

Deep Learning for the LHC physics

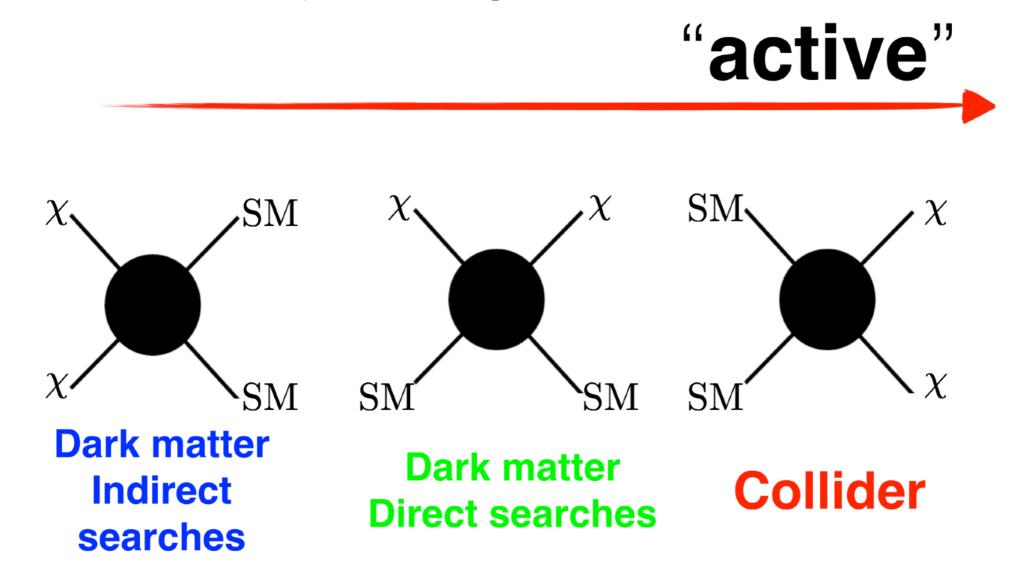
Myeonghun Park

Deep Learning: arXiv:1904.08549 (JHEP 2019)

IBS-MultiDark-IPPP 2019

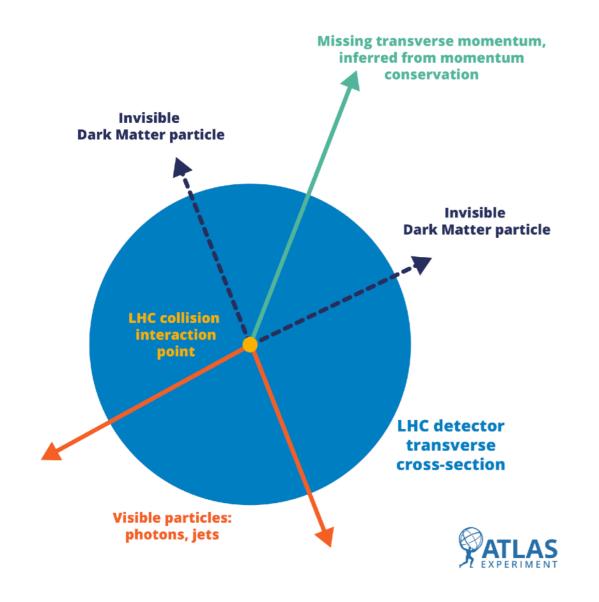
Experimental confirmation of out theoretical expectations

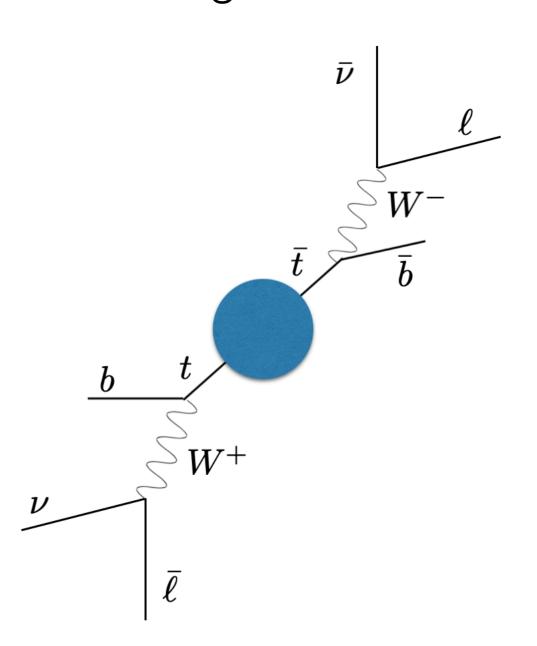
 How a theory is beautiful, as a physicist we need to confirm our theory with experiments.



How can we maximize the chance of the LHC?

- LHC provides complicated data in an unprecedented way.
 - Huge QCD / Standard Model backgrounds.
- "Invisible" dark matter provides missing transverse energy
- Neutrinos from $t\bar{t}$ also provides "similar signature"



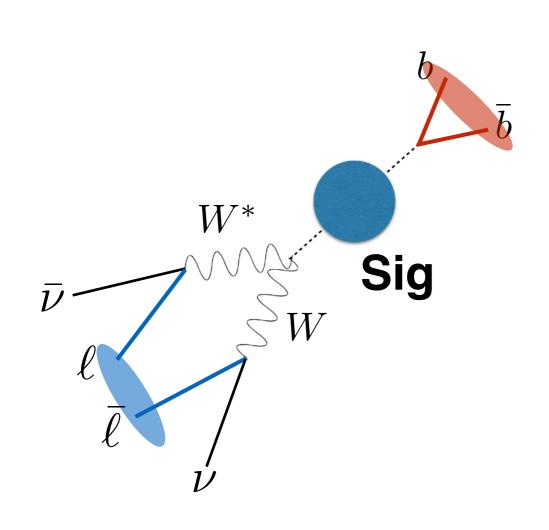


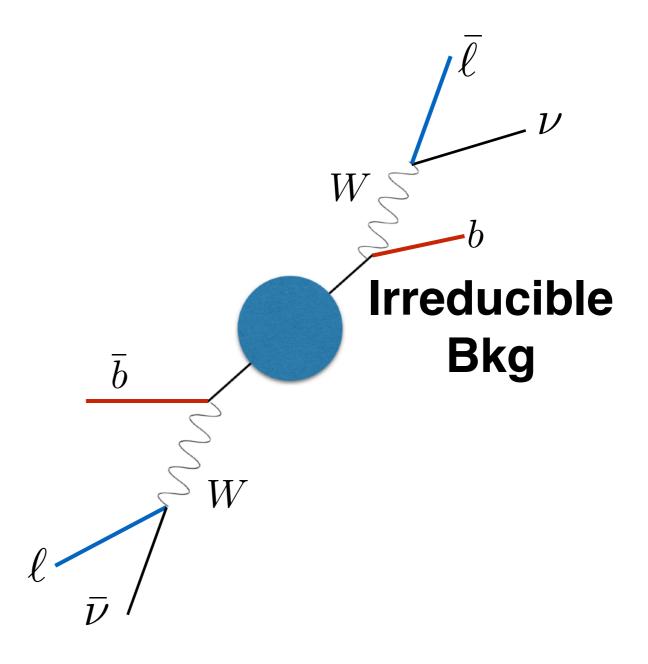
- LHC provides complicated data in an unprecedented way.
 - Huge QCD / Standard Model backgrounds.

Efficient way to reduce "unwanted" backgrounds with helps from data science (Deep Learning: DL)

- Neutrinos from $t\bar{t}$ also provides "similar signature"
 - : To understand DL performance, I will take one example from my recent works. (HH)
- This example is "supervised" Machine Learning

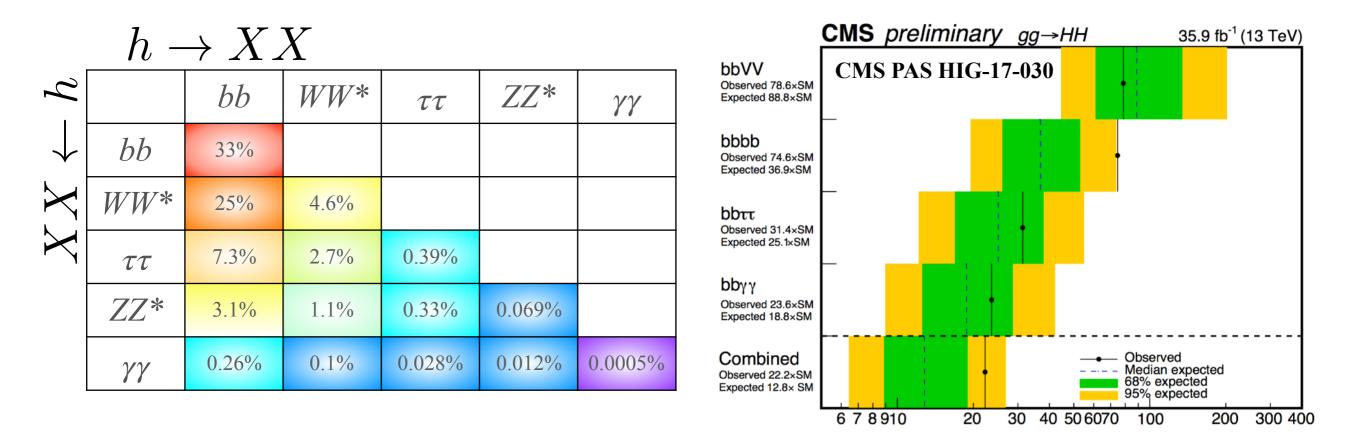
• $pp \to HH \to b\bar{b}, \ell\bar{\ell}, \nu\bar{\nu}$





LHC Run 2 result

Current status from various channels



• The driven channel is the "compromised" clean channel.

