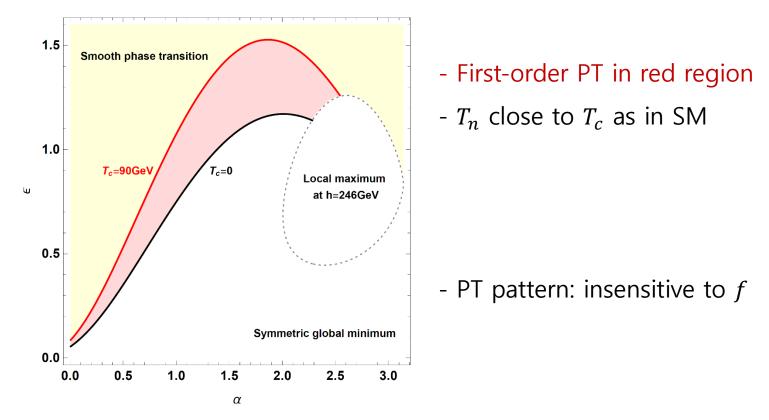


- only a symmetric minimum at (φ, h) = (0,0)
 μ_H² + c_HT² > 0 in the whole range of φ
 because μ_H² is bounded from above and below
- minimum at $(\phi, h) = (0,0)$ - $\mu_H^2 + c_H T^2 < 0$ in a finite range of ϕ

- another minimum at $\phi \neq 0$ and $h \neq 0$
- $\mu_H^2 + c_H T^2 < 0$ in a finite but wider range of ϕ
- phase transition when EW minimum gets deeper

- EWPT
 - Tunneling mainly along light ALP direction
 - Approximate scaling behaviors
 - Euclidean action of O(3) symmetric critical bubble: $S_3 \propto f^3$
 - Radius of critical bubble: $R_c \propto f$
 - Phase transition
 - Two degenerate minima at T_c : lower than in the SM
 - Bubble nucleation at T_n
 - Barrier disappears at T_2 with T_2 close to T_n

- EWPT along ALP direction
 - Case with r = 1.2



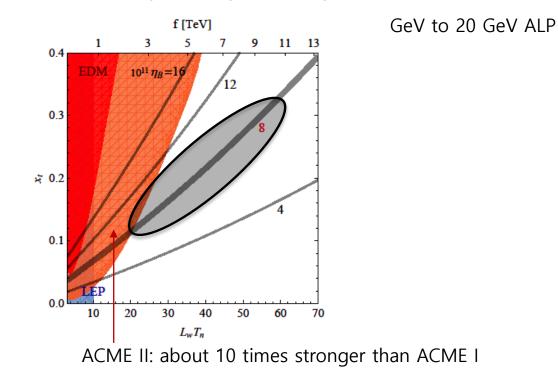
- First-order PT in red region
- Red region close to blue line
 - → Delayed EWPT for late-time entropy production
- PT pattern: insensitive to f

EWPT

- Amplitude of ALP coherent oscillation
 - Negligibly small at PT if Higgs portal is generated much above the weak scale for $f \ll M_{Pl}$
- Case with f above M_{Pl}
 - Clockwork mechanism for $f \gg U(1)$ breaking scale
 - ALP can start oscillation after PT
 - \rightarrow First-order PT along Higgs direction if $\mu_H^2(\phi_{ini})$ is small

- EWPT along Higgs direction
 - Case with r = 1.2 and $\phi_{\text{ini}}/f = 0.5$

EWBG


- EWBG
 - Strong first-order PT driven by an ALP
 - New direction in EWBG
 - EDM and collider experiments: not a probe for $f \gg \text{TeV}$
 - ALP searches to reveal connection between EWPT and BG
 - CP violation for EWBG
 - ALP-dependent top quark Yukawa
 - ALP anomalous coupling to EW gauge bosons

- Non-local EWBG KSJ, Jung, Shin 1806.02591
 - CP violation from ALP-dependent top quark mass

