
Exploring the Higgs boson with Machine LearningExploring the Higgs boson with Machine Learning

Felipe Ferreira de FreitasFelipe Ferreira de Freitas

Felipe F. Freitas, Charanjit K. Khosa, Verónica Sanz

Phys.Rev. D100 (2019) no.3, 035040 (2019-08-31) [arXiv:1902.05803]

Higgs boson detected ����.
750 GeV 😟😟.
No SUSY evidence 😟😠.
No DM evidence 😟😠😠.
No new physics, yet.

OverviewOverview
We are shi�ing our focus from the resonance searches into more subtle (indirect) effects of new physics. In a

nutshell, the SMEFT is a consistent way of exploring new theories as deforma�ons from the SM structures,with a

large number of possible SM devia�ons taken into account.

As an example, in the SMEFT approach the Higgs couplings to vector bosons V=W,Z would be modified in the

following way:

g ⇒ g − +…ημν mV ημν mV
2 g cHW

mW
pVμ p

V
ν

which in terms of Lagrangian terms would be equivalent to adding to the
SM Lagrangian new terms suppressed by a scale of new physics:

⇒ + [H] +…LSM LSM
2igcHW

m2W
DμH †T2kD

ν W k
μν

One could trace the ul�mate origin of these deforma�ons to many different types of new physics, just too heavy

to be discovered directly at the LHC.

The deforma�on (aka Wilson coefficient) could be the manifesta�on of a new set of scalar par�cles, such as

in 2HDMs, too heavy to be seen in direct produc�on, but s�ll felt via virtual effects

cHW

As the LHC analyses, in the context of the SMEFT effects in the Higgs sector, moves from the

formalism to the use of kinema�c informa�on, the informa�on contained in mul�dimensional

distribu�ons becomes an important source to iden�fying even subtler effects.

The need to quickly iden�fy subtle effects in mul�dimensional distribu�ons of informa�on,clearly calls for

ar�ficial intelligence methods.

The produc�on of the Higgs in associa�on with a massive vector boson, or VH, is already firmly

established.

κ

Current status: limits on the SMEFT and the VH channel at theCurrent status: limits on the SMEFT and the VH channel at the
LHC:LHC:
The Wilson coefficient it is currently constrained to values in the range (individual constraint):

The limits on SMEFT operators were obtained by perfoming a global fit including kinema�c informa�on on VH and

electroweak WW produc�on at LEP2 and LHC but only 40 � of data, half of the total Run2 dataset.

J. Ellis, C. W. Murphy, V. Sanz and T. You, JHEP1806(2018) 146 , M. Aaboudet al.[ATLAS
Collabora�on], Phys. Le�. B786(2018) 59

cHW

= 0.002 ± 0.014cHW

−1

The observa�on of the Higgs decaying into two b-quarks has been done by combining a
challenging set of channels collec�vely denoted by VH, which corresponds to the Higgs
produced in associa�on with a massive vector boson V= Z or . The final states are
classified as 0L (, 1L and 2L .

naively indicate a two-sigma exclusion for .

W ±

Z → νν) (W → lν) (Z →)l+l−

= 1.01 + 0.12(statμATLASVH)+0.60.15

| | < 0.02cHW

in our analysis:

we select the value as a benchmark point.

we consider as our and as .

gather the most informa�on as possible from the final state par�cles.

= 0.03cHW

≠ 0cHW signal = 0cHW backgorund

We consider the following observables as data features:

 transverse momentum of the leading b-jet.

 transverse momentum of the sub leading b-jet.

 transverse momentum of the pair.

 transverse mass of the pair.

 transverse momentum of gauge boson.

 transverse momentum of the reconstructed Higgs boson.

 pseudo-rapidity of the reconstructed Higgs boson.

 azimuthal angle of the reconstructed Higgs boson.

pb1T
pb2T
pVHT VH

MVH
T VH

p
W/Z
T

pHT
ηH

ϕH

0L channel:

 transverse momentum of lepton

missing transverse energy

 azimuthal angular separa�on between leading b-jet and lepton

 azimuthal angular separa�on between lepton and MET

plT

Δϕ lb1

ΔϕlMET

1L channel:

 transverse mass of the

 separa�on between lepton and boson in the plane

missing transverse energy

 azimuthal angular separa�on between leading b-jet and MET

 azimuthal angular separa�on between lepton and MET

MW
T W ±

ΔRwl W η− ϕ

Δϕ METb1

ΔϕlMET

2L channel:

 transverse momentum of the leading lepton

 transverse momentum of sub-leading lepton

 separa�on between two lepton in the plane

 azimuthal angular separa�on between leading b-jet and leading lepton

 azimuthal angular separa�on between sub-leading b-jet and leading lepton

pl1T
pl2T
ΔRll η− ϕ

Δϕb1l1
Δϕb2l1

How the data looks like:How the data looks like:
In [14]: zh_chw_0d01_df.head(5)

The data is not ready yet for the Machine Learning analysis, we have to normalize
the entries to be more Machine Learning friendly.
We can use the Scikit-learn library, specifically the MinMaxScaler() func�on to do
this task.

In [16]: from sklearn import preprocessing

min_max_scaler = preprocessing.MinMaxScaler()
def scaleColumns(df, cols_to_scale):

for col in cols_to_scale:
df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[co

l])),columns=[col])
return df

Out[14]: ptb1 ptb2 misset pth ptz etah phih mtvh ptvh dphib1met signal

0 125.407039 86.117322 205.932526 209.328455 205.932526 1.277426 1.929536 449.712567 4.603307 3.037227 1

1 131.907616 70.616237 187.837401 190.132443 187.837401 -0.563147 -0.758883 415.367124 3.029103 2.895890 1

2 142.205381 29.009372 121.233232 120.412595 121.233232 -2.029023 -1.629733 294.761943 1.941833 3.006520 1

3 106.761004 27.168427 119.788307 120.780482 119.788307 -0.135757 -2.948970 293.614796 0.997513 2.935436 1

4 94.397035 73.704720 132.123257 134.300456 132.123257 2.286593 -1.262787 315.572440 3.875016 2.604910 1

Before normalize the data, we �rst need to create our featuresBefore normalize the data, we �rst need to create our features
input input and the targets and the targets ::(x) (y)

In [17]: X_cHW_0d01 = pd.concat([zh_chw_0d01_df, zh_sm], ignore_index=True)
X_cHW_0d03 = pd.concat([zh_chw_0d03_df, zh_sm], ignore_index=True)
X_cHW_0d1 = pd.concat([zh_chw_0d1_df, zh_sm], ignore_index=True)
X_cHW_1 = pd.concat([zh_chw_1_df, zh_sm], ignore_index=True)

y_cHW_0d01 = X_cHW_0d01['signal']
y_cHW_0d03 = X_cHW_0d03['signal']
y_cHW_0d1 = X_cHW_0d1['signal']
y_cHW_1 = X_cHW_1['signal']

Only normalize your features a�er combine everything you are going to use. 😉

In [19]: for i in [X_cHW_0d01, X_cHW_0d03, X_cHW_0d1, X_cHW_1]:
i = scaleColumns(i,['ptb1', 'ptb2', 'misset',

'pth', 'ptz', 'etah',
'phih', 'mtvh', 'ptvh',
'dphib1met'])

After the normalization, the imputs looks like this:After the normalization, the imputs looks like this:
In [20]: X_cHW_1.head(5)

In [35]: for i in X_cHW_1.keys():
print(i,':',X_cHW_1[i].mean(),X_cHW_1[i].std())

Out[20]: ptb1 ptb2 misset pth ptz etah phih mtvh ptvh dphib1met signal

0 0.086453 0.015394 0.069946 0.070658 0.069946 0.317102 0.782922 0.065425 0.520621 0.887508 1

1 0.040042 0.079937 0.060259 0.060270 0.060259 0.712868 0.544151 0.055591 0.386925 0.943983 1

2 0.188917 0.163342 0.224048 0.223358 0.224048 0.428109 0.001863 0.218536 0.270565 0.975580 1

3 0.012409 0.012235 0.008392 0.008747 0.008392 0.288645 0.147635 0.006867 0.141265 0.911109 1

4 0.037988 0.037252 0.036305 0.036593 0.036305 0.694466 0.051104 0.032546 0.248878 0.735323 1

ptb1 : 0.06603380945984406 0.07807105493537096
ptb2 : 0.05276380572195325 0.06926308503087236
misset : 0.06716309934162445 0.08949834993587825
pth : 0.06718128565788557 0.08941226283848779
ptz : 0.06716309934314747 0.08949834993804219
etah : 0.5006507384165415 0.17312476022576348
phih : 0.5000665818066831 0.28900209027092005
mtvh : 0.06388180888051978 0.08844030270164628
ptvh : 0.28225733120272967 0.14680672893989266
dphib1met : 0.7684152266915593 0.19672374641410206
signal : 0.5 0.5000012500046875

Don't forget to drop the column Don't forget to drop the column from your features from your features
input, otherwise the Machine will imeadiatly know what isinput, otherwise the Machine will imeadiatly know what is

 and what is and what is 😉😉

signal

signal BG

In [36]: for i in [X_cHW_0d01, X_cHW_0d03, X_cHW_0d1, X_cHW_1]:
i.drop(['signal'], axis=1, inplace=True)

In [37]: X_cHW_0d03.shape, y_cHW_0d03.shape

Out[37]: ((200000, 10), (200000,))

Now we can shu�e our inputs and split into training and testNow we can shu�e our inputs and split into training and test
datasets:datasets:

To avoid pain we can use Scikit-learn func�on train_test_split(), which
automa�cally take cares of all we need.

In [38]: X_train_cHW_0d01, X_test_cHW_0d01, y_train_cHW_0d01, y_test_cHW_0d01 = \
train_test_split(X_cHW_0d01, y_cHW_0d01, train_size=0.8, test_size=0.2)

X_train_cHW_0d03, X_test_cHW_0d03, y_train_cHW_0d03, y_test_cHW_0d03 = \
train_test_split(X_cHW_0d03, y_cHW_0d03, train_size=0.8, test_size=0.2)

X_train_cHW_0d1, X_test_cHW_0d1, y_train_cHW_0d1, y_test_cHW_0d1 = \
train_test_split(X_cHW_0d1, y_cHW_0d1, train_size=0.8, test_size=0.2)

X_train_cHW_1, X_test_cHW_1, y_train_cHW_1, y_test_cHW_1 = \
train_test_split(X_cHW_1, y_cHW_1, train_size=0.8, test_size=0.2)

We can save our training and test datasets, so in the future we don't need to do
everything again:

In [39]: np.savez('../data/inclusive/X_train_0L_cHW_0d03.npz', x=X_train_cHW_0d03, y=y_t
rain_cHW_0d03)
np.savez('../data/inclusive/X_train_0L_cHW_0d1.npz', x=X_train_cHW_0d1, y=y_tra
in_cHW_0d1)
np.savez('../data/inclusive/X_train_0L_cHW_1.npz', x=X_train_cHW_1, y=y_train_c
HW_1)

np.savez('../data/inclusive/X_test_0L_cHW_0d03.npz', x=X_test_cHW_0d03, y=y_tes
t_cHW_0d03)
np.savez('../data/inclusive/X_test_0L_cHW_0d1.npz', x=X_test_cHW_0d1, y=y_test_
cHW_0d1)
np.savez('../data/inclusive/X_test_0L_cHW_1.npz', x=X_test_cHW_1, y=y_test_cHW_
1)

NN architectures: Deep or shalow ����

To extract the maximum amount of informa�on from the kinema�c features, one needs to combine mul�di-

mensional informa�on. The objec�ve is to maximise our ability to detect new phenomena, which in HEP means

maximising the significance of an observa�on.

Number of layers.
Ac�va�on func�on of each layer.
Regularizers: L1, L2, Batch normaliza�on, drop out.
Drop out probability.
...

To set the best combina�on of hyper-parameter I built a Evolu�onary Algorithm to search through all combina�ons

of parameters and select only the best ones.

Evolutionary search algorithm:Evolutionary search algorithm:

in order to do so we are going to need some very important pieces, the first
one is a class to produce random archtectures with the parameters we want
to inspect:

In [40]: class Network():
"""Represent a network and let us operate on it.

 Currently only works for an MLP.
 """

def __init__(self, nn_param_choices=None):
"""Initialize our network.

 Args:
 nn_param_choices (dict): Parameters for the network, includes:
 nb_neurons (list): [64, 128, 256]
 nb_layers (list): [1, 2, 3, 4]
 activation (list): ['relu', 'elu']
 optimizer (list): ['rmsprop', 'adam']
 """

self.accuracy = 0.
self.nn_param_choices = nn_param_choices
self.network = {} # (dic): represents MLP network parameters

In [41]: def create_random(self):
"""Create a random network."""
for key in self.nn_param_choices:

self.network[key] = random.choice(self.nn_param_choices[key])

def create_set(self, network):
"""Set network properties.

 Args:
 network (dict): The network parameters
 """

self.network = network

In [42]: def train(self, dataset):
"""Train the network and record the accuracy.

 Args:
 dataset (str): Name of dataset to use.
 """

if self.accuracy == 0.:
self.accuracy = train_and_score(self.network, dataset)

def print_network(self):
"""Print out a network."""
logging.info(self.network)
logging.info("Network accuracy: %.2f%%" % (self.accuracy * 100))

We need a way to evaluate our popula�on of NN, to do so we build an
op�mizer class:

In [43]: class Optimizer():
"""Class that implements genetic algorithm for MLP optimization."""

def __init__(self, nn_param_choices, retain=0.4,
random_select=0.1, mutate_chance=0.2):

"""Create an optimizer.
 Args:
 nn_param_choices (dict): Possible network paremters
 retain (float): Percentage of population to retain after
 each generation
 random_select (float): Probability of a rejected network
 remaining in the population
 mutate_chance (float): Probability a network will be
 randomly mutated
 """

self.mutate_chance = mutate_chance
self.random_select = random_select
self.retain = retain
self.nn_param_choices = nn_param_choices

A func�on to generate the popula�on:

In [44]: def create_population(self, count):
"""Create a population of random networks.

 Args:
 count (int): Number of networks to generate, aka the
 size of the population
 Returns:
 (list): Population of network objects
 """

pop = []
for _ in range(0, count):

Create a random network.
network = Network(self.nn_param_choices)
network.create_random()

Add the network to our population.
pop.append(network)

return pop

fitness func�on (a.k.a "mo�va�on"):

In [46]: @staticmethod
def fitness(network):

"""Return the accuracy, which is our fitness function."""
return network.accuracy

def grade(self, pop):
"""Find average fitness for a population.

 Args:
 pop (list): The population of networks
 Returns:
 (float): The average accuracy of the population
 """

summed = reduce(add, (self.fitness(network) for network in pop))
return summed / float((len(pop)))

Produce new genera�on of NN 😏

In [47]: def breed(self, mother, father):
"""Make two children as parts of their parents.

 Args:
 mother (dict): Network parameters
 father (dict): Network parameters
 Returns:
 (list): Two network objects
 """

children = []
for _ in range(2):

child = {}

Loop through the parameters and pick params for the kid.
for param in self.nn_param_choices:

child[param] = random.choice(
[mother.network[param], father.network[param]]

)

Now create a network object.
network = Network(self.nn_param_choices)
network.create_set(child)

Randomly mutate some of the children.
if self.mutate_chance > random.random():

network = self.mutate(network)

children.append(network)

return children

introducing random muta�on

In []: def mutate(self, network):
"""Randomly mutate one part of the network.

 Args:
 network (dict): The network parameters to mutate
 Returns:
 (Network): A randomly mutated network object
 """

Choose a random key.
mutation = random.choice(list(self.nn_param_choices.keys()))

Mutate one of the params.
network.network[mutation] = random.choice(self.nn_param_choices[mutatio

n])

return network

and evolve our popula�on ������������������

In [48]: def evolve(self, pop):
"""Evolve a population of networks.

 Args:
 pop (list): A list of network parameters
 Returns:
 (list): The evolved population of networks
 """

Get scores for each network.
graded = [(self.fitness(network), network) for network in pop]

Sort on the scores.
graded = [x[1] for x in sorted(graded, key=lambda x: x[0], reverse=Tru

e)]

Get the number we want to keep for the next gen.
retain_length = int(len(graded)*self.retain)

The parents are every network we want to keep.
parents = graded[:retain_length]

For those we aren't keeping, randomly keep some anyway.
for individual in graded[retain_length:]:

if self.random_select > random.random():
parents.append(individual)

In []: # Now find out how many spots we have left to fill.
parents_length = len(parents)
desired_length = len(pop) - parents_length
children = []

Add children, which are bred from two remaining networks.
while len(children) < desired_length:

Get a random mom and dad.
male = random.randint(0, parents_length-1)
female = random.randint(0, parents_length-1)

Assuming they aren't the same network...
if male != female:

male = parents[male]
female = parents[female]

Breed them.
babies = self.breed(male, female)

Add the children one at a time.
for baby in babies:

Don't grow larger than desired length.
if len(children) < desired_length:

children.append(baby)

parents.extend(children)

return parents

We can use the Asimov signi�cance as loss functionWe can use the Asimov signi�cance as loss function
and minimize and minimize (1/)ZA

The Asimov significance is defined as follow:

= [2((s+ b) ln[] .ZA
(s+b)(b+)σ2b

+(s+b)b2 σ2b
ln[1 +])]b2

σ2b

sσ2b

b(b+)σ2b

1/2

 number of signal events
 number of background events

 systema�c uncertan�es

Adam Elwood, Dirk Krücker, Direct op�misa�on of the discovery significance when
training neural networks to search for new physics in par�cle colliders, DESY-18-082 ,

s =
b =
=σ2b

In []: def asimovSignificanceLossInvert(expectedSignal,expectedBkgd,systematic):
'''Define a loss function that calculates the significance based on fixed

 expected signal and expected background yields for a given batch size'''

def asimovSigLossInvert(y_true,y_pred):
#Continuous version:

signalWeight=expectedSignal/K.sum(y_true)
bkgdWeight=expectedBkgd/K.sum(1-y_true)

s = signalWeight*K.sum(y_pred*y_true)
b = bkgdWeight*K.sum(y_pred*(1-y_true))
sigB=systematic*b

return 1./(2*((s+b)*K.log((s+b)*(b+sigB*sigB)/(b*b+(s+b)*sigB*sigB+K.ep
silon())+K.epsilon())-b*b*K.log(1+sigB*sigB*s/(b*(b+sigB*sigB)+K.epsilon()))/(s
igB*sigB+K.epsilon()))) #Add the epsilon to avoid dividing by 0

return asimovSigLossInvert

We found that:We found that:
1 hidden layer with the same number of neurons as the number of inputs.
ReLu as ac�va�on func�on.
Adam as op�mizer.

Batch size of 4096.
L1 = 0.003

Important notes:Important notes:
The Asimov loss takes a li�le more effort to minimize, so we set a pre-training set
of runs for 5 epochs using a steeper loss func�on.
A longer run, with about 20 ~ 30 epochs is done a�er the pre-training.

Distribu�on of 0L signal (red) and background (blue) events as a func�on of the
classifier output. The le� plot is the outcome of performing an ini�al pretraining
run with 5 epochs.

Le�: ROC curve for two values of the SMEFT coefficient in the 0L channel.
Right: Classifica�on of true signal events for and their mapping to
kinema�c features.

= 0.03cHW

A more interesting way to evaluate our modelA more interesting way to evaluate our model

luminosity: 80 �
AUC = 75%
Asimov significance = 31.5, with 50% systema�c error.

= 0.03cHW
−1

luminosity: 80 �
AUC = 52%
Asimov significance = 1.76, with 50% systema�c error.

= 0.001cHW
−1

Project the signi�cance to future luminosities:Project the signi�cance to future luminosities:

Le�: Luminosity (�) versus Asimov significance for different values of in
the 0-lepton channel and 50 % systema�c uncertainty.
Right: The effect of combina�on of VH channels for the limi�ng value

 and 50% systema�c errors.

−1 cHW

= 0.001cHW

SummarizeSummarize
Create and deploy a state of art evolu�onary algorithm to find the best hyper-
parameters in a NN.
Within the framework of our analysis, we found the 0L channel to be dominant.
We obtained a limit in the SMEFT coefficient of 0.001, about 30 �mes
be�er than the current constraint from global analysis with the Run2 data

cHW

Our analysis could be improved in a number of ways:

A more realis�c simula�on could be performed, including NLO SMEFT effects.
Although we found that deep layers led to overfi�ng, and a shallow NN was
more suitable, new algorithms could be explored to increase sensi�vity.
we should understand the effect of switching on more than one wilson
coefficient.

github.com/FFFreitas/Exploring-SMEFT-in-VH-with-Machine-Learning

Obrigado (Thanks)Obrigado (Thanks)

Backup:Backup:

Classifica�on performance for different linear models tested with ES.

luminosity: 80 �
Vector boson + heavy flavour object as .

= 0.001cHW
−1

background

In []:

