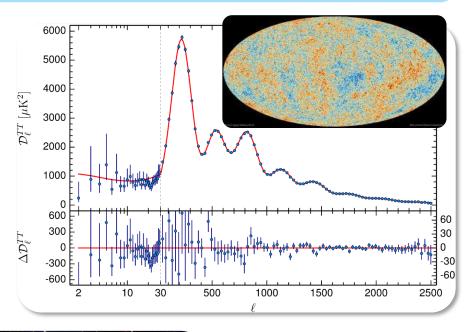
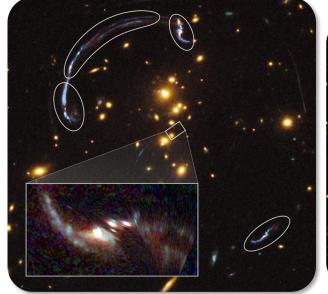
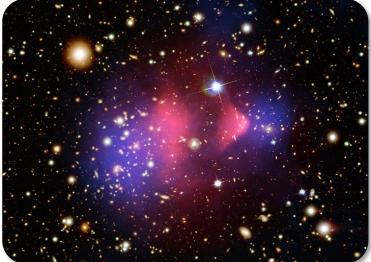
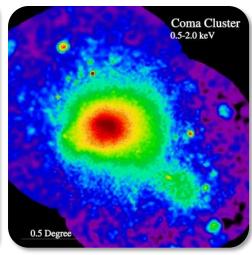

Searching for DM Signals from Timing Spectra @ v Experiments


with B. Dutta, D. Kim, S. Liao, S. Shin & L. Strigari [1906.10745 & 1910.xxxxx]



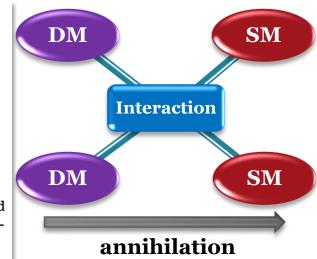

4th IBS-MultiDark-IPPP Workshop Oct. 11 (2019)


Observational Evidence for DM

Observational Evidence for DM

- ✓ Galaxy rotation curve
- ✓ Coma cluster
- ✓ Gravitational lensing
- ✓ Bullet cluster
- ✓ Structure formation
- ✓ Cosmic microwave background radiation (CMBR)
- ✓ Sky surveys
- ✓ Type Ia supervovae
- ✓ Baryonic acoustic oscillation (BAO)
- **√** ...

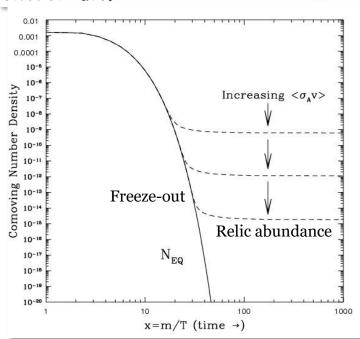
Classic Solution*: WIMP


Cosmological Lower Bound on Heavy-Neutrino Masses

Benjamin W. Lee^(a)
Fermi National Accelerator Laboratory, (b) Batavia, Illinois 60510

and

Steven Weinberg^(c)
Stanford University, Physics Department, Stanford, California 94305
(Received 13 May 1977)


The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be *greater* than a lower bound of the order of 2 GeV.

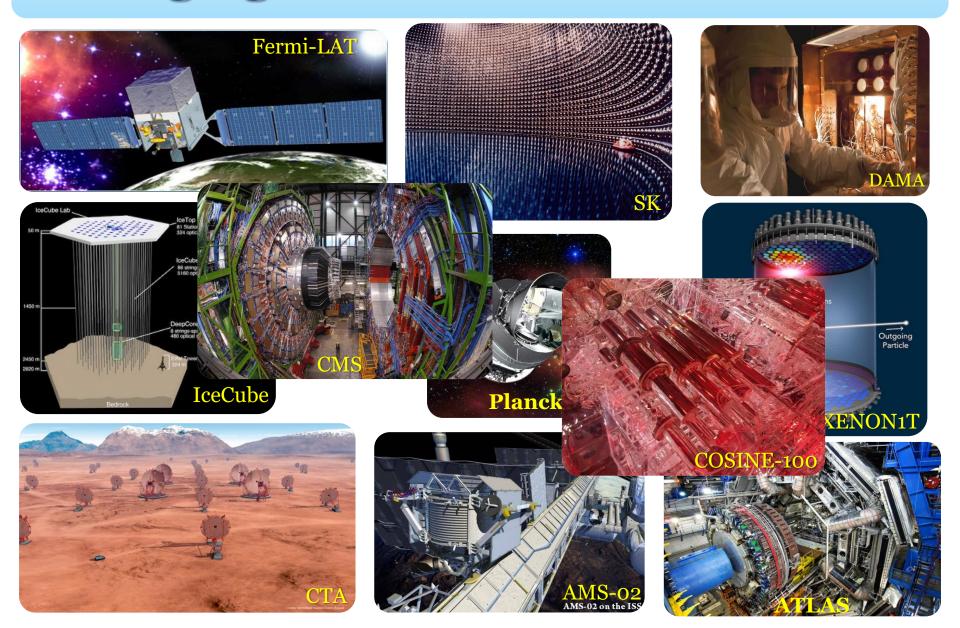
Correct thermal relic abundance:

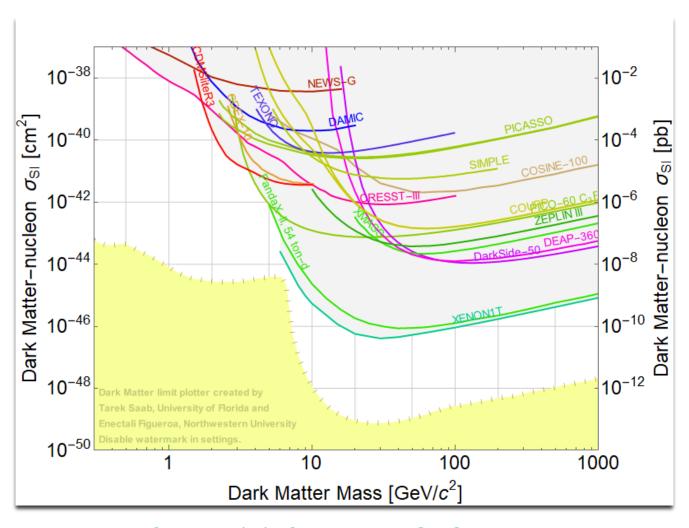
 $\Omega h^2 \sim \frac{0.1 \ pb}{\langle \sigma v \rangle}$ with $\langle \sigma v \rangle \sim \frac{\alpha_X^2 m_\chi^2}{M^4}$ (*M*: dark scale/mediator)

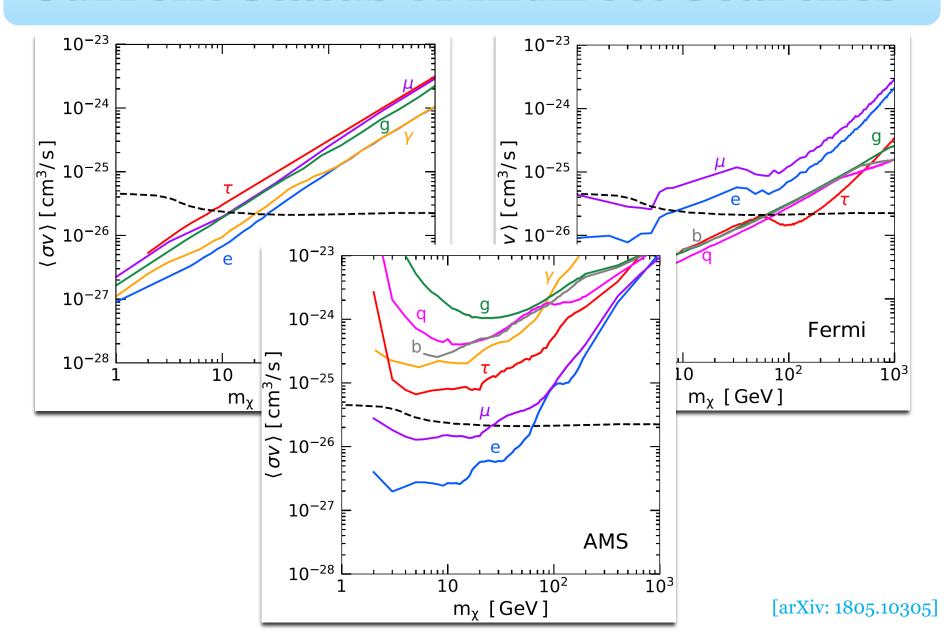
- ➤ Weak coupling → naturally weak scale mass:
 - ~1 GeV 10 TeV mass range favored
 - → weak scale (new) physics

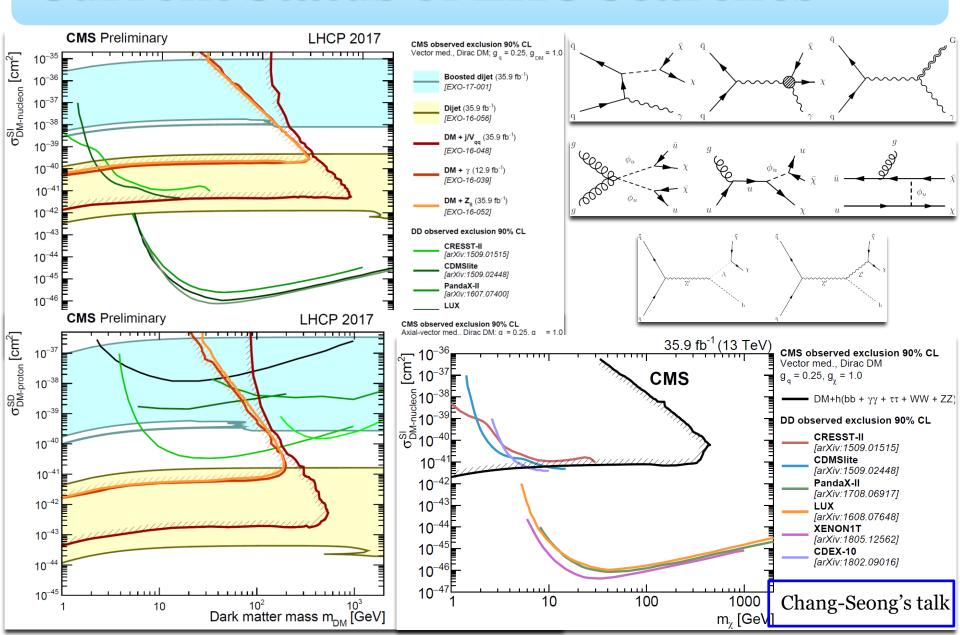
* Of course also <u>axion</u>: SungWoo's talk

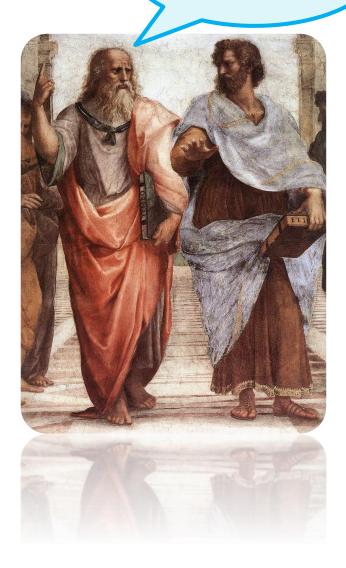
Observational Evidence for DM

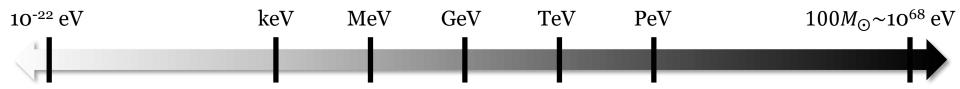

- ✓ Galaxy rotation curve
- ✓ Coma cluster
- ✓ Gravitational lensing
- ✓ Bullet cluster
- ✓ Structure formation
- ✓ Cosmic microway
- ✓ Sky survey
- ✓ Type Ia supe.
- ✓ Baryonic acoustic oscillation (BAO)

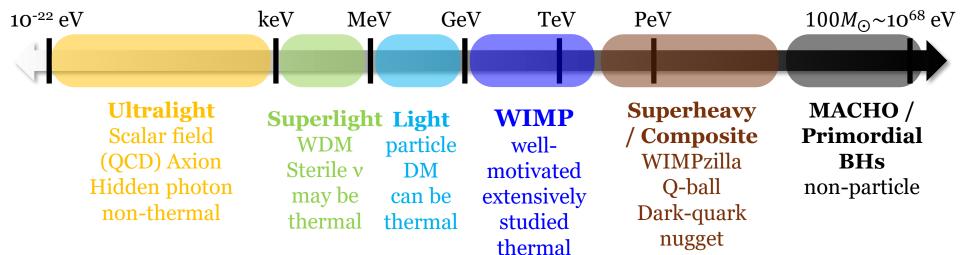

DM (WIMP) Search Strategies


Diverging Efforts for WIMP Searches

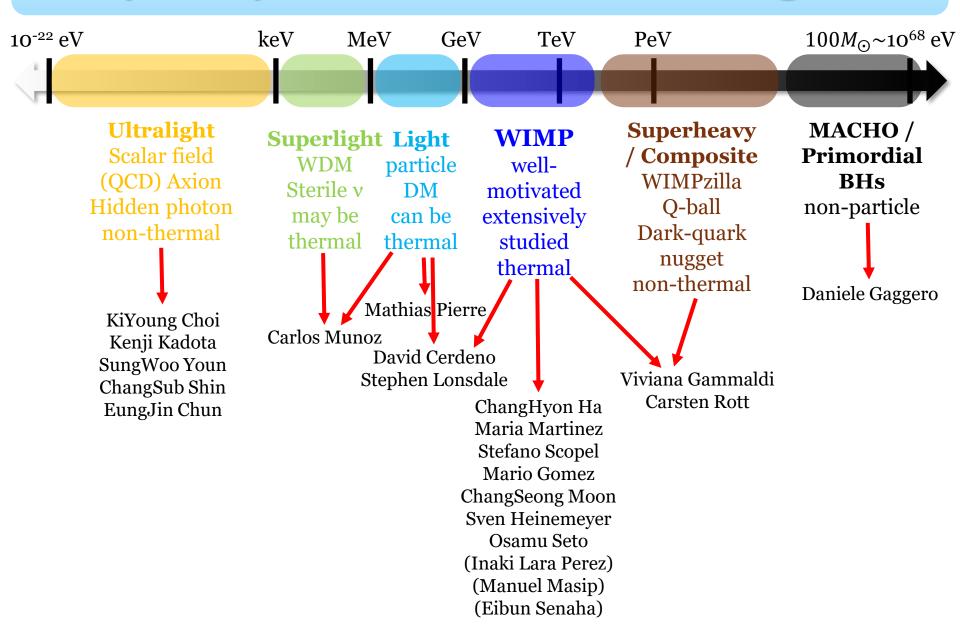

Current Status of Direct Searches


Current Status of Indirect Searches

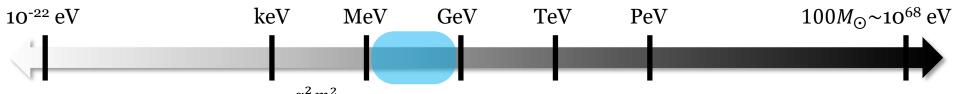

Current Status of LHC Searches


Only WIMP?

