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Motivation 
beyond the minimal Axion-Like Particle (ALP)
some confusion about couplings, form of the scalar potentials 

General description of Stückelberg axion models
general kinetic terms
discrete gauge symmetries 
manifest field basis 

Examples
two Stückelberg axions with hierarchical decay constants 
multiple Stückelberg axions (clockwork-type charge assignment) 
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Motivation 



Axion, ALP
Well motivated from theory side
string theory, inflation, dark matter candidates, quintessence,  strong CP problem, hierarchy 
problem, etc.

from experiment side
CAPP, ADMX, HAYSTAC, ABRACADABRA, LC Circuit, CASPEr, etc. 
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Astrophysical Limits

QCD Axion Detection
nuclear coupling electromagnetic coupling

LC Circuit, ABRACADABRA, DM Radio,…
CASPEr ADMX, HAYSTAC,…
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taken from the slides of P. Graham 



Minimal ALP  
ALP is the emergent, compact scalar field at low energies 

1)  discrete gauge symmetry: ! → ! + 2%&ℕ

( ! = ([! + 2%&ℕ]

It is natural to consider the ALP as the angular/phase field:  

,(.) = !(.)/& ≡ ,(.) + 2%

!
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Minimal ALP 
ALP is the emergent, compact scalar field at low energies 

2) (approximate) global symmetry: ! → ! + 2%&', (' ∈ ℝ) so called * 1 ,-

* 1 ,- can be broken by various ways (for the QCD axion, from QCD/chiral anomaly)

Nature of the angular variable is manifest in
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Minimal ALP 
ALP is the emergent, compact scalar field at low energies 

2) (approximate) global symmetry: ! → ! + 2%&', (' ∈ ℝ) so called * 1 ,-

* 1 ,- can be broken by various ways (for the QCD axion, from QCD/chiral anomaly)

Interactions, dynamics of the ALP are manifest in
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Beyond the minimal ALP (1) 
Typically interactions of the ALP are governed by 1/#. 
However, for non-minimal ALP models, there are interesting variations. 
Ex1) clockwork axion 
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The axion field range (> ≡ > + 2:#@):

Spectrum of effective decay constants: 
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[Choi Kim Yun 14, Choi Im 15, Kaplan Rattazzi 15]  



Implications
Inflation 

Magnetogenesis, Baryogenesis, 

Lasing/Polarization dependent deflection from spinning Blackhole, Photophilic axion

Axion star, Bosenova
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φ2
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FIG. 1: Flat direction in the fundamental domain of axion fields in the limit Λ2 = 0. Even

though the fundamental domain is sub-Planckian with fi ≪ MP l, the flat direction can have a

super-Planckian length if one (or both) of ni/gcd (n1, n2) is large enough. The right panel depicts

the flat direction in the fundamental domain for which the axion periodicity is manifest.

which can be identified as the inflaton direction. One easily finds that the length of this

periodic flat direction is given by

ℓflat =
2π

√

n2
1f

2
2 + n2

2f
2
1

gcd (n1, n2)
, (12)

where gcd (n1, n2) denotes the greatest common divisor of n1 and n2. This shows that

a super-Planckian flat direction with ℓflat ≫ MP l ≫ fi can be developed on the two-

dimensional sub-Planckian domain if

n1

gcd (n1, n2)
or

n2

gcd (n1, n2)
≫

MP l

fi
≫ 1. (13)

In Fig. 1, we depict the flat direction in the fundamental domain of axion fields, which has

a length given by (12). Since the axionic inflaton of natural inflation rolls down along this

periodic flat direction, its effective decay constant is bounded as

feff ≤
ℓflat
2π

,

which means that at least one of ni should be as large as gcd (n1, n2)feff/fi.

Turning on the second axion potential

∆V = Λ4
2

[

1− cos

(

m1φ1

f1
+

m2φ2

f2

)]

, (14)

a nontrivial potential is developed along the periodic flat direction having a length (12).

Even when ℓflat ≫ MP l, natural inflation is not guaranteed as the inflaton potential induced
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Implications
Inflation 

Magnetogenesis, Baryogenesis, 

Lasing/Polarization dependent deflection from spinning Blackhole, Photophilic axion

Axion star, Bosenova
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Magnetogenesis, Baryogenesis, 

Lasing/Polarization dependent deflection from spinning Blackhole, Photophilic axion

Axion star, Bosenova
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Implications
Inflation 

Magnetogenesis, Baryogenesis, 

Lasing/Polarization dependent deflection from spinning Blackhole, Photophilic axion

Axion star, Bosenova

1
2#

$%&$'&%' −
)*+

2 '+ + )*+

- .*+
'/ + ⋯ self-interaction



Beyond the minimal ALP (2) 
Ex2) Stückelberg axions with the anomalous ! 1 # gauge symmetry
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Under 

mixed anomalous fermion loop contribution is canceled by gauge transformation of @<

One of combinations of @;s (G) is absorbed by :+ and becomes heavy, while the gauge 
invariant combination (H) remains light. 

! 1 #: :+ → :+ + ?+Λ, @<,) → @<,) + A<,)Λ, 51/3 → (M; NO/PQ 51/3
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gauge invariance: 91 + 93 = A<

e. g. A< = A) = 1

[Shui, Staessens, Ye 15]  



Beyond the minimal ALP (2) 
Ex2) Stückelberg axions with the anomalous ! 1 # gauge symmetry
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[Fonseca, von Harling, de Lima, Machado 1906.10193]  



Beyond the minimal ALP (2) 
Ex2) Stückelberg axions with the anomalous ! 1 # gauge symmetry

Can it give the axion potential with a period 2%&∗ ≃ 2%&) &*
)/&)

) ≫ 2%&*, 2%&)?                   
à relevant for scalar dynamics: axion as the inflaton (&∗ ≫ ./), dark matter etc. 
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[Shui, Staessens 1807.00888]  



After our paper 

Similar approach 
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General description of 
Stückelberg axions

[Choi, CSS, Yun 1909.11685]  



General form
! Stückelberg axions "#, ! − 1 & 1 ' gauge symmetries yield one light axion at low 
energies.

* Stückelberg axions are the angular fields: 

"# ≡ "# + 2+ → -'
# , /# , 0#

1 ∈ ℤ

* Gauge invariance:

/#-'# =5
67

289'Tr < =9 > , 0#
?-'# =5

9

89'@9
?

* Allow general form of the metric including the kinetic mixing: A#B

* The previous example: ! = 2, -C
# = 1, 1 , /# = 1, 0 , A#B = diag(JC

>, J>
>).
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# − -'
# SP

' RP"
B − -'
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f = 1,⋯ ,! g = 1,⋯ ,! − 1



Useful relations 
Gauge invariant combination: ! ∝ #$%&% requires  #$%$'% = 0. The solution exists (with #$% ∈ ℤ )

#$% = det

/%0 /%1 ⋯ /%3

$00
⋮

$01 ⋯
⋮ ⋱

$03
⋮

$3600 $3601 ⋯ $3603

Since #$% is integer valued, there exists the integer valued vector ℓ% such that #$%ℓ% = 1. Then 
we find for the 9 by 9 matrix [;],

; = $'% ℓ%

det ; = 1, and it has the integer valued inverse matrix ;60 as 

;60 =
#ℓ%'
#$%

Therefore $'% , ℓ%, #$%, #ℓ%' ∈ ℤ and 

#ℓ%'$>% = />', #ℓ%'ℓ% = 0, ?
@A0,⋯,3

;60 %
@ ; @

B = #ℓ%'$'
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B

assuming g. c. d. ($'% ) = 1 for all I
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9 − 1
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Identifying discrete gauge symmetry
Decomposing !"s into the longitudinal modes of the gauge bosons (#$: #$ → #$ + Λ$)  and 
the gauge invariant axion (():

!" = *$" #$+
+,- ". /*.
+,- ". /*" /*.

(
01
= *$" #$ + Γ$ +, * (

01
+ ℓ" (01

leads to
1
2+". 78!

" − *$" :8$ 78!. − *$.:8$ = 1
2 78(

; + 12<$=
; (78#$ − :8$)(78#= − :=8)
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<$=
; = +".*$" *=. , 01 =

1

+,- ". /*" /*.

Then @ discrete gauge symmetries 
ℤ" ∶ !" → !" + 2C

Is equivalent to 
ℤ1:

(
01
→ (
01
+ 2C, #$→ #$ − 2C Γ$

and @ − 1 transformations of #$
ℤEF: #$ → #$ + 2C



Identifying discrete gauge symmetry
Ex)	two	axion	case

ℤ/:
1
2/
→ 1
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+ 26, 89→ 89 − 26 Γ9 ℤ<=: 89 → 89 + 26
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0 262>
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Identifying discrete gauge symmetry
Ex)	two	axion	case with . 1 0 gauge transformations 

ℤ23 :
5
62
→
5
62
+ 2:, <=→ <= >?@ABCDEF

E
ℤGE
3 : <=→ <=

6HIH

6AIA

0 2:6H

2:6A
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3

L



Identifying discrete gauge symmetry
Ex)	two	axion	case with . 1 0 gauge transformations 

The basis in which the periodicity of the axion is manifest! 

ℤ233:
5
62
→ 5
62
+ 2:, <=→ <=

with a field redefinition of matters <= → <= exp(−A=0Γ05/62)

0

2:625

ℤ233

4:62

0
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General form in the new field basis
After integrating out gauge ,ields

All non-derivative couplings of the axion are quantized in the unit of 1/23 : 

45ℓ5, 85
9 ℓ5 ∈ ℤ → ℒ>?? @ = ℒ>?? @ + 2D23

* It is trivial that the scalar potentials of the axion should be E>?? @ = E>?? @ + 2D23
* Derivative interactions (as the result of field redefinition) should be considered for the 

basis independent physical processes involving the axion.  
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Caveat? 
Anomaly cancelation without light fermions with generalized CS terms? 
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Abstract: A detailed analysis of anomalous U(1)’s and their effective couplings is per-

formed both in field theory and string theory. It is motivated by the possible relevance of

such couplings in particle physics, as well as a potential signal distinguishing string theory

from other UV options. The most general anomaly related effective action is analyzed

and parameterized. It contains Stückelberg, axionic and Chern-Simons-like couplings. It is

shown that such couplings are generically non-trivial in orientifold string vacua and are not

in general fixed by anomalies. A similar analysis in quantum field theories provides similar

couplings. The trilinear gauge boson couplings are also calculated and their phenomeno-

logical relevance is advocated. We do not find qualitative differences between string and

field theory in this sector.



Caveat? 
Anomaly cancelation without light fermions with generalized CS terms? 

where

Then under the ! 1 #,  

Possibility to cancel the contribution from axion couplings,
without fermions
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1
2
/01 2+30 − 4#0 5+# 2+31 − 4#

15+#

+
6030

328)
/ 9/ + :; (0<=

>?=@
A

BA
CD
>

E + ℎ. H. +
H#
328)

5+#IJK
+ + ⋯

2+IJK
+ = / 9/

H#
328)

5+#IJK
+ →

H#
328)

(2+Λ#) IJK
+

= −
H#
328)

Λ# (2+IJK
+ ) + total derivative = −

H#
328)

Λ#/ 9/

6030

328)
/ 9/ →

604#0

328)
Λ#/ 9/

5+#

/+Z

/+Z

H#



Caveat? No 
However, GCS terms are not invariant under the non-abelian gauge transformation of !"#: 
! → %!%& + ( %)"%&. Cancelation for both gauge non-invariant contributions need light 
fermions. 

Consequently, 

should hold independently from existence of GCS terms.  
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-./+. =1
23
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Lessons 
The axion field range (2"#$) is determined by the kinetic term of the axions regardless of 
detailed mechanism for generating scalar potentials and interactions. 

We can always take the field basis in which all non-derivative couplings of the axion are 
quantized in the unit  of 1/#$ so that the scalar potential of the axion is 2"#$ - periodic  if 
there is no other mechanism to extend the period like the clockwork mechanism 

This does not mean that all scattering amplitudes of the axion are suppressed by ' (
)*

.



Examples 



Two Stückelberg axions with a massive fermion
Again from the previous example with ("# ≫ "%, '( = 1/2, '- = 1/2, .# = 0, .% = 1)
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Two Stückelberg axions with a massive fermion

ℳ"# = %&'
2) *"#+,-.+-/,

1
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For the axion-gluon-gluon scattering amplitude, the large scale dependence can provide 
quite different cosmological history (e.g. thermal production of the axion)
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Multiple Stückelberg axions 
With the min(max) eigenvalues of ! as "#$%
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5! (,:
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Q: Is the coupling between the axion and matters also of C 2

DE
?   

A: NO!  because the axion coupling through the mixing with F3 is proportional to 

G F3 =
!12 34 +,4
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1
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∼

1
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1

".
≪
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".
much suppressed ,

which means that the scalar potential R. T. Λ∗Wcos
.

DE
of the axion generically needs C( +, )

insertions of the operators: “highly” protected PQ symmetry: G/". → G/". + \, (\ ∈ ℝ)



Stückelberg Clockwork  
The simple and clear example is the CW type charge assignment: 

1
2 #

$ %&'( − *&(
$ + 12 #

$ %&'$ + , *&( − *&$
$ + ⋯1

2#
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0 1 (
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[Choi, CSS, Yun 1909.11685]  
[Bonnefoy, Dudas, Pokorski 1804.01112]  



Stückelberg Clockwork  
The simple and clear example is the CW type charge assignment: 

1
2
#$ %&'( − *&(

$
+
1
2
#$ %&'$ + , *&( − *&$

$
+ ⋯

1
2
#$ %&'. + , *&./(

$

The axion field range 20#1 and the mixing between the axion and original fields '2 are 

#1 =
,$ − 1
,$. − 1

# ∼ ,/ ./( #, 6 '2 =
,$ − 1

,. − ,/. ,2
1
#1
∼

1
,2#

The axion field range is hidden in the individual axion couplings. 
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Stückelberg Clockwork  
The simple and clear example is the CW type charge assignment: 
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Summary 
The non-trivial light ALP can be generated by Stückelberg mixing: some of combinations 
become heavy by Stückelberg (Higgs) mechanism, and the gauge invariant combination 
becomes light. 

We showed that the axion field range is unambiguously determined by the kinetic term of the 
Stückelberg axions: the large field excursion during cosmological evolution is (generically) 
forbidden. This can be manifest in a certain field basis 

The counter-intuitive examples about the relation between the couplings (decay constant) 
and the axion period are studied. 

For the case with the large number of Stückelberg axions, the axion field range is 
exponentially suppressed, which leads to the highly protected axion shift symmetry.