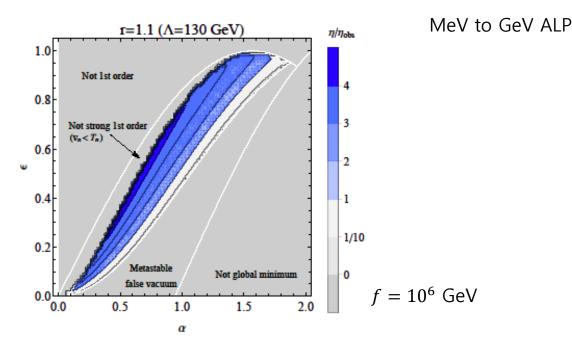
 $Y_t = y_t + x_t e^{i\phi/f}$

- Baryon asymmetry
 - depends on CP violation x_t , wall width L_w , wall velocity v_w
 - diffusion effect: sizable for $L_w T_n \leq 100 \rightarrow$ upper bound on f

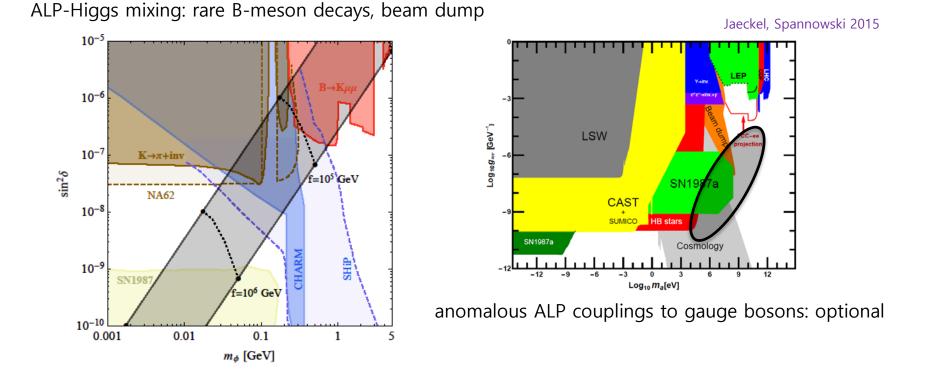
- Non-local EWBG
 - Correct baryon asymmetry for $3\text{TeV} \le f \le 10\text{TeV}$

- Local EWBG **KSJ**, Jung, Shin 1811.03294
 - CP violation from ALP-dependent EW @-term

 $\frac{\phi}{f}W\widetilde{W} \rightarrow \frac{d\phi}{dt}$ = chemical potential for Chern-Simons number

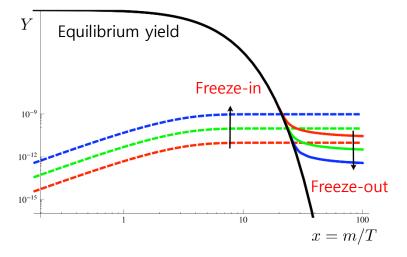

- Simultaneous B and CP violations across thick walls
 - \rightarrow B generation through EW anomaly

$$\frac{dn_B}{dt} = \underbrace{\frac{3}{2} \frac{\Gamma_{\text{sph}}}{T} \frac{d}{dt} \frac{\phi}{f}}_{2} - \frac{39}{4} \frac{\Gamma_{\text{sph}}}{T^3} n_B$$


$$\uparrow$$
sphaleron-induced washout

Local EWBG

- ALP evolution after tunneling
 - Thermal dissipation due to ϕ -h mixing
- Correct baryon asymmetry for $10^5 \text{GeV} \le f \le 10^7 \text{GeV}$


- How to probe ALP driven EWBG
 - ALP at MeV-GeV (local) or GeV-20GeV (non-local)
 - ALP window without strong theoretical interests so far

ALP dark matter

McDonald 2001, Choi, Roszkowski 2005, Petraki, Kusenko 2007

- Freeze-in DM Hall, Jedamzik, March-Russell, West 2009
 - Alternative to freeze-out
 - Never in thermal equilibrium: feeble coupled to SM
 - Produced via thermal freeze-in

2-2 scattering, decay of thermal particles

- Freeze-in DM
 - Relic abundance assuming negligible initial density

 $\Omega_{\chi} \propto m_{\chi} \frac{\lambda^2}{m}$

m: mass of thermal particle responsible for production

 \Rightarrow Observed DM abundance if $\lambda \sim 10^{-12}$ and $m_{\chi} \sim 100 \text{GeV}$

• Need an explanation for $\lambda \ll 1!$

Gravitino, axino in SUSY (many works) Clockwork FIMP, Mohan and Sengupta 2018

- Higgs portal кsJ, Im 1907.07383
 - ALP interacting with the SM ONLY via Higgs portal

$$V = \lambda |H|^4 + \left(\mu^2 - M^2 \cos\left(\frac{\phi}{f}\right)\right) |H|^2 - \frac{1}{16\pi^2} M^2 \Lambda^2 \cos\left(\frac{\phi}{f}\right)$$

$$\uparrow$$
closing Higgs loops

• CP conserving minimum $\phi = 0$ (no ALP-Higgs mixing) Stable due to Z₂ symmetry $\phi \rightarrow -\phi$ Feebly coupled to SM thermal bath for large *f*

 \rightarrow Natural framework for freeze-in DM

- ALP DM
 - If thermalized, it overcloses the universe in most of parameter space satisfying the bound on DM scattering with nuclei
 - Never in equilibrium for $\lambda_{h\phi} < 10^{-7}$
 - Mass mainly from closing Higgs loops: $m_{\phi} \simeq \frac{1}{4\pi} \frac{M}{f} \Lambda$
 - Portal coupling: $\frac{\lambda_{h\phi}}{4}h^2\phi^2 + \frac{\lambda_{h\phi}v}{2}h\phi^2$ with $\lambda_{h\phi} = \left(\frac{M}{f}\right)^2$ freeze-in production by $hh \to \phi\phi$

by $h \rightarrow \phi \phi$ (dominant if open)

- ALP DM
 - Correct DM density
 - Higgs decay

$$\lambda_{h\phi} \simeq 10^{-10} \times \sqrt{\frac{3 \text{MeV}}{m_{\phi}}}$$
 and $m_{\phi} \simeq 1 \text{MeV} \times \left(\frac{\Lambda}{10^3 \text{GeV}}\right)^{\frac{4}{5}}$
Higgs annihilation

$$\lambda_{h\phi} \simeq 10^{-11}$$
 and $m_{\phi} \simeq 380 \text{GeV} \times \left(\frac{\Lambda}{10^9 \text{GeV}}\right)$

- ALP heavier than MeV for Λ above TeV
- Coherent oscillations: negligible if $T_{\rm osc} \gg 10^6 \times m_{\phi}$

UV completion

• Non-perturbative Higgs portal from hidden QCD

$$V_{\text{eff}} \ni -M^2 \cos\left(\frac{\phi}{f}\right) |H|^2 - \frac{1}{16\pi^2} M^2 \Lambda^2 \cos\left(\frac{\phi}{f}\right) - \mu_N \Lambda_c^3 \cos\left(\frac{\phi}{f} + \alpha\right)$$

$$\downarrow^{\phi \to \gamma\gamma}$$

$$ALP-\text{Higgs mixing for } \alpha \neq 0$$

$$\downarrow^{ALP-\text{Higgs mixing for } \alpha \neq 0$$

- UV completion
 - Viable model
 - supersymmetry + spontaneously broken $U(1)_X$
 - m_L from superpotential, while μ_N from Kaehler potential

$$\mu_N = \frac{m_{\rm susy}}{M_{Pl}} m_L$$

- ALP-Higgs mixing
 - ALP: decaying DM
 - Upper bound on $m_{\rm susy}$ to make it cosmologically viable

Summary

✤ Axion-like particle

- Controlled by perturbative shift symmetry
- Strong CP problem, dark matter, inflation, ...
- ✤ ALP coupled to the SM via Higgs portal
 - May give information on the origin of EWSB while explaining
 - electroweak hierarchy: cosmological relaxation
 - matter-antimatter asymmetry: EWBG
 - dark matter: misalignment, freeze-in

Thank you!