Very Very Wide DM Mass Range



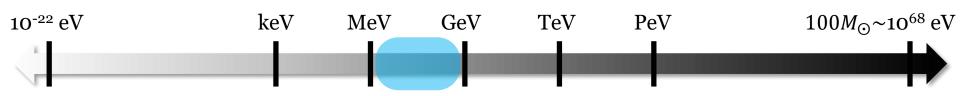
Very Very Wide DM Mass Range



non-thermal

Very Very Wide DM Mass Range

Light Dark-Sector Models

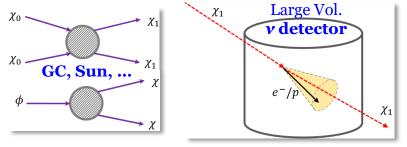

- For heavy mediator, $\langle \sigma v \rangle \sim \frac{\alpha_X^2 m_\chi^2}{M^4}$
- ❖ For weak scale physics, sub-GeV DM overproduction (Lee-Weinberg limit)→ New mediator $< M_W$ for freeze-out or freeze-in
- Light particle
- can be thermal

DM

- New DM relic determination mechanisms:
 - assisted freeze-out [arXiv:1112.4491]
 - cannibal DM [arXiv:1602.04219, 1607.03108]
 - co-decaying [arXiv:1105.1652, 1607.03110]
 - semi-annihilation [arXiv:0811.0172, 1003.5912]
 - SIMP [arXiv:1402.5143]

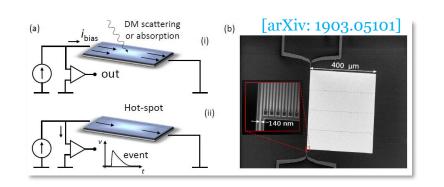
- Various light mediator scenarios:
 - Sommerfeld enhancement [arXiv:0810.0713]
 - ✓ g 2 of e/μ : ~2 3σ discrepancy [arXiv:1806.10252]
 - ✓ New ν interactions for the MiniBooNE excess [arXiv:1807.09877]
 - ✓ Solutions of Yukawa coupling hierarchy prob. [arXiv:1905.02692]
- ❖ Various light DM-involving phenomenology has been studied:
 - Boosted DM scenarios [arXiv:1405.7370, 1411.6632, 1612.06867]
 - Fast-moving DM via DM-induced nucleon decays [arXiv:1312.0011]
 - Energetic cosmic-ray induced relativistic DM [arXiv:1810.10543]
 - ✓ Ultra high E cosmic-ray phenomena [arXiv:1407.3280, 1905.13223]

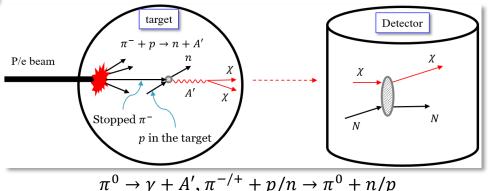
Light Dark-Sector Searches



- ❖ $E_k \sim mv^2 < \text{keV}$ with $v \sim 10^{-3}$ → $< E_{th}$ of typical DM direct detectors
- New ideas are required! → graphene, superconducting target, nanowire, superfluid He, 3-D Dirac material, Polar material, ... (w/ TES, MKID, SNSPD)

[arXiv: 1606.08849]


Light
particle
DM
can be
thermal



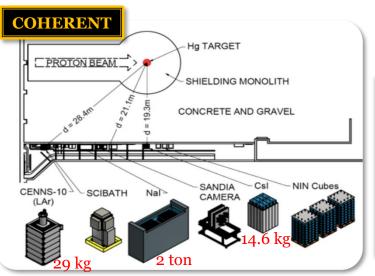
Babar, BDX, Belle, DUNE, FASER, LDMX, MATHSULA, NA48/2, NA64, SeaQuest, SHiP, T2SK/HK, ...

Summary!

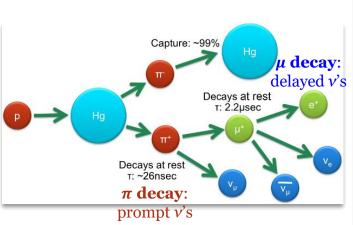
> A novel strategy to search for new physics signals:

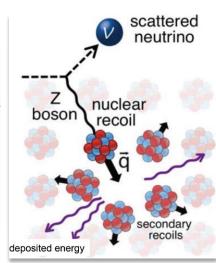
we can **efficiently isolate** (light) DM signals **from the SM** *v* **BGs** using **timing spectra** at (certain kinds of) neutrino experiments.

- > Application: the measured CsI data of the COHERENT experiment
- \triangleright Result: 2.4 3 σ excess!
 - → The excess can be explained by DM arising from dark photon decay.


CEVNS Experiments

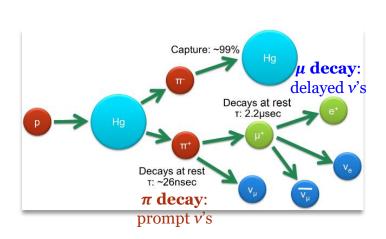
- ❖ Various current/future Coherent Elastic v Nucleus Scattering (CEvNS) experiments
 - ✓ Beam-induced v: CCM, COHERENT, JSNS²
 - ✓ Reactor *v*: CONNIE, CONUS, MINER, NEON, Nu-Cleus, *v* GEN, RED-100, Ricochet, TEXONO

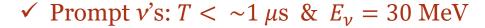

World Wide Efforts to Detect CEvNS



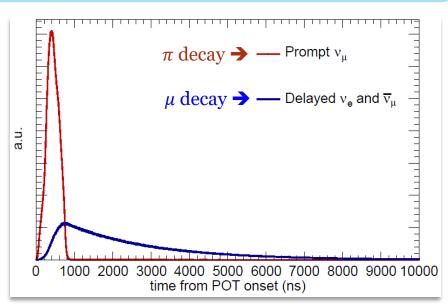
CEvNS Experiments: Beam-induced

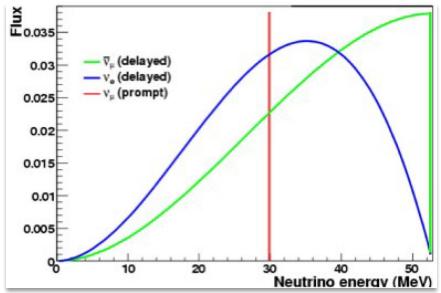
❖ Main goal: direct measurement of CEvNS

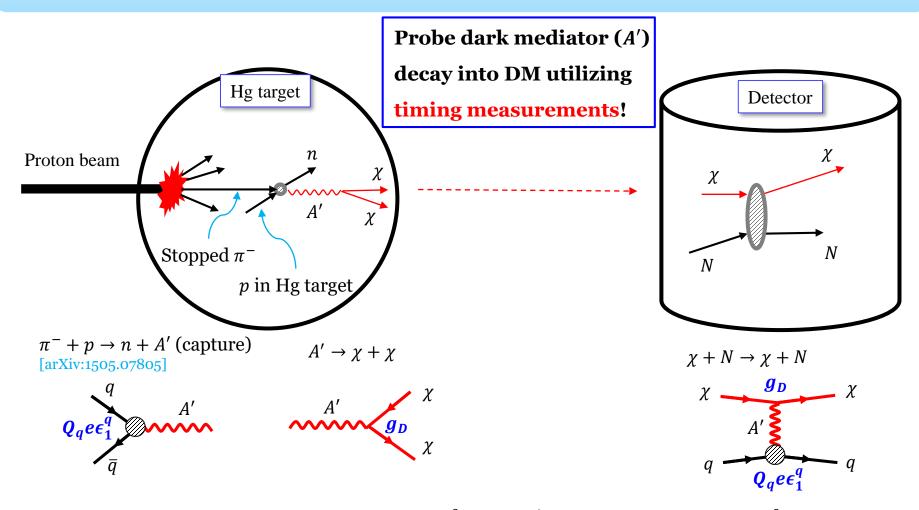




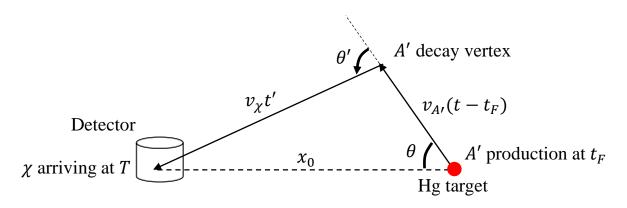
- COHERENT: 1 GeV p beam on Hg target, 380 ns FWHM (pulse duration) & 60 Hz, 1.8×10^{23} POT/yr
- ✓ JSNS²: 3 GeV p beam on Hg target, 700 ns (pulse duration) & 25 Hz, 3.8 × 10²² POT/yr


(POT: protons-on-target)


CEvNS Experiments: E/T-Spectra of v



✓ Delayed *v*'s: mostly $T > \sim 1 \,\mu\text{s}$ & $E_{\nu} = 0 - 52 \,\text{MeV}$ (mostly $> \sim 30 \,\text{MeV}$)



CEvNS Experiments: DM Searches

• Other (subdominant) production processes: $\pi^0 \to \gamma + A'$ (via conventional direct π^0 production), $\pi^{-/+} + p/n \to \pi^0 + n/p \& \pi^0 \to \gamma + A'$ (charge exchange)

Timing Spectra of DM Events

Dark matter flux at the detector:
$$f(T) = dN_{\chi}/dT$$

Model of π^- production timing (\propto POT)

$$f(T) = \int_{-1}^{1} d\cos\theta \int_{0}^{t_F^{\text{max}}} dt_F \left| \frac{dT}{dt} \right|^{-1} \frac{d^2 N_{A'}}{dt d\cos\theta} \cdot w(\cos\theta') \cdot \mathcal{F}(t_F)$$
 (\$\infty\$ POT)

$$T = t + \frac{\sqrt{x_0^2 + v_{A'}^2 (t - t_F)^2 - 2x_0 v_{A'} (t - t_F) \cos \theta}}{v_{\chi}}$$

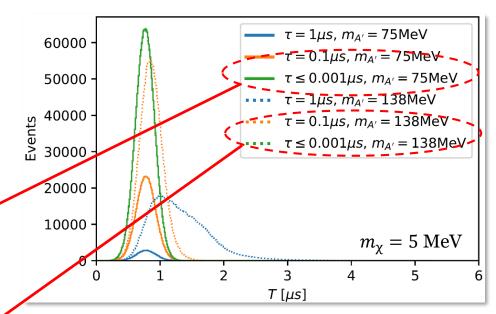
$$\frac{d^2 N_{A'}}{dt d \cos \theta} = \frac{1}{2} \cdot \frac{1}{\tau_{A'}} e^{-\frac{t - t_F}{\tau_{A'}}} \Theta(t - t_F) \leftarrow \text{from the decay law}$$

$$w(\cos\theta') = \frac{1}{2\pi(v_{\chi}t')^2} \left| \frac{d\cos\theta'}{d\cos\theta^*} \right|^{-1} \frac{dN_{A'\to\chi}}{d\cos\theta^*} \quad \leftarrow \text{Probability that DM travels towards the detector}$$

Cf.) Search strategy with timing information at the LHC [arXiv:1805.05957]

Timing Spectra: Dark Photon Scenario

- ❖ Various possibilities for a dark photon *A'*
 - ✓ Relativistic (solid) vs. Non-relativistic (dotted)
 - ✓ Short-lived vs. Long-lived
- Relativistic:

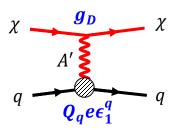

DM flux maximized for τ < a few × 10 ns

➤ Non-relativistic:

only for $m_{A'} \approx 138 \text{ MeV} (\approx m_{\pi^-} + m_p - m_n)$,

DM flux maximized for τ < a few ns

> m_{χ} : 5 MeV is assumed, but OK for any values $< m_{A_I}/2$


DM Scattering vs Production Parameters

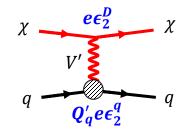
❖ DM scatters off nucleus

$$\frac{d\sigma}{dE_r} = \frac{e^2 \epsilon_q^2 g_D^2 Z^2 \cdot |F(2m_N E_r)|^2}{4\pi p_\chi^2 (2m_N E_r + M'^2)^2} \left\{ 2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right\}$$

❖ In general, the scattering could be mediated by a different particle,

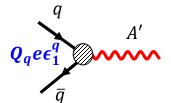
e.g., gauged U(1)_B gauge boson:

DM Scattering vs Production Parameters

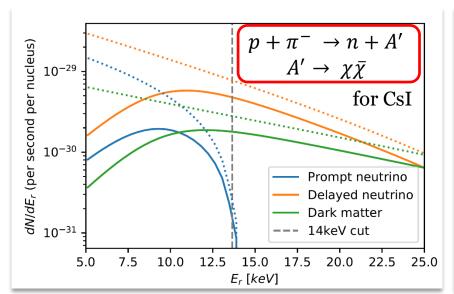

❖ DM scatters off nucleus

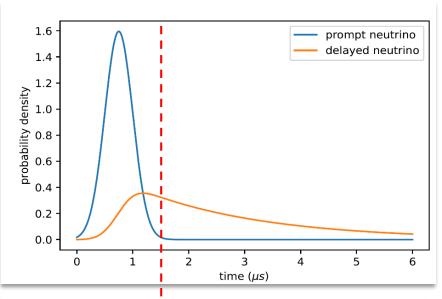
$$\frac{d\sigma}{dE_r} = \frac{e^2 \epsilon_q^2 g_D^2 Z^2 \cdot |F(2m_N E_r)|^2}{4\pi p_\chi^2 (2m_N E_r + M'^2)^2} \left\{ 2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right\}$$

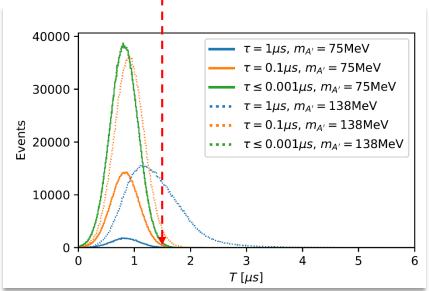
❖ In general, the scattering could be mediated by a different particle,

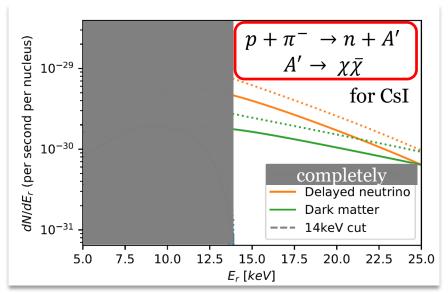

e.g., gauged U(1)_B gauge boson:

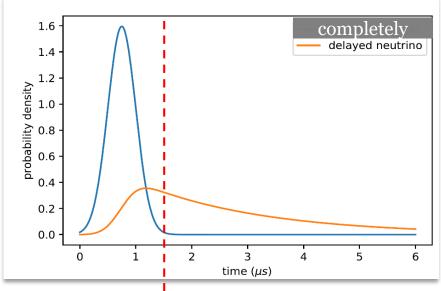
$$A' \rightarrow V', m_{A'} \rightarrow M', Q_q e \epsilon_1^q \rightarrow Q'_q e \epsilon_2^q, g_D = e \epsilon_1^D \rightarrow e \epsilon_2^D$$

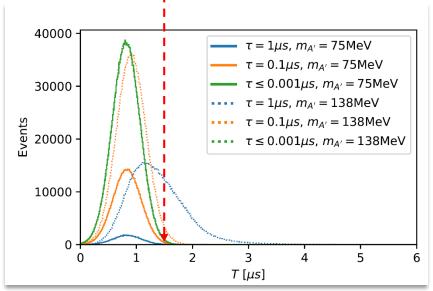



❖ Dark photon A' production to DM scattering can be described by two variables.

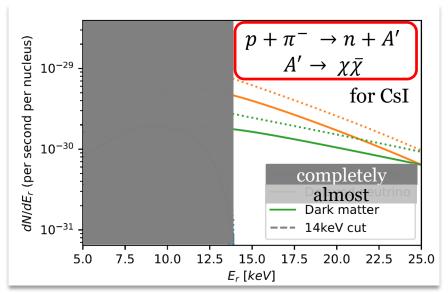

$$\epsilon \equiv \epsilon_1^q \epsilon_2^q \epsilon_2^D \sqrt{BR_{A' \to \chi\chi}}$$
 and M'

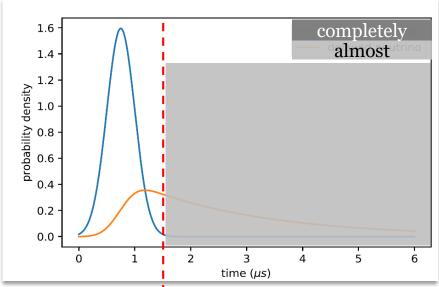

Proposed Search Strategy: E & T-cuts



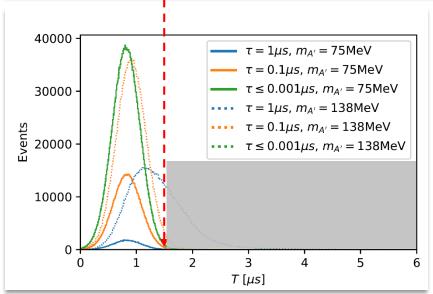


Proposed Search Strategy: E & T-cuts





- $\star E_r > 14 \text{ keV (for CsI)}$
 - ✓ Prompt *v*: **completed** removed
 - ✓ Delayed v (& DM signal): still remains



Proposed Search Strategy: E & T-cuts

- $\star E_r > 14 \text{ keV (for CsI)}$
 - ✓ Prompt *v*: **completed** removed
 - ✓ Delayed ν (& DM signal): still remains
- **❖** $T > 1.5 \, \mu s$
 - ✓ Delayed *v*: **almost** removed
 - ✓ DM signal: **still remains**

Application to Existing Data

- ❖ Data released by COHERENT: CsI detector → 14.5 kg×308 days [arXiv:1804.09459]
- **❖** Analysis scheme
 - ✓ Fix the average rms radius of the neutron distribution to $R_n = 4.7$ fm
 - ✓ 14 keV $< E_r <$ 28 keV & T < 1.5 µs

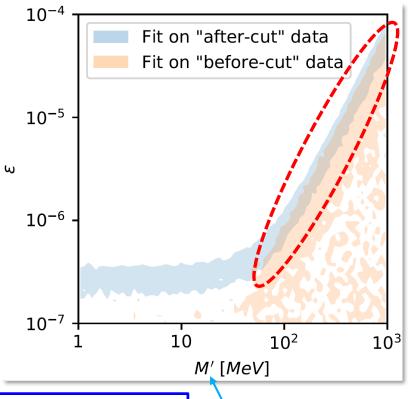
$$F_N^{\text{Helm}}(q^2) = \frac{3j_1(qR_0)}{qR_0} \exp(-\frac{q^2s^2}{2})$$

$$R_n^2 = 3R_0^2/5 + 3s^2$$

97: total events

- 49 : classified as the steady-state (SS) background
- -19: identified as delayed neutrino events (SM)
- 0 : identified as prompt neutrino events (SM)
- 3 : beam-related neutrino (BRN) backgrounds

26: "Excess!!"

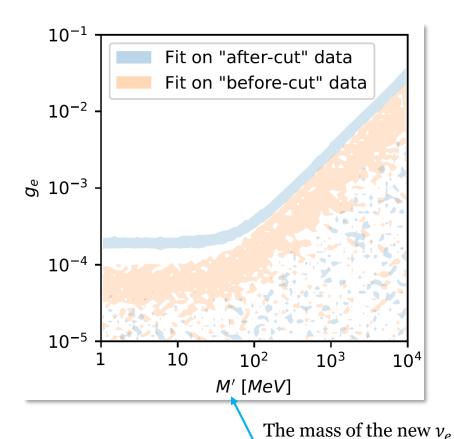

Significance (
$$R_n = 4.7 \text{ fm}$$
): 2.4 σ

Significance (
$$R_n = 5.5 \text{ fm}$$
): 3.0 σ

Significance =
$$\frac{\text{Excess}}{\sqrt{2\text{SS}+\text{BRN}+\text{SM}}}$$
 [arXiv:1801.05546]

Excess? DM Interpretation

❖ Fits to the data after the cuts vs. before cuts (=the full data)

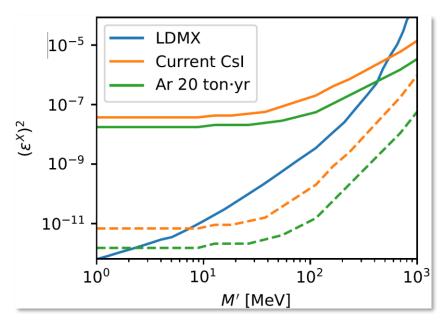

- Baseline model point for the figure in the left: $\tau = 1 \text{ ns}, m_{A'} = 75 \text{ MeV}, m_{\chi} = 5 \text{ MeV}$
- ➤ Nevertheless, the figure holds for
 - $\checkmark \tau \lesssim 4 \text{ ns}, m_{A'} < 138 \text{ MeV}$
 - ✓ $\tau \lesssim 30$ ns, $m_{A'} \cong 138$ MeV (non-relativistic dark photon case)
 - \checkmark Any $m_{\chi} < m_{A'}/2$

$$\epsilon = \epsilon_1^q \epsilon_2^q \epsilon_2^D \sqrt{BR_{A' \to \chi\chi}}$$

The mass of the DM-nucleus interaction mediator

Excess? Alternative - NSI Interpretation

 \diamond An example alternative new physics possibility: non-standard interaction (NSI) of ν



interaction mediator

- ✓ Benchmark case: non-zero coupling g_e , the NSI in the ν_e neutral-current interaction (along with a new mediator).
 - No overlapping regions, especially the prompt timing bin (i.e., $T < 1.5 \mu s$) doesn't show a good fit. NSI affects the overall normalization of neutrino flux!
- ✓ The situation becomes even worse with $g_{\mu} \neq 0$, since it affects not only the delayed but the prompt spectrum.

No Excess? Constraining Parameters

Assuming no excess is observed, we can constrain parameter space.

$$\checkmark \quad \alpha_D \equiv \frac{(e\epsilon_2^q)^2}{4\pi} = 0.5$$

- \checkmark M': the mass of the DM-nucleus interaction mediator
- ✓ Solid orange and green lines: single mediator scenario, i.e., $\epsilon^X = \epsilon_1^q = \epsilon_2^q$
- ✓ Dashed orange and green lines: multi-mediator scenario. One of them is fixed to 10⁻² (e.g., gauged U(1)_B gauge boson)
- ✓ For LDMX, ϵ^e in [arXiv:1808.05219] identified as ϵ^X .
- ✓ Sensitivity reach is already better than DUNE, compared to the result in [arXiv:1903.10505].

Conclusion

- > No firm signal observation at conventional DM searches motivates us to look into possibilities other than WIMP, e.g., light dark sector.
- ➤ A novel strategy to search for new physics signals: A combination of *T* & *E*-cuts can efficiently **eliminate SM** *v* **BGs** at neutrino experiments, e.g., CE*v*NS.
- > Application: the measured CsI data of the COHERENT experiment
- \rightarrow Result: 2.4 3 σ excess!
 - → The excess can be explained by DM arising from dark photon decay.
- > Sensitivities of COHERENT: already better than DUNE & comparable to LDMX

Back-Up

$R_n \& R_p$

 R_p : average rms radius of the proton distribution \rightarrow measurable

$$R_p(^{133}\text{Cs}) = 4.804 \text{ fm}, \ R_p(^{127}\text{I}) = 4.749 \text{ fm}$$

determined from muonic atom spectroscopy [Atom Data Nucl Data Table (1995)]

 R_n : average rms radius of the neutron distribution \rightarrow indirectly measurable

$$R_n(^{133}\text{Cs}) = 5.04 \pm 0.31 \text{ fm}$$

By combining APV and COHERENT measurements [arXiv:1908.06045]

 \rightarrow R_n=4.7 fm for the CSI of COHERENT is very conservative choice!