Exploring the Higgs boson with Machine Learning

Felipe Ferreira de Freitas

Felipe F. Freitas, Charanjit K. Khosa, Verdnica Sanz

Phys.Rev. D100 (2019) no.3, 035040 (2019-08-31) [arXiv:1902.05803]

2015 2016 2017 2018

2019 2020 2021 2022

Higgs boson detected ¢ -.
750 GeV ® ®.
No SUSY evidence @ ®.

No DM evidence ®.
No new physics, yet.

Overview

We are shifting our focus from the resonance searches into more subtle (indirect) effects of new physics. In a
nutshell, the SMEFT is a consistent way of exploring new theories as deformations from the SM structures,with a

large number of possible SM deviations taken into account.

As an example, in the SMEFT approach the Higgs couplings to vector bosons V=W,Z would be modified in the

following way:

2
Ny gMYV = Nuy gMy — —i;}jw PZ p,‘,/ + ...

which in terms of Lagrangian terms would be equivalent to adding to the
SM Lagrangian new terms suppressed by a scale of new physics:

Lsv = Lgn + %jj%fiw (DFH Ty, D" H|WE, + . ..

Ve PO
N e \\\\
\ /7 7 N
A\ Vi
\ ’ 7 A
\ 17 \
A V)
NN !
, (|
[
W 11
[
7 /!
’ \\\\
/
/ AN
’ L T /,’
/ SO 7 7

One could trace the ultimate origin of these deformations to many different types of new physics, just too heavy
to be discovered directly at the LHC.
The deformation (aka Wilson coefficient) cg could be the manifestation of a new set of scalar particles, such as

in 2HDMs, too heavy to be seen in direct production, but still felt via virtual effects

e As the LHC analyses, in the context of the SMEFT effects in the Higgs sector, moves from the K
formalism to the use of kinematic information, the information contained in multidimensional
distributions becomes an important source to identifying even subtler effects.

® The need to quickly identify subtle effects in multidimensional distributions of information,clearly calls for
artificial intelligence methods.

e The production of the Higgs in association with a massive vector boson, or VH, is already firmly
established.

Current status: limits on the SMEFT and the VH channel at the
LHC:

The Wilson coefficient cgy it is currently constrained to values in the range (individual constraint):

® Cgw = 0.002 £ 0.014

The limits on SMEFT operators were obtained by perfoming a global fit including kinematic information on VH and
electroweak WW production at LEP2 and LHC but only 40 fb~! of data, half of the total Run2 dataset.

J. Ellis, C. W. Murphy, V. Sanz and T. You, JHEP1806(2018) 146 , M. Aaboudet al.[ATLAS
Collaboration], Phys. Lett. B786(2018) 59

The observation of the Higgs decaying into two b-quarks has been done by combining a
challenging set of channels collectively denoted by VH, which corresponds to the Higgs

produced in association with a massive vector boson V= Z or W *. The final states are
classified as OL(Z — vv), IL(W — lv)and 2L (Z — IT17).

ATLAS

o pATLAS — 1,01 + 0.12(stat) 9

® naively indicate a two-sigma exclusion for |cgw | < 0.02.

in our analysis:

e we select the value cg = 0.03 as a benchmark point.
e we consider cgw # 0 as our signal and cgyw = 0 as backgorund.

e gather the most information as possible from the final state particles.

We consider the following observables as data features:

U p% transverse momentum of the leading b-jet.

° pgg transverse momentum of the sub leading b-jet.

° ng transverse momentum of the V H pair.

° M:,YH transverse mass of the V H pair.

° W)z
Pr

° pzﬁf transverse momentum of the reconstructed Higgs boson.

transverse momentum of gauge boson.

° nH pseudo-rapidity of the reconstructed Higgs boson.

¢H azimuthal angle of the reconstructed Higgs boson.

OL channel:

plT transverse momentum of lepton

missing transverse energy

Ay, azimuthal angular separation between leading b-jet and lepton

A¢veT azimuthal angular separation between lepton and MET

1L channel:

MIW transverse mass of the W=+

AR, separation between lepton and W boson in the n — ¢ plane

missing transverse energy

Ad¢y, MET azimuthal angular separation between leading b-jet and MET

AT azimuthal angular separation between lepton and MET

2L channel:

pljl transverse momentum of the leading lepton

plfl transverse momentum of sub-leading lepton

A Ry; separation between two lepton in the — ¢ plane

Ay, azimuthal angular separation between leading b-jet and leading lepton

Ady,1, azimuthal angular separation between sub-leading b-jet and leading lepton

In

[14]:

Out[14]:

In

[16]:

How the data looks like:

zh chw 0d01 df.head(5)

misset

from sklearn import preprocessing

ptbl ptb2 pth ptz etah phih mtvh ptvh dphiblmet signal
0 125407039 86.117322 205.932526 209.328455 205.932526 1.277426 1.929536 449.712567 4.603307 3.037227 1
1 131.907616 70.616237 187.837401 190.132443 187.837401 -0.563147 -0.758883 415.367124 3.029103 2.895890 1
2 142205381 29.009372 121.233232 120.412595 121.233232 -2.029023 -1.629733 294.761943 1.941833 3.006520 1
3 106.761004 27.168427 119.788307 120.780482 119.788307 -0.135757 -2.948970 293.614796 0.997513 2935436 1
4 94397035 73.704720 132.123257 134.300456 132.123257 2.286593 -1.262787 315.572440 3.875016 2.604910 1

e The data is not ready yet for the Machine Learning analysis, we have to normalize
the entries to be more Machine Learning friendly.
e We can use the Scikit-learn library, specifically the MinMaxScaler() function to do
this task.

min _max_ scaler =

preprocessing.MinMaxScaler()
def scaleColumns(df, cols to scale):
for col in cols to scale:

df[col] = pd.DataFrame(min max scaler.fit transform(pd.DataFrame(df[co
1])),columns=[col])
return df

Before normalize the data, we first need to create our features
input () and the targets (y):

In [17]: X cHW 0d01 = pd.concat([zh chw 0d01 df, zh sm], ignore index=True)
X cHW 0d03 = pd.concat([zh chw 0d03 df, zh sm], ignore index=True)
X _cHW 0d1 = pd.concat([zh chw 0dl1 df, zh sm], ignore_index=True)
X cHW 1 = pd.concat([zh chw 1 df, zh sm], ignore index=True)

y CHW 0d01 = X cHW 0dO1['signal']
y CHW 0d03 = X cHW 0dO3['signal']
y CHW 0dl = X cHW 0d1l['signal"']

y cHW 1 = X cHW 1['signal']

e Only normalize your features after combine everything you are going to use. ©

In [19]: for i in [X cHW 0d01, X cHW 0d03, X cHW 0dl, X cHW 1]:
1= scaleColumns([ptbl', 'ptb2', 'misset’',
‘pth', 'ptz', 'etah’',
‘phih', 'mtvh', ‘'ptvh',
‘dphiblmet'])

After the normalization, the imputs looks like this:
In [20]: X cHW 1.head(5)

Out [2@] : ptbl ptb2 misset pth ptz etah phih mtvh ptvh dphibimet signal

0.086453 0.015394 0.069946 0.070658 0.069946 0.317102 0.782922 0.065425 0.520621 0.887508 1

0.040042 0.079937 0.060259 0.060270 0.060259 0.712868 0.544151 0.055591 0.386925 0.943983

0.188917 0.163342 0.224048 0.223358 0.224048 0.428109 0.001863 0.218536 0.270565 0.975580

0.012409 0.012235 0.008392 0.008747 0.008392 0.288645 0.147635 0.006867 0.141265 0.911109

AlO|IN|-]O

1
1
1
1

0.037988 0.037252 0.036305 0.036593 0.036305 0.694466 0.051104 0.032546 0.248878 0.735323

In [35]: for i in X cHW 1.keys():
print(i,':",X cHW 1[i].mean(),X cHW 1[i].std())

ptbl : 0.06603380945984406 0.07807105493537096
ptb2 : 0.05276380572195325 0.06926308503087236
misset : 0.06716309934162445 0.08949834993587825
pth : 0.06718128565788557 0.08941226283848779
ptz : 0.06716309934314747 0.08949834993804219
etah : 0.5006507384165415 0.17312476022576348
phih : 0.5000665818066831 0.28900209027092005
mtvh : 0.06388180888051978 0.08844030270164628
ptvh : 0.28225733120272967 0.14680672893989266
dphiblmet : 0.7684152266915593 0.19672374641410206
signal : 0.5 0.5000012500046875

Don't forget to drop the column szgnal from your features

input, otherwise the Machine will imeadiatly know what is
stgnal and whatis BG ©

In [36]: for i in [X cHW 0d01, X cHW 0d03, X cHW 0dl, X cHW 1]:
i.drop(['signal'], axis=1l, inplace=True)

In [37]: X cHW 0d03.shape, y cHW 0d03.shape

out[37]: ((200000, 10), (200000,))

In [38]:

Now we can shuffle our inputs and split into training and test
datasets:

e To avoid pain we can use Scikit-learn function train_test_split(), which
automatically take cares of all we need.

X train cHW 0d01, X test cHW 0d01, y train cHW 0d01, y test cHW 0dOl = \

train test split(X cHW 0d01, y cHW 0d0l, train size=0.8, test size=0.2)

X train cHW 0d03, X test cHW 0d03, y train cHW 0d03, y test cHW 0d03
train test split(X cHW 0d03, y cHW 0d03, train size=0.8, test size=0.2)

\

X train cHW 0dl, X test cHW 0dl, y train cHW 0dl, y test cHW 0dl = \
train test split(X cHW 0dl, y cHW 0dl, train size=0.8, test size=0.2)
X train cHW 1, X test cHW 1, y train cHW 1, y test cHW 1 =\

train test split(X cHW 1, y cHW 1, train size=0.8, test size=0.2)

e We can save our training and test datasets, so in the future we don't need to do
everything again:

In [39]: np.savez('../data/inclusive/X train OL cHW 0d03.npz', x=X_train cHW 0d03, y=y t
rain cHW 0d03)
np.savez('../data/inclusive/X train OL cHW 0dl.npz', x=X_train_cHW 0dl, y=y tra
in cHW 0d1)
np.savez('../data/inclusive/X train OL cHW 1.npz', x=X train cHW 1, y=y train c
HW 1)

np.savez('../data/inclusive/X test OL cHW 0d03.npz', x=X test cHW 0d03, y=y tes
t cHW 0d03)

np.savez('../data/inclusive/X test OL cHW 0dl.npz', x=X test cHW 0dl, y=y test
cHW 0d1)

np.savez('../data/inclusive/X test OL cHW 1.npz', x=X test cHW 1, y=y test cHW_
1)

NN architectures: Deep or shalow =)

To extract the maximum amount of information from the kinematic features, one needs to combine multidi-
mensional information. The objective is to maximise our ability to detect new phenomena, which in HEP means

maximising the significance of an observation.

Number of layers.

Activation function of each layer.

Regularizers: L1, L2, Batch normalization, drop out.
Drop out probability.

To set the best combination of hyper-parameter | built a Evolutionary Algorithm to search through all combinations

of parameters and select only the best ones.

Evolutionary search algorithm:

Initial Population
Population

P(r)

‘||Eiii%ll:!iil’ Vés

Fitness
Satisfied?

no

Cloning Reproduction using
Genetic Operators

Mutation

Crossover New P(r+1)
(Recombination) Population

in order to do so we are going to need some very important pieces, the first
one is a class to produce random archtectures with the parameters we want

to inspect:

In [40]: class Network():
"""Represent a network and let us operate on 1it.

Currently only works for an MLP.

miann

def init (self, nn _param choices=None):
“"""Initialize our network.

Args:
nn_param choices (dict): Parameters for the network, includes:

nb neurons (list): [64, 128, 256]

nb layers (list): [1, 2, 3, 4]
activation (list): ['relu’', 'elu']
optimizer (list): ['rmsprop', 'adam']

nnn

self.accuracy = 0.
self.nn param choices = nn param choices
self.network = {} # (dic): represents MLP network parameters

In [41]:

In [42]:

def

def

def

def

create random(self):
"“""Create a random network."""
for key in self.nn param choices:
self.network[key] = random.choice(self.nn param choices[key])

create set(self, network):
"""Set network properties.
Args:
network (dict): The network parameters

ninn

self.network = network

train(self, dataset):
“"""Train the network and record the accuracy.
Args:
dataset (str): Name of dataset to use.
if self.accuracy == 0.:
self.accuracy = train and score(self.network, dataset)

print network(self):

"""Print out a network."""

logging.info(self.network)

logging.info("Network accuracy: %.2f%%" % (self.accuracy * 100))

We need a way to evaluate our population of NN, to do so we build an
optimizer class:

In [43]: class Optimizer():
"""Class that implements genetic algorithm for MLP optimization."""

def init (self, nn_param choices, retain=0.4,
random select=0.1, mutate chance=0.2):
"""Create an optimizer.
Args:
nn_param choices (dict): Possible network paremters
retain (float): Percentage of population to retain after
each generation
random select (float): Probability of a rejected network
remaining in the population
mutate chance (float): Probability a network will be
randomly mutated
self.mutate chance = mutate chance
self.random select = random select
self.retain = retain
self.nn param choices = nn param choices

A function to generate the population:

In [44]: def create population(self, count):
"""Create a population of random networks.
Args:

count (int): Number of networks to generate, aka the
size of the population
Returns:
(list): Population of network objects
pop = []
for in range(0, count):
Create a random network.
network = Network(self.nn param choices)
network.create random()

Add the network to our population.
pop.append(network)

return pop

In [46]:

fitness function (a.k.a "motivation"):

@staticmethod
def fitness(network):

def

"""Return the accuracy, which is our fitness function."""
return network.accuracy

grade(self, pop):
"""Find average fitness for a population.
Args:

pop (list): The population of networks
Returns:

(float): The average accuracy of the population

ninn

summed = reduce(add, (self.fitness(network) for network in
return summed / float((len(pop)))

pop))

Produce new generation of NN &

In [47]: def breed(self, mother, father):
"""Make two children as parts of their parents.
Args:

mother (dict): Network parameters

father (dict): Network parameters
Returns:

(list): Two network objects
children = []
for _ in range(2):

child = {}

Loop through the parameters and pick params for the kid.
for param in self.nn_param choices:
child[param] = random.choice(
[mother.network[param], father.network[param]]

)
Now create a network object.
network = Network(self.nn param choices)
network.create set(child)
Randomly mutate some of the children.
if self.mutate chance > random.random():
network = self.mutate(network)
children.append(network)

return children

introducing random mutation

=
(6)
In []: def mutate(self, network):
“""Randomly mutate one part of the network.
Args:
network (dict): The network parameters to mutate
Returns:

(Network): A randomly mutated network object

ninn

Choose a random key.
mutation = random.choice(list(self.nn param choices.keys()))

Mutate one of the params.
network.network[mutation] = random.choice(self.nn param choices[mutatio

return network

In [48]:

and evolve our population &

def evolve(self, pop):