LHC Run 2 result

Current status from various channels

					CMS preliminary gg→HH				35.9 fb	⁻¹ (13 TeV)
		$N(hh)_{SM}$	N_{BKG}		bbVV Observed 78.6×SM Expected 88.8×SM CMS PAS HIC		G-17-03	30	4	
ATLAS	$bb\gamma\gamma$	8.4	47.1	1.2	bbbb Observed 74.6×SM	_				
CMS	$bb\gamma\gamma$	9	26.9	1.7	Expected 36.9×SM					
	bbττ (fully-hadronic)	4.9	30.3	0.89	Observed 31.4×SM Expected 25.1×SM					
	bbττ (semi-leptonic)	6.1	122	0.55	bbγγ Observed 23.6×SM Expected 18.8×SM					
	bbWW* (di-leptonic)	37.1	3875	0.60	Combined Observed 22.2×SM Expected 12.8× SM				Observed Median expected 68% expected 95% expected	
						6 7 8 910 20	30	40 50 60	70 100 20	0 300 400

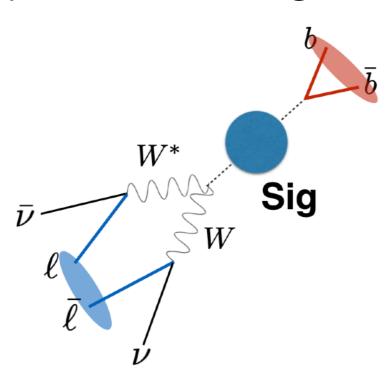
• Why is bbVV bad? how can one improve?

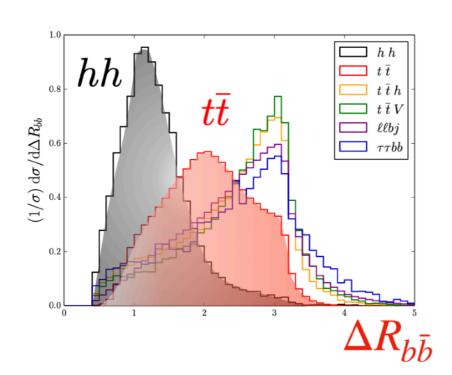
Why is bbVV bad? LHC is the Top-factory

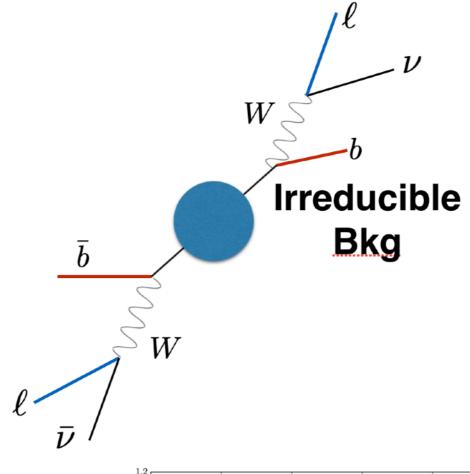
$$\frac{\sigma(pp \to hh \to b\bar{b}\,VV^*)}{\sigma(pp \to t\bar{t} \to b\bar{b}\,VV)}\Big|_{13\text{TeV}} \simeq \frac{31\text{fb}*(25\%)}{215\text{pb}} \simeq \mathcal{O}(10^{-5})$$

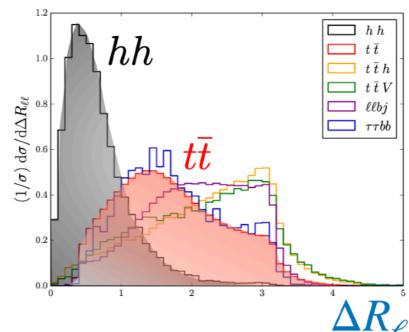
Conventional method to design cuts

From patterns of signal events









Applying featured variables

- traditional ABCD method

Applying "low-level " kinematic cuts based on event-topology

Baseline selections:
$$E_T > 20 \text{ GeV}$$
, $p_T^{\ell} > 20 \text{ GeV}$, $\Delta R_{\ell\ell} < 1.0$, $m_{\ell\ell} < 65 \text{ GeV}$, $\Delta R_{bb} < 1.3$, $95 < m_{bb} < 140 \text{ GeV}$

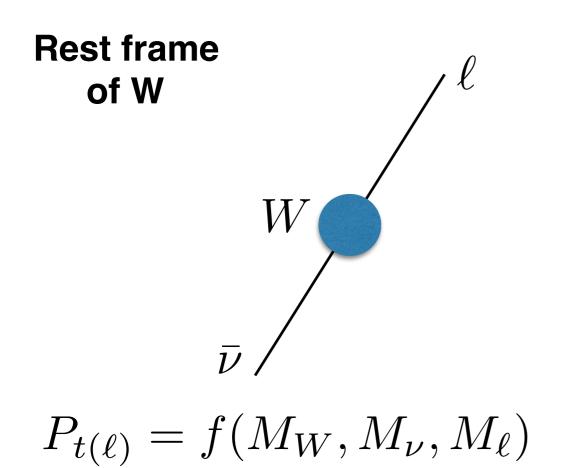
Signal	$t ar{t}$	$t ar{t} h$	$t\overline{t}V$	$\ell\ell bj$	au au bb	others	σ	$ m N_{sig}^{SM}/N_{bknd}$
0.0124	1.1724	0.0297	0.0246	0.0158	0.0379	0.00590	0.60	0.00964

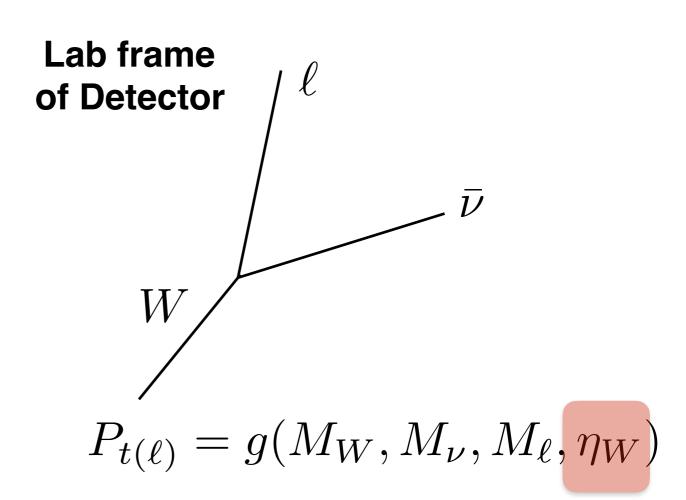
 $jj\ell\ell\nu\bar{\nu}$ backgrounds from QCD+EW

 We may apply the advanced statistical tools to see correlations among "low-level" kinematic variables.

But the efficiency based on "low-level cuts" is NOT GOOD

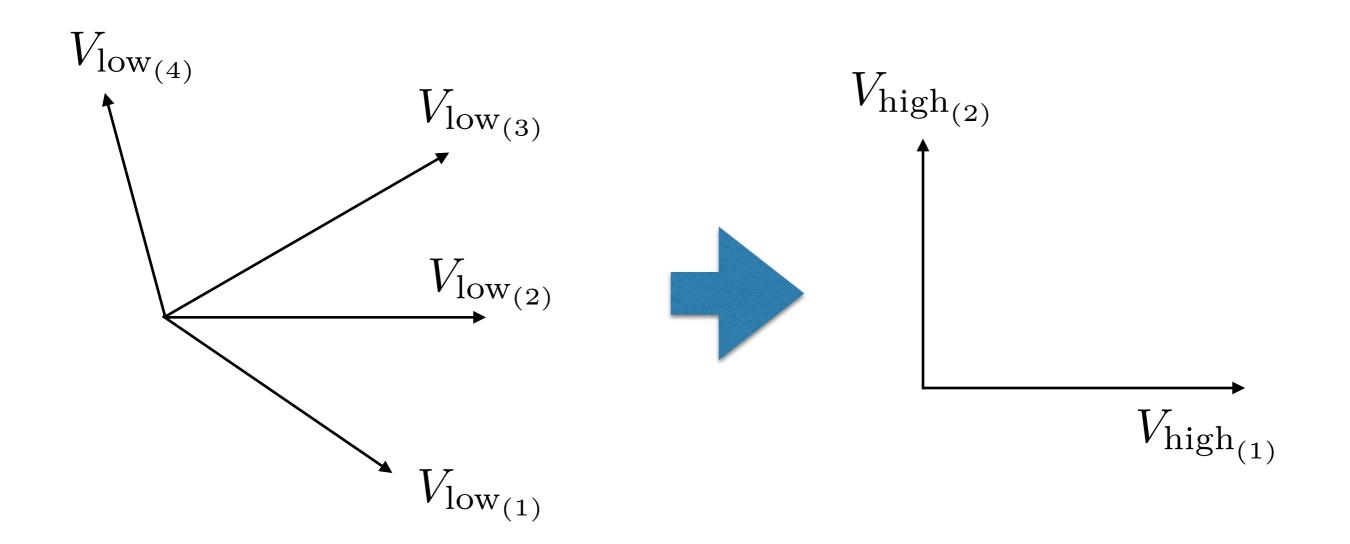
• A low-level variable contains various information





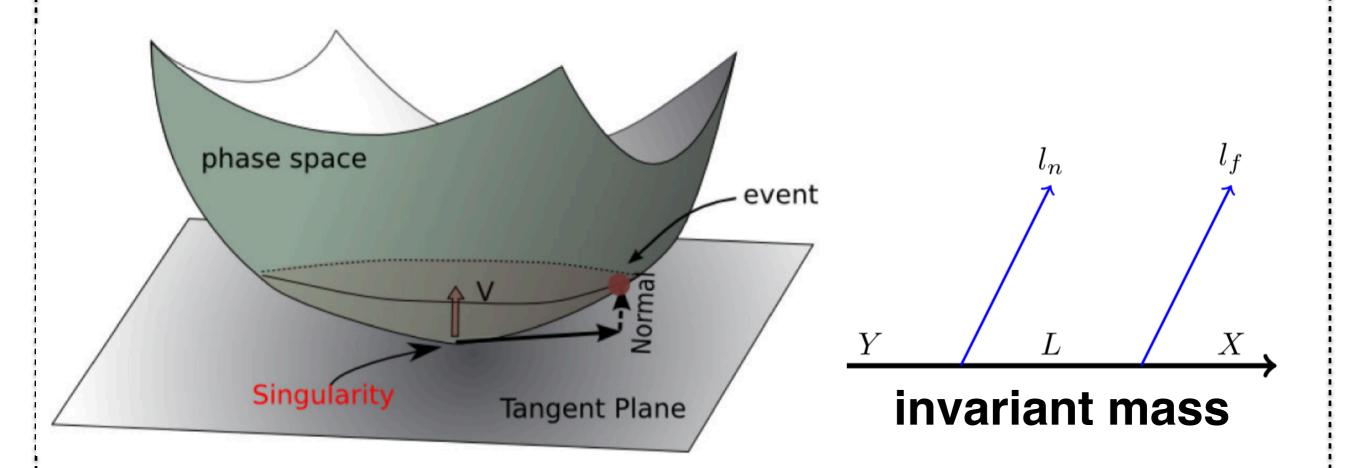
$$\Delta R_{b\bar{b}} = h(M_h, M_b, \eta_h), \ \eta_h = h'(\sqrt{\hat{s}}, M_h)$$

 We need to "reduce dimensions" by finding "mutually orthogonal variables" to maximize sensitivity.



- Considering "featured (high-level)" kinematic cuts based on event-topology
- What are the "featured" kinematic variables?

Represent Phase-space / Physics very well (singular behavior)



Ian-Woo Kim, 2010 PRL

For ttbar Background: A mass variable

We have six unknowns for two neutrino momentums.

 We have four mass-shell conditions + two Missing Transverse Energy conditions

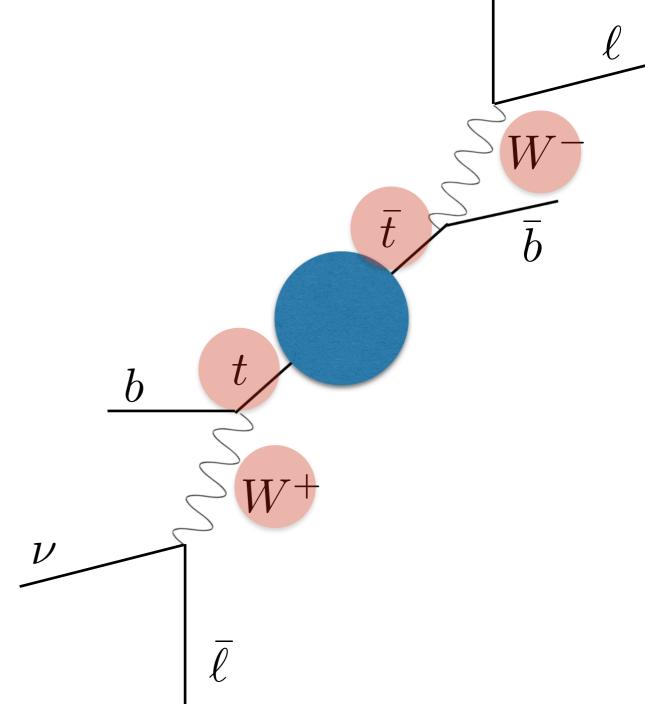
$$(p_{\bar{\nu}} + p_{\ell})^2 = m_W^2$$

$$(p_{\bar{\nu}} + p_{\ell} + p_{\bar{b}})^2 = m_{\bar{t}}^2$$

$$(p_{\nu} + p_{\bar{\ell}})^2 = m_W^2$$

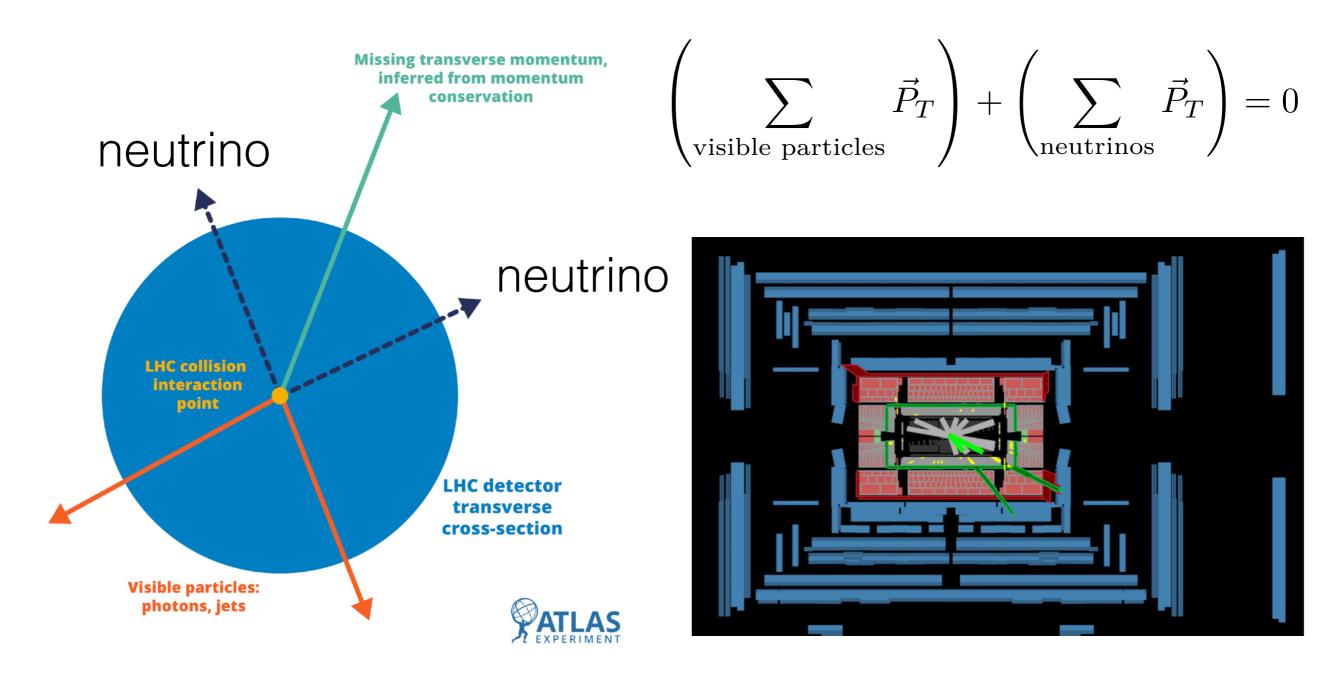
$$(p_{\nu} + p_{\bar{\ell}})^2 = m_U^2$$

$$(p_{\nu} + p_{\bar{\ell}} + p_b)^2 = m_t^2$$



For ttbar Background: A mass variable

- We have six unknowns for two neutrino momentums.
- We have four mass-shell conditions + two Missing Transverse Energy conditions



For ttbar Background: A mass variable

- We have **six unknowns** for two neutrino momentums.
- We have four mass-shell conditions + two Missing Transverse Energy conditions
- In a reality (as a detector is not perfect),
 we allow some "smearing" effects

$$\chi_{ij}^{2} \equiv \min_{\vec{p}_{T} = \vec{p}_{\nu T} + \vec{p}_{\bar{\nu}T}} \left[\frac{\left(m_{b_{i}\ell^{+}\nu}^{2} - m_{t}^{2} \right)^{2}}{\sigma_{t}^{4}} + \frac{\left(m_{\ell^{+}\nu}^{2} - m_{W}^{2} \right)^{2}}{\sigma_{W}^{4}} \right] + \frac{\left(m_{b_{j}\ell^{-}\bar{\nu}}^{2} - m_{t}^{2} \right)^{2}}{\sigma_{t}^{4}} + \frac{\left(m_{\ell^{-}\bar{\nu}}^{2} - m_{W}^{2} \right)^{2}}{\sigma_{W}^{4}}$$

Small χ_{ij} (Top-ness) = compatible with a ttbar event topology

For HH signal events: Utilizing Mass information

- We have six unknowns for two neutrino momentums.
- We have two mass-shell conditions + two "mass" constraints
 - two Missing Transverse Energy conditions

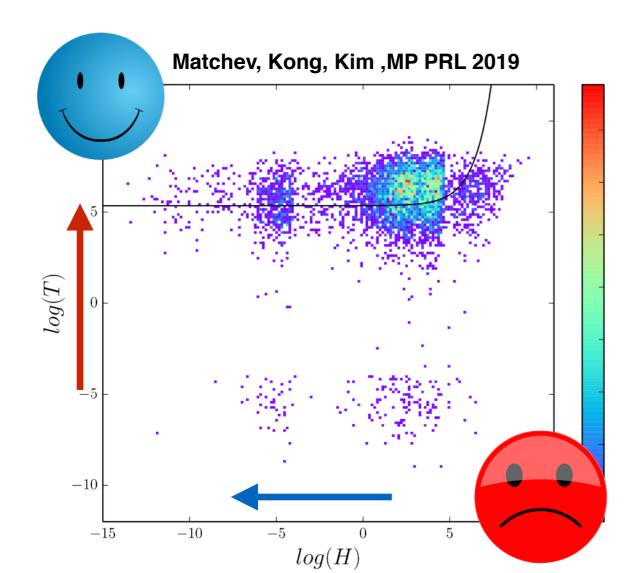
$$H \equiv \min \left[\frac{\left(m_{\ell^+\ell^-\nu\bar{\nu}}^2 - m_h^2 \right)^2}{\sigma_{h_\ell}^4} + \frac{\left(m_{\nu\bar{\nu}}^2 - m_{\nu\bar{\nu},peak}^2 \right)^2}{\sigma_{\nu}^4} + \frac{\left(m_{\ell^-\bar{\nu}}^2 - m_{W^*,peak}^2 \right)^2}{\sigma_{W_*}^4} + \frac{\left(m_{\ell^-\bar{\nu}}^2 - m_{W^*,peak}^2 \right)^2}{\sigma_{W_*}^4} + \frac{\left(m_{\ell^-\bar{\nu}}^2 - m_{W^*,peak}^2 \right)^2}{\sigma_{W_*}^4} + \frac{\left(m_{\ell^+\nu}^2 - m_{W^*,peak}^2 \right)^2}{\sigma_{W_*}^4} \right]$$

Small H (Higgs-ness) = compatible with a Higgs event topology

HH

Small H (Higgs-ness) compatible with a Higgs-topology

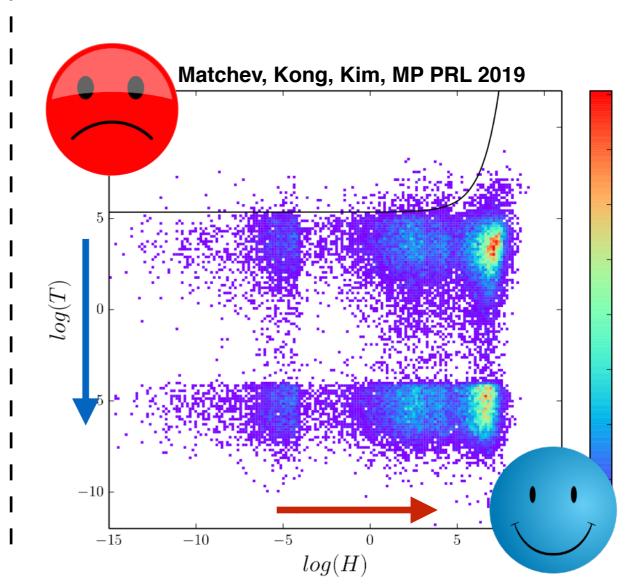
Large χ_{ij} (Top-ness) NOT compatible with a $t\bar{t}$ -topology

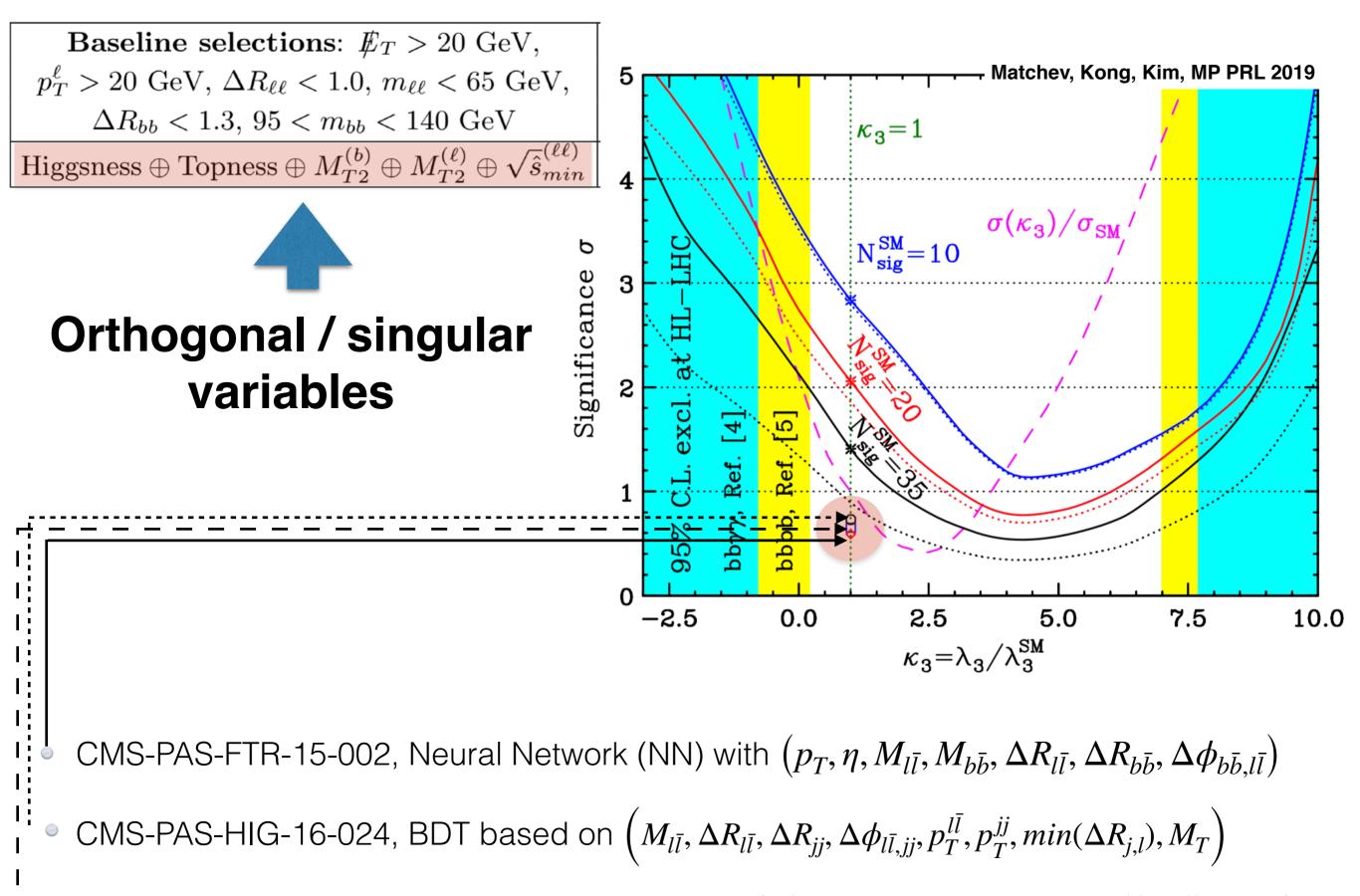


tt

Large H (Higgs-ness) **NOT** compatible with a **Higgs-topology**

Small χ_{ij} (Top-ness) compatible with a $t\bar{t}$ -topology

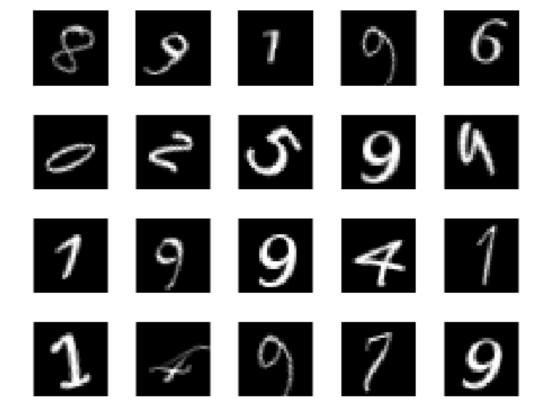




ullet A. Adhikary et.al (1712.05346) , BDT based on $\left(p_T^l, M_{ll}, M_{bb}, \Delta R_{ll}, \Delta R_{bb}, p_T^{bb}, p_T^{ll}, MET
ight)$

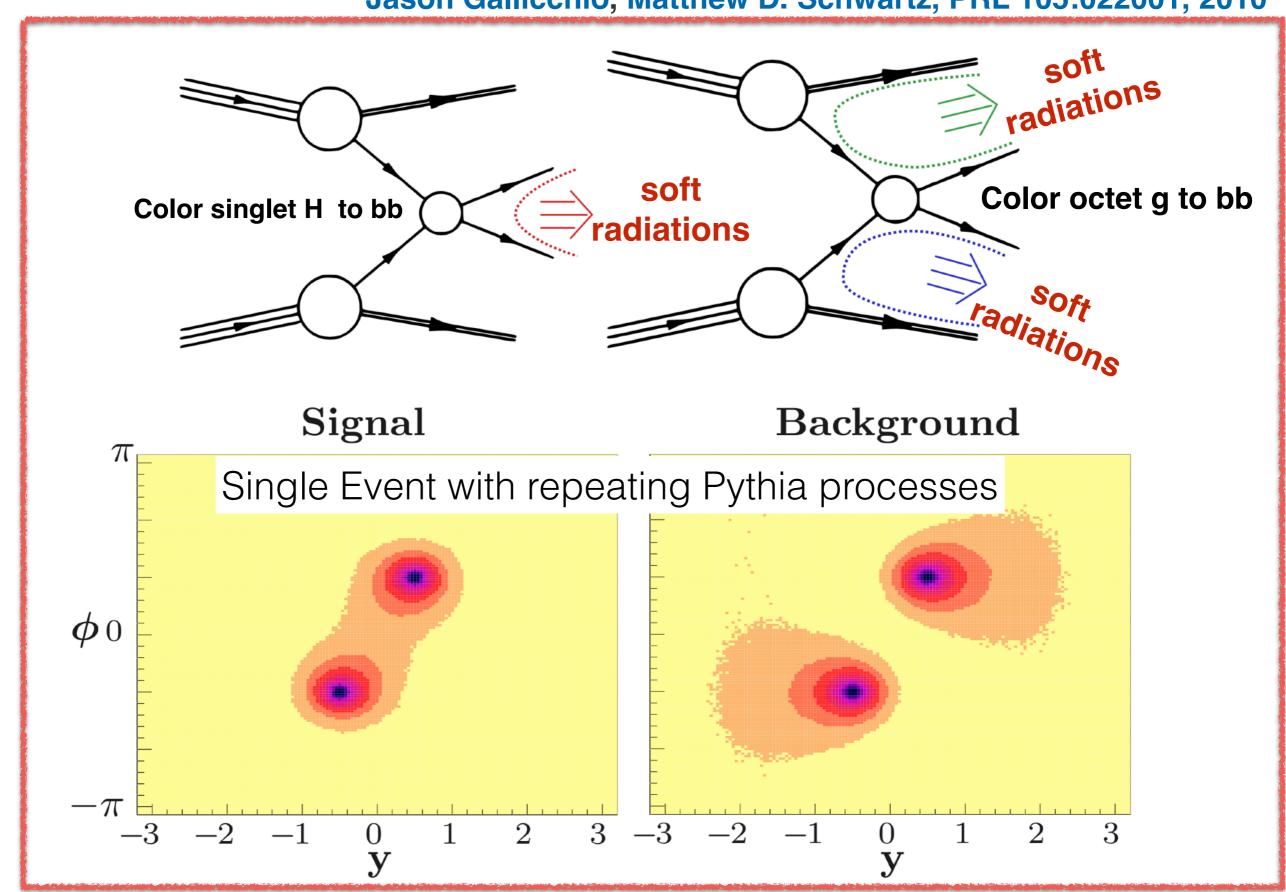
- Mathematically well-designed "feature" variables are very strong even in a ABCD (old) way.
- We can utilize Deep Learning (DL) to maximize correlations among feature variables.

 We can apply DL to utilize "energy deposit patterns" directly (Pattern recognition in images)

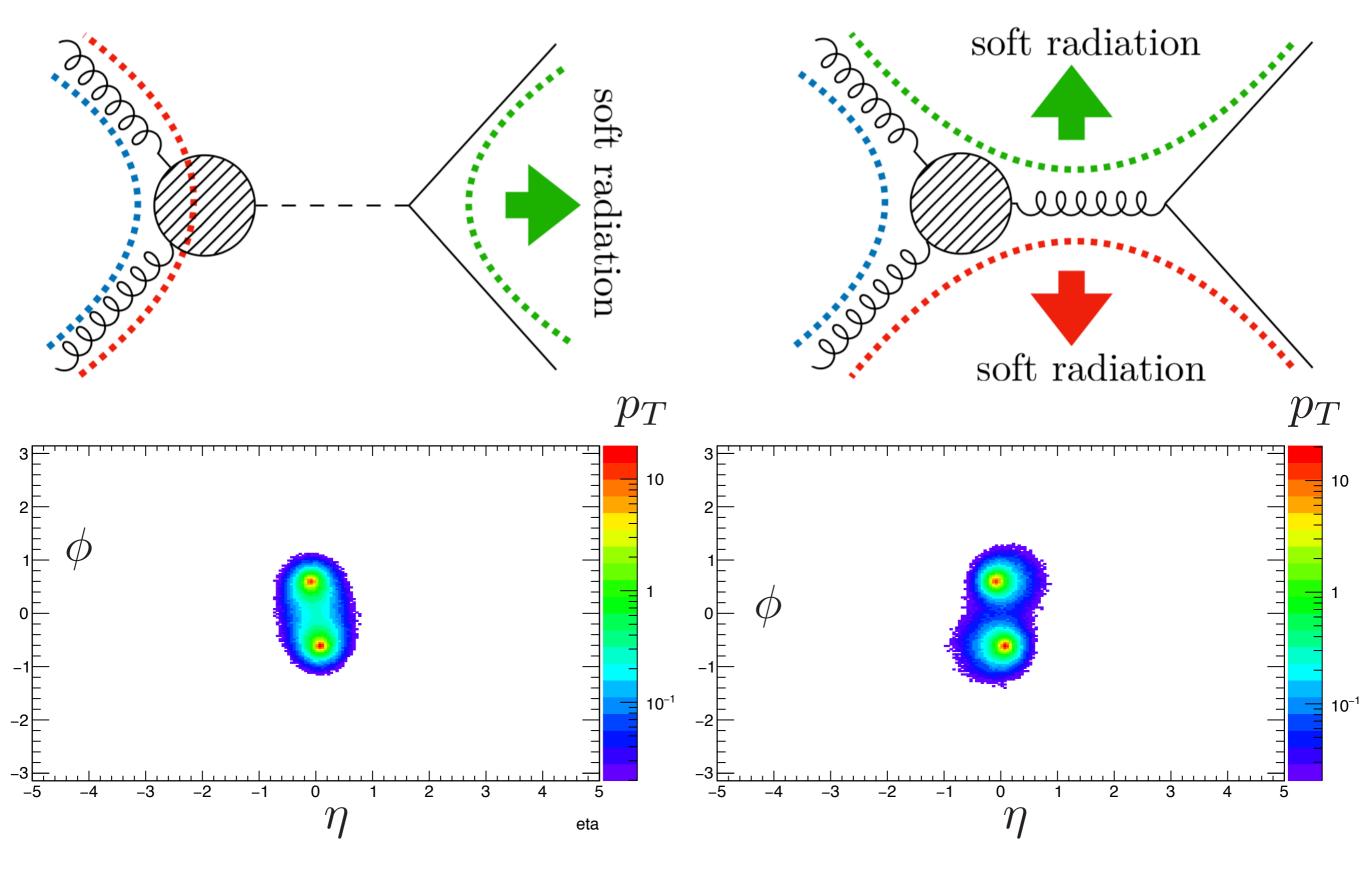


Consider "orthogonal" method to kinematics; Color-flow

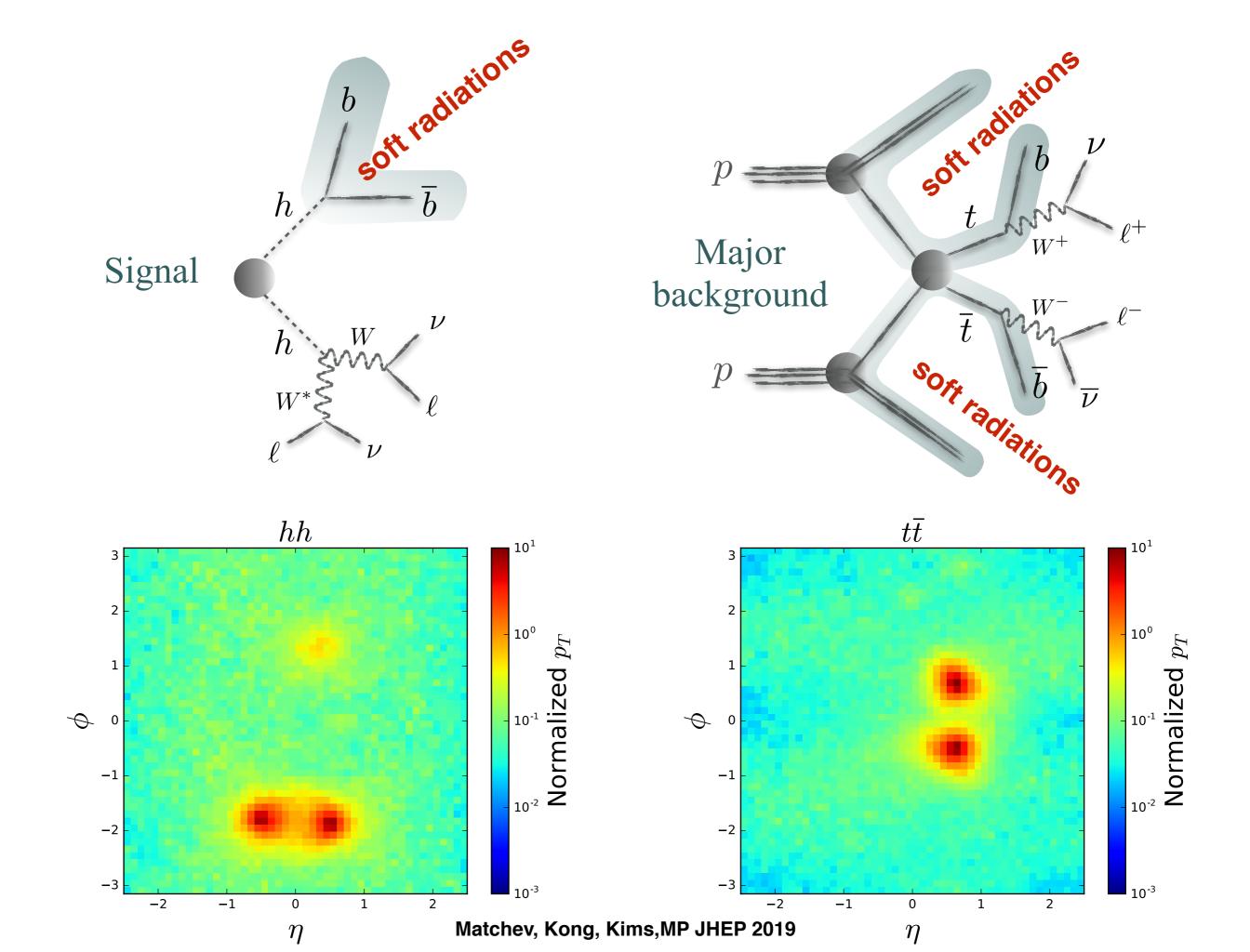
Jason Gallicchio, Matthew D. Schwartz, PRL 105:022001, 2010

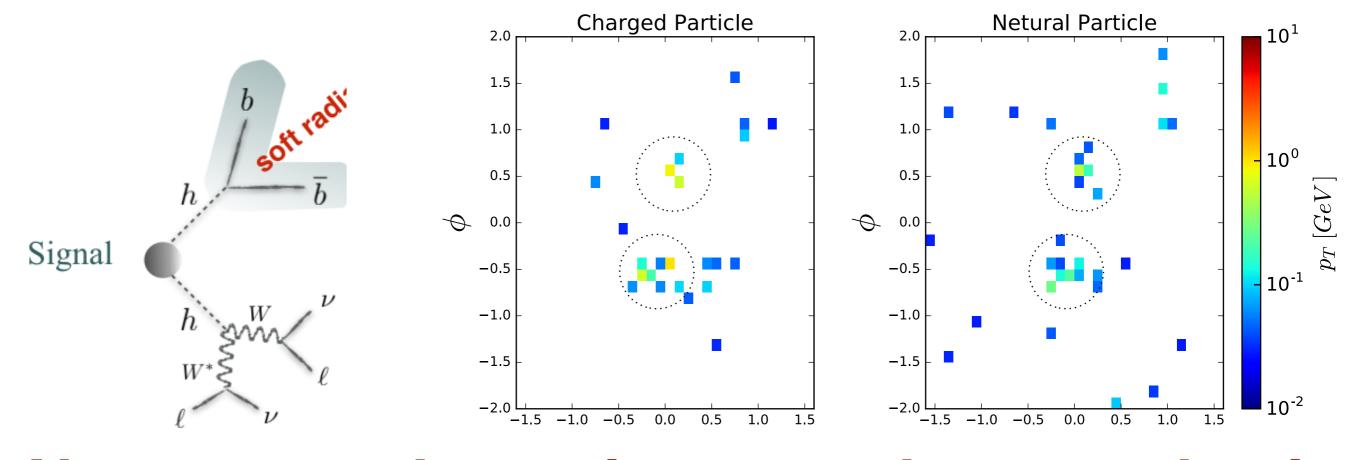


Consider "orthogonal" method to kinematics; QCD Color-flow

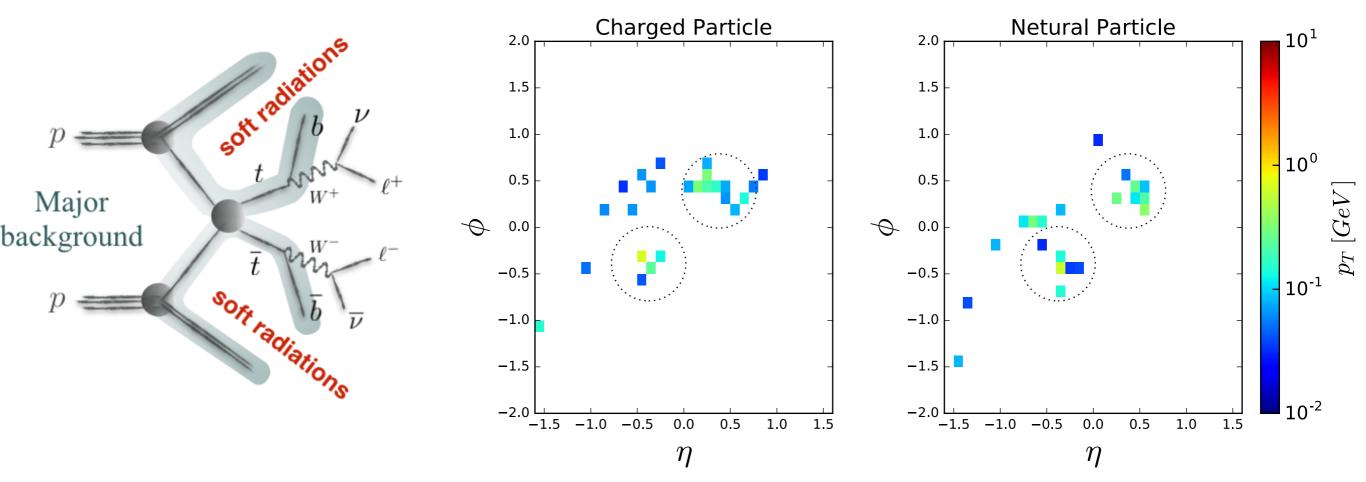


Energy deposits





Not easy to determine event by event basis

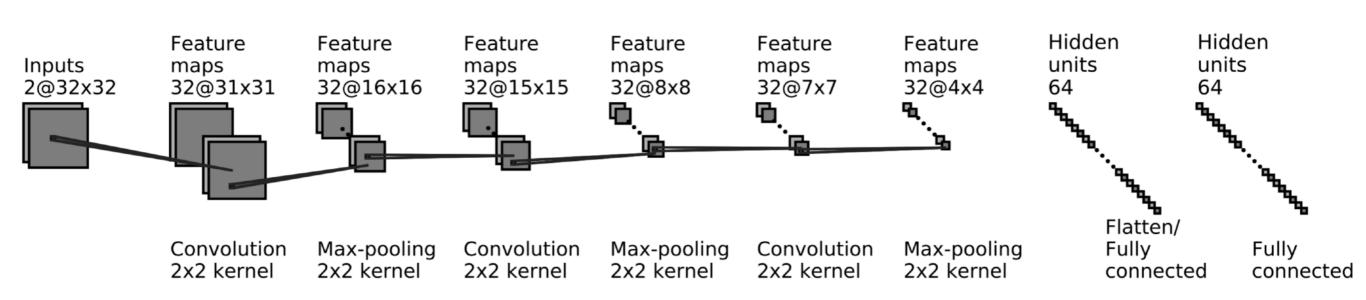


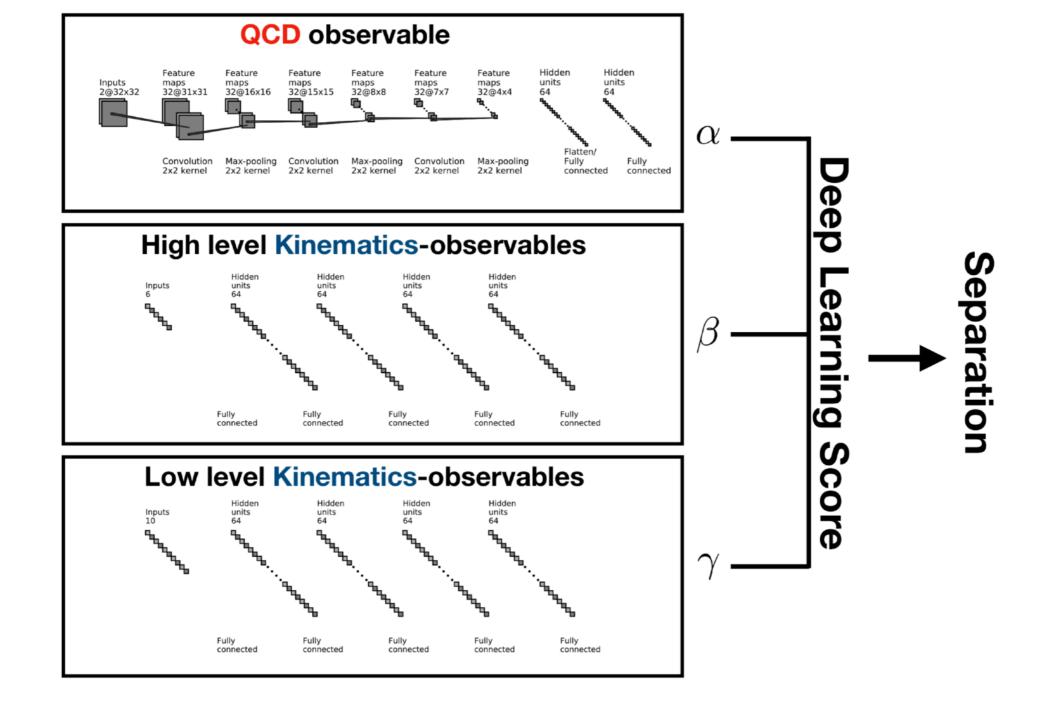
Maximizing information with Deep Neural Network

For jet-image, we use 32x32 pixels for -2.5<eta<2.5, -pi<phi < pi.

Input channels for **CNN** are divided into two with particle flow:

- Neutral particles
- Charged particles



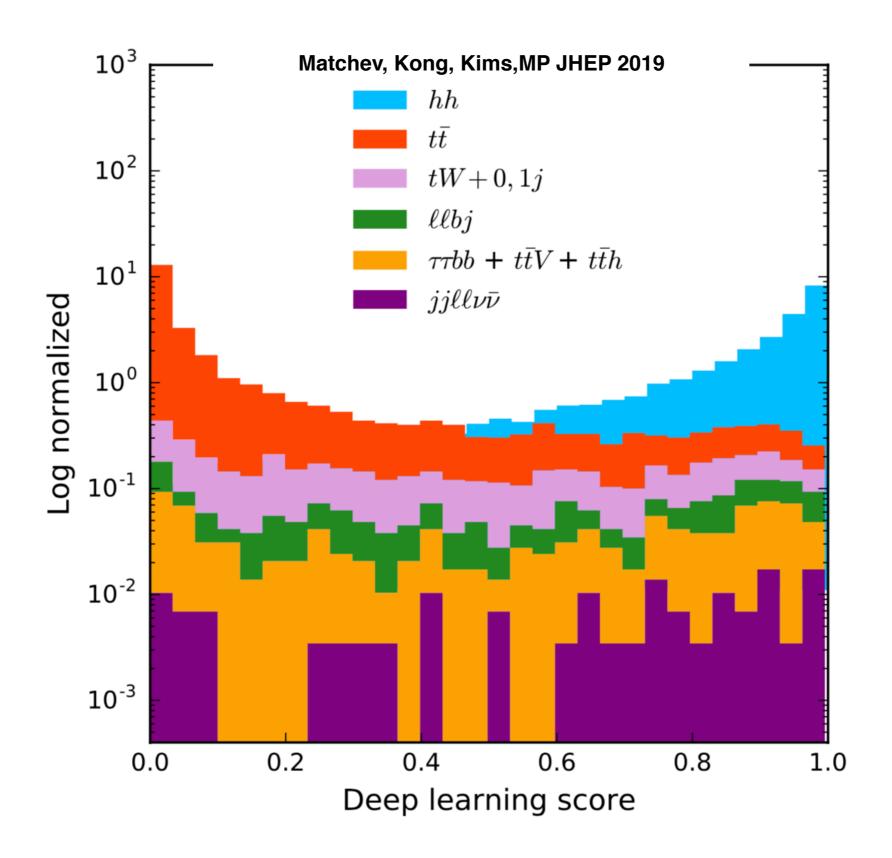


6 High Level Variables

Input data: $\sqrt{\hat{s}_{\min}^{(\bar{b},b,\bar{\ell},\ell)}} \sqrt{\hat{s}_{\min}^{(\bar{\ell},\ell)}} M_{T2}^b M_{T2}^b$ Higgsness, Topness (feature variables)

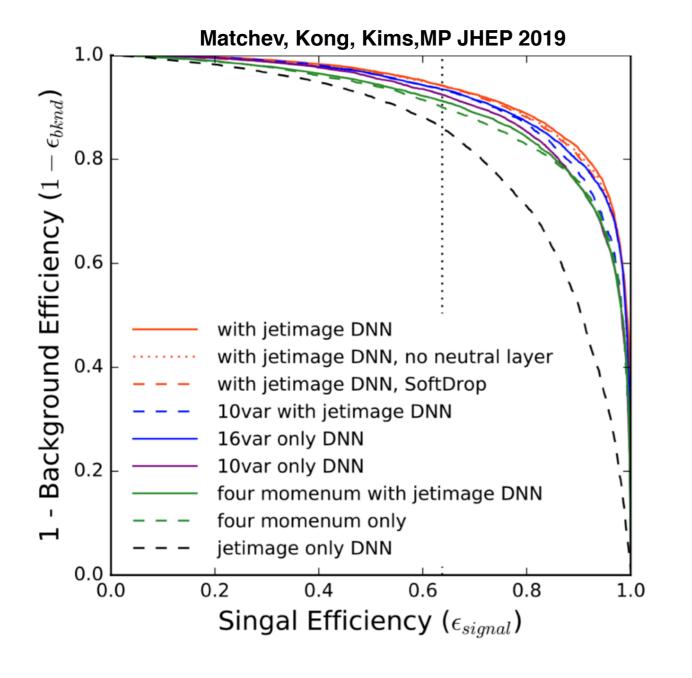
10 Low Level Variables

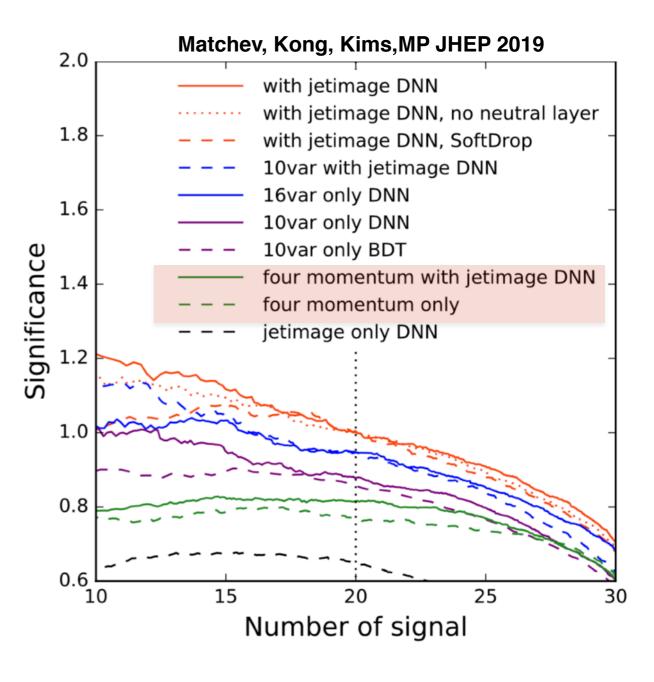
Input data: MET $p_{\bar{\ell}}^t p_{\ell}^t \Delta R_{(\bar{\ell},\ell)} M_{(\bar{b},b)} p_{(\bar{b},b)}^t \Delta R_{(\bar{b},b)} M_{(\bar{\ell},\ell)} p_{(\bar{\ell},\ell)}^t, \Delta \phi_{\{(\bar{\ell},\ell),(\bar{b},b)\}}$



"Backgrounds as stacked Histogram"

- To estimate effects from pileup removal (important in using QCD info),
 - 0. No additional processes.
 - 1. we apply SoftDrop to a fat-jet (R= 1.2 anti-Kt)
 - 2. we use "charged layer only" (Various pile-up removers use "longitudinal vertex information through tracking)





Difficulties in DL

- Feature learning (data preprocessing)
 - Is it really necessary if we have smart DL?
- In the case of Dark matter searches,
 - For a given model, we have no idea about parameters (mass of mediator, dark matter)
 - There would be Dark matter model which we have not though about.

Difficulties in preparing MC

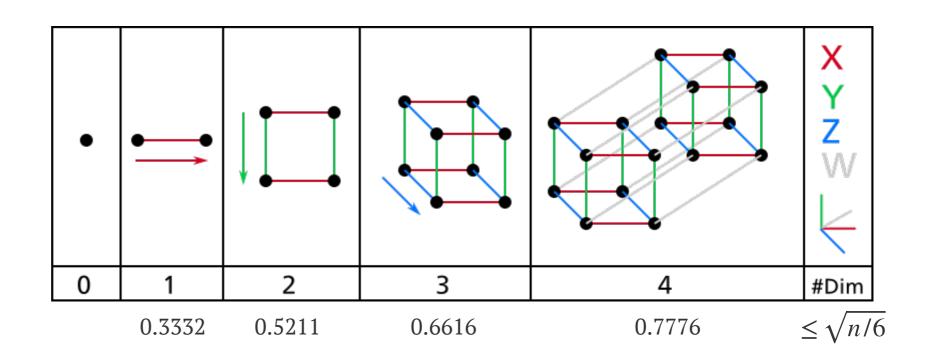
$\sigma(\mathrm{fb})$	Signal	t ar t	t ar t h	$t \bar{t} V$	$\ell\ell bj$	au au bb	tw + j	$jj\ell\ell u u$	σ	S/B
Baseline cuts: $P_T > 20 \text{ GeV}$,	0.648	953.6×10^{3}	611.3	1.71×10^{3}	71.17×10^{3}	3.289×10^{3}	5.107×10^{3}	8.819×10^{3}		
$p_{T,\ell} > 20 \text{ GeV}, \Delta R_{\ell\ell} < 1.0,$										
$p_{T,b} > 30 \text{ GeV}, \ \Delta R_{bb} < 1.3,$	0.01046	1.8855	0.0269	0.0179	0.0697	0.0250	0.2209	0.0113	0.38	0.0046
$m_{\ell\ell} < 65 \text{ GeV}, 95 < m_{bb} < 140 \text{ GeV}$										
jet-image DL	0.00667	0.1817	0.0133	0.00793	0.0245	0.0129	0.0671	0.00854	0.65	0.021
10 low-level variables DL	0.00668	0.0806	0.00897	0.00435	0.0163	0.00876	0.0462	0.00578	0.88	0.039
16 variables DL	0.00667	0.0662	0.00948	0.00358	0.0170	0.00747	0.0387	0.00402	0.95	0.046
10 variables + jet-image DL	0.00667	0.0693	0.00897	0.00435	0.0178	0.00722	0.0359	0.00352	0.95	0.045
16 variables + jet-image DL	0.00668	0.0607	0.00769	0.00281	0.0173	0.00799	0.0317	0.00402	1.0	0.051

- To generate backgrounds properly, we need to make HUGE Monte Carlo samples
- Preparing "Good enough" MC samples for testing is NOT EASY.
- Thus, we should find very good features (High-level observables)

Curse of dimensionality problem

n-dim cubic with length 1

average distance between two points



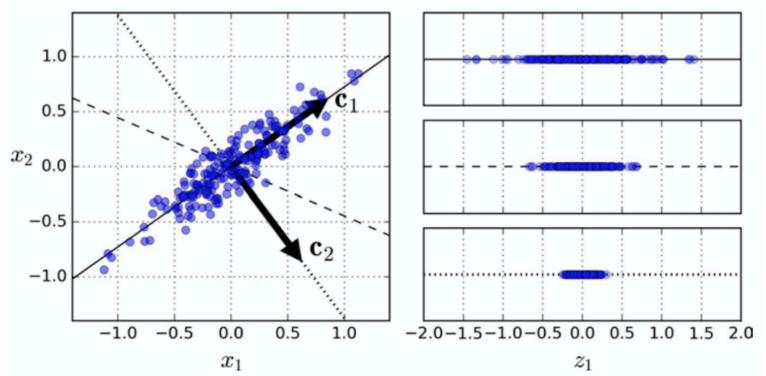
• If we increase density by a conventional grid method, number of points for n—dimension is proportional to d^n where d-distance in one dimension.

$$P||E_{\text{training}}(f_{\text{estimator}}) - E_{\text{test}}(f_{\text{estimator}})| > \epsilon|| \le N_{\text{hypothesis}}e^{-2\epsilon^2 N_{\text{training}}}$$

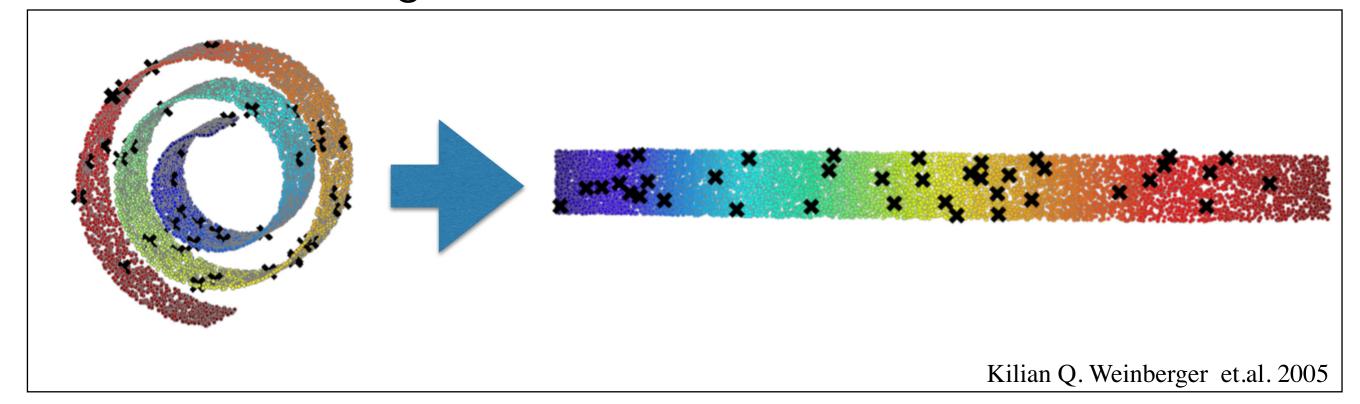
-"Hoeffding inequality" (from a textbook)

There have been various methods to resolve this issue.

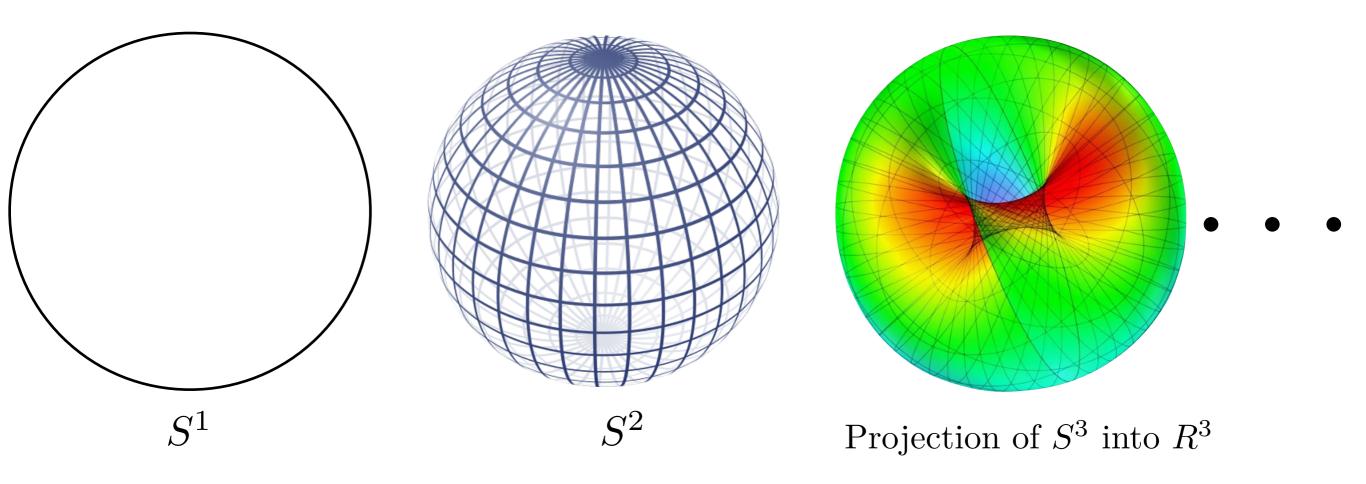
- Principal Component Analysis (PCA)



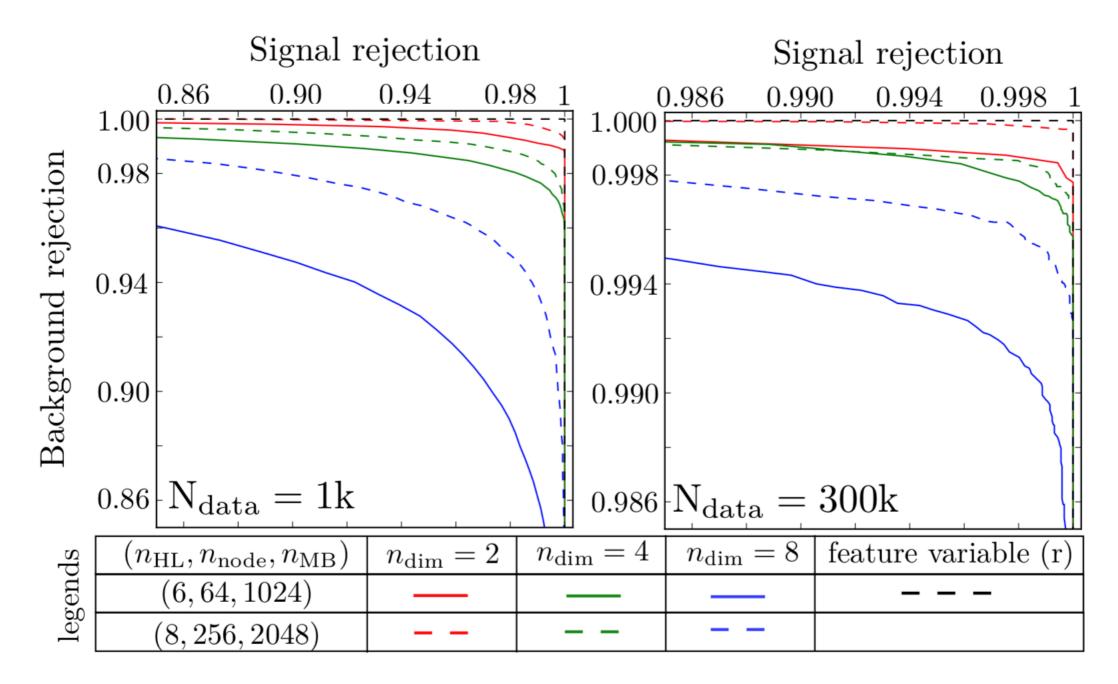
- Manifold learning



- But, feature variable in our hands (HEP) are not simple function of raw data. The transformation is highly nonlinear.
 - we try to find a good DL architecture... also ...
 - we design feature variables for the input of DL



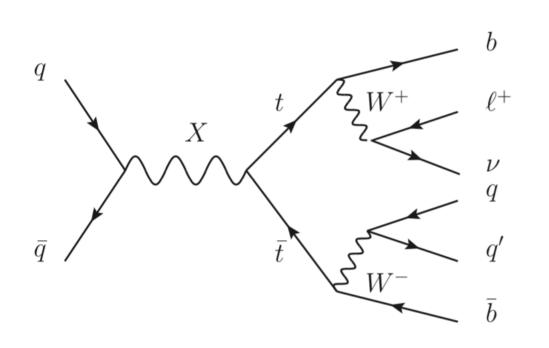
- Inside n-sphere: Signal events
 Outside n-sphere: Backgrounds.
- Featured variable: Radius.
 Raw observable: coordinate

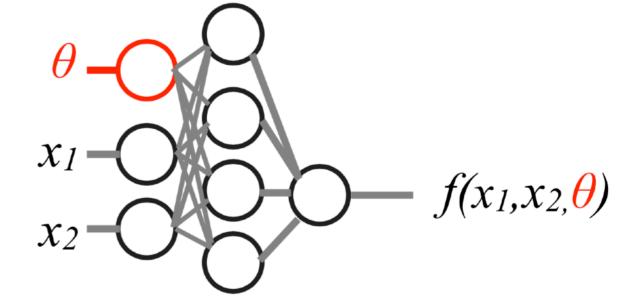


- Featured variables are effective in learning with few data.
- Featured variable: Radius.

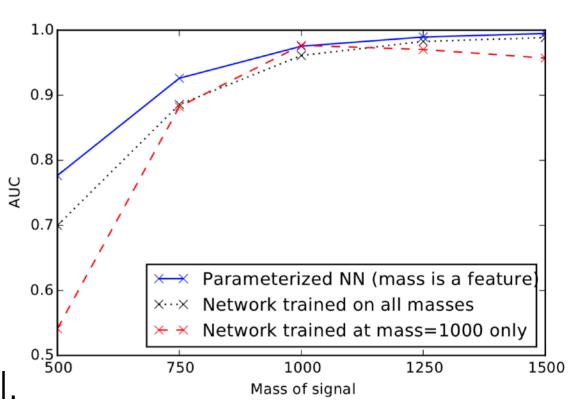
Raw observable: coordinate

Out of parameter problem



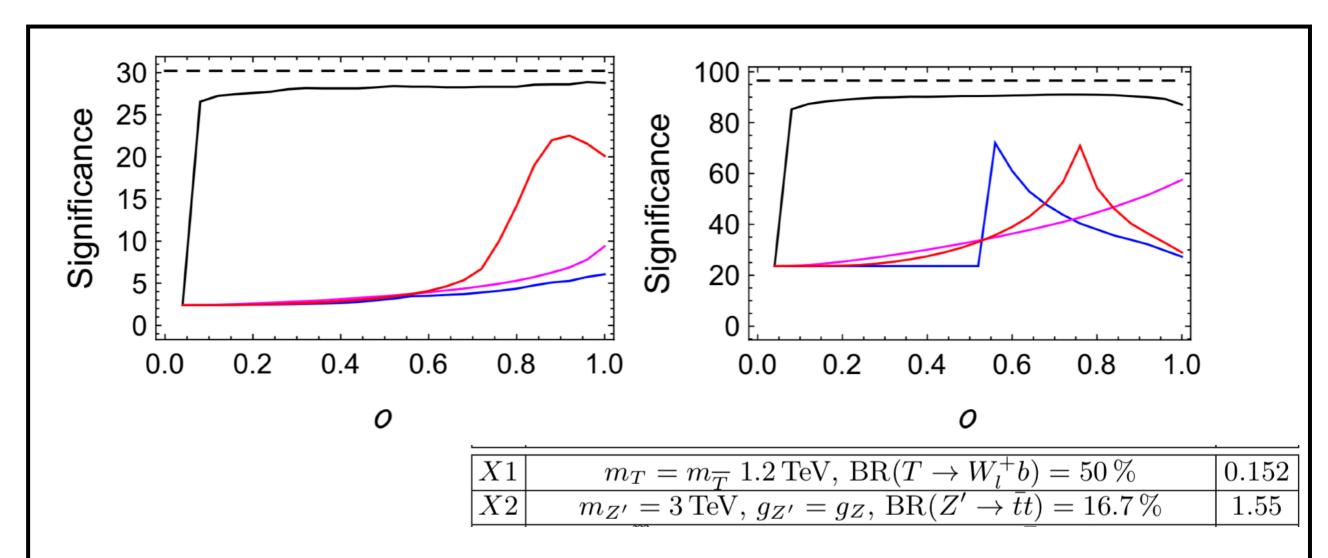


Parameterized NN:
 A single neural network with the true mass, as an input feature.



arXiv:1601.07913 by Pierre Balda et.al.

Out of Model ambiguity problem



 Based on autoencoder, find an anomaly away from Standard Model (backgrounds) expectations.

arXiv:1807.10261 by Tao Liu et.al.

Conclusions

- Various DL algorithms can enhance searches at the LHC
- When we are targeting a specific NP scenario, we can maximize a sensitivity by aggressively utilizing "feature variables" through DL.
 - reducing the issue of Dimensionality.
- When we don't have any preferred parameter in a given model, still DL would provide the best performance.
- When we don't have any MODEL in our mind, DL can provide a "good" results via an anomaly detection....
 - We need to check what kind of models we have missed so far!