"""Evolve a population of networks.
Args:
pop (list): A list of network parameters
Returns:
(list): The evolved population of networks
Get scores for each network.
graded = [(self.fitness(network), network) for network in pop]

Sort on the scores.
graded = [x[1] for x in sorted(graded, key=lambda x: x[0], reverse=Tru

Get the number we want to keep for the next gen.
retain length = int(len(graded)*self.retain)

The parents are every network we want to keep.
parents = graded[:retain length]

For those we aren't keeping, randomly keep some anyway.
for individual in graded[retain length:]:
if self.random select > random.random():
parents.append(individual)

In []: # Now find out how many spots we have left to fill.
parents length len(parents)
desired length len(pop) - parents length
children = []

Add children, which are bred from two remaining networks.
while len(children) < desired length:

Get a random mom and dad.
male = random.randint (0, parents length-1)
female = random.randint (0, parents length-1)

Assuming they aren't the same network. ..
if male != female:

male = parents[male]

female = parents[female]

Breed them.
babies = self.breed(male, female)

Add the children one at a time.
for baby in babies:
Don't grow larger than desired length.
if len(children) < desired length:
children.append(baby)

parents.extend(children)

return parents

We can use the Asimov significance as loss function
and minimize (1/Z4)

The Asimov significance is defined as follow:

B (s+b)(b+a§)} 2 [o2])}1/2
Zy = [2 ((s +b) ln[(st | In|1 + bt :

e S = number of signal events
e b = number of background events
) 05 = systematic uncertanties

Adam Elwood, Dirk Kriicker, Direct optimisation of the discovery significance when
training neural networks to search for new physics in particle colliders, DESY-18-082 ,

In []: def asimovSignificancelLossInvert(expectedSignal,expectedBkgd,systematic):
""'Define a loss function that calculates the significance based on fixed
expected signal and expected background yields for a given batch size'''

def asimovSigLossInvert(y true,y pred):
#Continuous version:

signalWeight=expectedSignal/K.sum(y true)
bkgdWeight=expectedBkgd/K.sum(1l-y true)

S signalWeight*K.sum(y pred*y true)
b bkgdWeight*K.sum(y pred*(1l-y true))
sigB=systematic*b

return 1./(2*((s+b)*K.log((s+b)*(b+sigB*sigB)/(b*b+(s+b)*sigB*sigB+K.ep
silon())+K.epsilon())-b*b*K.log(1l+sigB*sigB*s/(b*(b+sigB*sigB)+K.epsilon()))/(s
igB*sigB+K.epsilon()))) #Add the epsilon to avoid dividing by 0

return asimovSiglLossInvert

We found that:

e 1 hidden layer with the same number of neurons as the number of inputs.
e Relu as activation function.

e Adam as optimizer.

e 1 =0.003

e Batch size of 4096.

Important notes:

e The Asimov loss takes a little more effort to minimize, so we set a pre-training set

of runs for 5 epochs using a steeper loss function.
e A longer run, with about 20 ~ 30 epochs is done after the pre-training.

Pretraining with steep loss function

e S (train)
101 B B (train)

@ S (test)
@ B (test)

100 4
100 4

SM Higgs background

1071 4

S (train)
B B (train)
® S (test) 1073 5
@ B (test)

0.2 0.4 0.6 0.8 1.0
Classifier output

1071 4 ®

Arbitrary units
Arbitrary units

® ¢ 0°

10-2 4

0.0 0.2 0.4 0.6 0.8 1.0
Classifier output

e Distribution of OL signal (red) and background (blue) events as a function of the
classifier output. The left plot is the outcome of performing an initial pretraining

run with 5 epochs.

Background rejection 1/ep

103

3000

Signal (0L,0.03)
cgw = 0.03 2500
AUC = 0.75
102 4 2000 - b, riea, . r
% b o 7,..‘_!;.
\U/ 1500
2
10" 4 1000 1
=
caw = 0.001 o predicted signal
AUC = 0.52 e predicted background
10° T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 % 250 500 750 1000 1250 1500 1750 2000
. b1
Signal acceptance eg pr (GeV)

e Left: ROC curve for two values of the SMEFT coefficient in the OL channel.
e Right: Classification of true signal events for cgyr = 0.03 and their mapping to
kinematic features.

A more interesting way to evaluate our model

Receiver operating characteristic Systematic 0.5, s: 169.6, b:0.2, best significance is 31.48 +/- 0.6
1.0 A
30{
0.8]
@ £ 27
©
0.6 - @
[—
2 o
g 220
o ©
a
g 0.4 %
2 >
£ 15+
0.2 2
— R =0.
OC (area = 0.76) 104
0.0 1 Luck
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Cut on classifier score

°* CHwW — 0.03

e luminosity: 80 o1

e AUC =75%

e Asimov significance = 31.5, with 50% systematic error.

True Positive Rate

Receiver operating characteristic

1.0
7
0.8 =
0.6 1
0.4
0.2
—— ROC (area = 0.52)

0.0 === Luck a

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

°* CHW — OOO].
e luminosity: 80 fo L
e AUC =52%

Asimov estimate of significance

Systematic 0.5, s: 22.0, b:17.1, best significance is 1.76 +/- 0.03

1.80 1

I = =

~ ~ ~

N =) ®
) | L

1.72 A

1.70 A

1.68

1.66 -

1.64

0.0 0.2 0.4 0.6 0.8 1.0
Cut on classifier score

e Asimov significance = 1.76, with 50% systematic error.

Project the significance to future luminosities:

Asimov significance vs Luminosity Asimov significance vs Luminosity
systematics 50% systematics 50%

100

%0 CHW = 0.03

CHW — 0.001

4 (0+1+2 L)
CHW — 0.01

CHW = 0.003

cgw = 0.001 g CHW = 0.001 (OL)

'
1 ' 10 50 100 500 1000
50 100 500 1000

o Left: Luminosity (fb~1) versus Asimov significance for different values of cgyy in
the O-lepton channel and 50 % systematic uncertainty.

e Right: The effect of combination of VH channels for the limiting value
cgw = 0.001 and 50% systematic errors.

Summarize

e Create and deploy a state of art evolutionary algorithm to find the best hyper-
parameters in a NN.

e Within the framework of our analysis, we found the OL channel to be dominant.

e We obtained a limit in the SMEFT coefficient ¢y of 0.001, about 30 times
better than the current constraint from global analysis with the Run2 data

Our analysis could be improved in a number of ways:

e A more realistic simulation could be performed, including NLO SMEFT effects.

e Although we found that deep layers led to overfitting, and a shallow NN was
more suitable, new algorithms could be explored to increase sensitivity.

e we should understand the effect of switching on more than one wilson
coefficient.

github.com/FFFreitas/Exploring-SMEFT-in-VH-with-Machine-Learning

Obrigado (Thanks)

Backup:

80

~
(6]

Accuracy

~
o

65

60

]
s

® LinearDiscriminantAnalysis

e LogisticRegression

e PassiveAggressiveClassifier

e QuadraticDiscriminantAnalysis
RidgeClassifier
® SGDClassifier
0.0 0.2 0.4 0.6 0.8 1.0

cHW

e Classification performance for different linear models tested with ES.

Systematic 0.5, s: 2.9, b:0.8, best significance is 1.98 +/- 0.24

S (train)
10! W B (train)
@ S (test) 2.0
@ B (test)]
10° 4 §
&
2 5 1.51
E Z+HF background :
[l o
g 10 ® ¢ ® ‘é
2 -?} 1.0 A
>
— =}
1072 4 £
w
<05
10—3 4
0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 Cut on classifier score

Classifier output

e cyw = 0.001
e luminosity: 80 fb™!
e Vector boson + heavy flavour object as background.

In []:

