Reconstrunction of f(G) gravity models

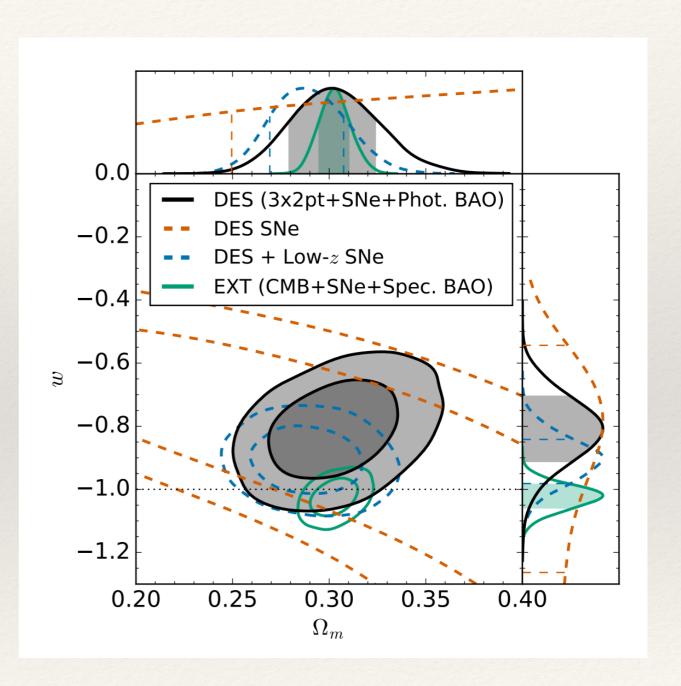
Seokcheon Lee (SKKU)

Asia-Pacific School and Workshop on Gravitation & Cosmology 2020

Based on arXiv:2001.07021, collaboration with G. Tumurtushaa

- * Motivation of f(G)-gravity theories (Refer Naruko & Buonínfante's talks for even more general models)
- Cosmological constraints Reconstruction methods from observations
- * Rewrite models with observed quantities
- Viable f(G)-gravity theories
- * Conclusions

MOTIVATIONS OF f(G) GRAVITY


- * Current observations indicate accelerating expansion of the Universe.
- Especially, accelerating universe prefers phantom dark energy
 (DE)
- * Usual DE models can't explain phantom accelerating universe (e.o.s w < -1, energy creation)

```
\rho = \rho_0 a^{-3(1+\omega)}, if \omega < -1, energy density increases as a does
```

* Modified gravities can explain phantom region without violating energy conditions

* COSMOLOGICAL CONSTRAINTS

- Cosmological observations
 prefer phantom DE (w <-1)
- * (Refer 1811.02375)

PROBLEM OF DE PHANTOM

- * DE with w < -1: creation of energy
- * Modified gravities : w_eff < -1 doesn't mean creation of energy
- f(R) gravities are well studied
- * Including Gauss-Bonnet term does not change Einstein field equations.
- * f(G) gravities are not well known

RECONSTRUCTION OF f(G) FROM OBSERVATIONS

- * Not assume any specific form of f(G)
- * Reconstruct f(G) from observational observables
- * Observables background (e.o.s, ω) and LSS (growth rate index, γ)

* Model buildings

$$S = \frac{c^4}{16\pi G} \int d^4x \sqrt{-g} \left[R + f(\mathcal{G}) + \mathcal{L}_{\rm m} \right]$$

$$\mathcal{G}=R^2-4R_{\mu\nu}R^{\mu\nu}+R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$$
 i

$$\begin{split} G_{\mu\nu} - \Sigma_{\mu\nu} &= \frac{8\pi G}{c^4} T_{\mu\nu} \,, \\ \Sigma_{\mu\nu} &= 4 \left[R_{\mu\rho\sigma\nu} + R_{\mu\rho} g_{\nu\sigma} + R_{\rho\nu} g_{\mu\sigma} - R_{\mu\nu} g_{\rho\sigma} - R_{\rho\sigma} g_{\mu\nu} - \frac{1}{2} R \left(g_{\mu\nu} g_{\rho\sigma} - g_{\mu\sigma} g_{\nu\rho} \right) \right] \nabla^{\rho} \nabla^{\sigma} F \\ &- \frac{1}{2} \left(\mathcal{G}F - f \right) g_{\mu\nu} \,, \text{with } F = f_{,\mathcal{G}} = \frac{\partial f}{\partial \mathcal{G}} \,, \\ T_{\mu\nu} &= -\frac{2}{\sqrt{-g}} \frac{\delta \left(\sqrt{-g} \mathcal{L}_{\mathrm{m}} \right)}{\delta g^{\mu\nu}} \,. \qquad R + 2f - 2\mathcal{G}F - 2R \Box F + 4R_{\mu\nu} \nabla^{\mu} \nabla^{\nu} F = -\frac{8\pi G}{c^4} \left(\rho_{\mathrm{m}} - 3p_{\mathrm{m}} \right) \end{split}$$

Background evolution equations

$$\begin{split} 3H^2 &= \frac{1}{2} \left(\mathcal{G}F - f - 24H^3 \dot{F} \right) + \frac{8\pi G}{c^2} \rho_{\rm m} \,, \\ -2\dot{H} &= 4H\dot{F} \left(2\dot{H} - H^2 \right) + 4H^2 \ddot{F} + \frac{8\pi G}{c^2} \left(1 + \omega_{\rm m} \right) \rho_{\rm m} \,, \\ \dot{\rho}_{\rm m} &= -3H(1 + \omega_{\rm m}) \rho_{\rm m} \,, \end{split}$$

$$R = 6(2H^2 + \dot{H}) = 6H^2 \left(2 + \frac{H'}{H}\right),$$
 $\mathcal{G} = 24H^2(H^2 + \dot{H}) = 24H^4 \left(1 + \frac{H'}{H}\right),$

prime denotes the derivatives w.r.t the N.

Model buildings

$$\ddot{\delta}_m + 2H\dot{\delta}_m - 4\pi G\rho_m \left[\frac{A_1 + A_2 \left(\frac{ck}{aH}\right)^2}{B_1 + B_2 \left(\frac{ck}{aH}\right)^2} \right] \delta_m = 0,$$

$$\begin{split} A_1 &= 1 + 4\ddot{F} \,, \\ A_2 &= 64H^2 F_{,\mathcal{G}} \left(\dot{H} + H^2 \right)^2 = 64H^2 \frac{\dot{F}}{\dot{\mathcal{G}}} \left(\dot{H} + H^2 \right)^2 \,, \\ B_1 &= \left(1 + 4H\dot{F} \right)^2 \,, \\ B_2 &= 16H^4 F_{,\mathcal{G}} \left[\left(4 + 16H\dot{F} \right) \left(\dot{H} + H^2 \right) - H^2 (1 + 4\ddot{F}) \right] \\ &= 16H^4 \frac{\dot{F}}{\dot{\mathcal{G}}} \left[\left(4 + 16H\dot{F} \right) \left(\dot{H} + H^2 \right) - H^2 (1 + 4\ddot{F}) \right] \,, \end{split}$$

APScl

FOR NUMERICAL CALCULATION

* In order to perform numerical calculation, it's better to change the derivatives w.r.t e-folding $N=\ln a = -\ln (1+z)$ and change functions as dimensionless quantities

$$\begin{split} f(\tilde{\mathcal{G}}) &= f(\tilde{\mathcal{G}} + AH^2)\,, \\ \tilde{\mathcal{G}} &= 24 \frac{H^4}{H_0^4} \left(1 + \frac{H'}{H}\right)\,, \\ \tilde{f} &= \frac{f}{H_0^2}\,\,,\,\, \tilde{\mathcal{G}} = \frac{\mathcal{G}}{H_0^4}\,, \\ F &= \frac{\partial f}{\partial \mathcal{G}}\,\,,\,\, \tilde{F} = FH_0^2\,, \end{split}$$

$$\begin{split} \tilde{F} &= \frac{1}{\tilde{\mathcal{G}'}} \tilde{f}' \,, \\ \tilde{F}' &= \frac{1}{\tilde{\mathcal{G}'}} \left(\tilde{f}'' - \frac{\tilde{\mathcal{G}''}}{\tilde{\mathcal{G}'}} \tilde{f}' \right) \,, \\ \tilde{F}'' &= \frac{1}{\tilde{\mathcal{G}'}} \left(\tilde{f}''' - 2 \frac{\tilde{\mathcal{G}''}}{\tilde{\mathcal{G}'}} \tilde{f}'' + \left(2 \left(\frac{\tilde{\mathcal{G}''}}{\tilde{\mathcal{G}'}} \right)^2 - \frac{\tilde{\mathcal{G}'''}}{\tilde{\mathcal{G}'}} \right) \tilde{f}' \right) \end{split}$$

OBSERVATIONAL f(G) GRAVITY THEORIES

Model buildings from observables

$$\begin{split} \frac{H^2}{H_0^2} &= \frac{\rho_{\rm m}}{\rho_{\rm cr0}} \left(1 + \frac{\rho_{\rm DE}}{\rho_{\rm m}} \right) = \Omega_{m0} (1 + g[\Omega_{\rm m0}, \omega_0, \omega_a, N]) \, e^{-3N} \,, \\ \frac{H'}{H} &= -\frac{3}{2} \left(1 + \omega_{\rm DE} \Omega_{\rm DE} \right) \equiv -\frac{3}{2} \left(1 + Q[\Omega_{\rm m0}, \omega_0, \omega_a, N] \right) \,, \end{split}$$

$$d \ln \delta_{\rm m} / d \ln a \equiv \Omega_{\rm m}^{\gamma}$$
, where $\gamma \equiv \gamma_0 + \gamma_a (1 - e^N)$,

$$\begin{split} \mathcal{P}[\Omega_{\mathrm{m}0}, \omega_0, \omega_a, \gamma_0, \gamma_a, N] &\equiv \frac{\delta_{\mathrm{m}}''}{\delta_{\mathrm{m}}} + \left(2 + \frac{H'}{H}\right) \frac{\delta_{\mathrm{m}}'}{\delta_{\mathrm{m}}} \\ &= (1+g)^{-\gamma} \left[(1+g)^{-\gamma} - \gamma' \ln(1+g) + 3\gamma Q \frac{1}{2} (1-3Q) \right] \,. \end{split}$$

$$\begin{split} \Omega_{\rm DE} &\simeq \Omega_{\rm eff} \longrightarrow \frac{g[\Omega_{\rm m0}, \omega_0, \omega_a, N]}{1 + g[\Omega_{\rm m0}, \omega_0, \omega_a, N]} \simeq \frac{-4 \frac{H^4}{H_0^4} \frac{1}{\tilde{\mathcal{G}}'} \left[\tilde{f}'' - \left(\frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} + \frac{H_0^4}{H^4} \frac{\tilde{\mathcal{G}}}{24} \right) \tilde{f}' + \frac{H_0^4}{H^4} \frac{\tilde{\mathcal{G}}'}{24} \tilde{f} \right]}{-4 \frac{H^4}{H_0^4} \frac{1}{\tilde{\mathcal{G}}'} \left[\tilde{f}'' - \left(\frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} + \frac{H_0^4}{H^4} \frac{\tilde{\mathcal{G}}}{24} \right) \tilde{f}' + \frac{H_0^4}{H^4} \frac{\tilde{\mathcal{G}}'}{24} \tilde{f} \right] + \Omega_{\rm m0} e^{-3N}} \,, \\ \omega_{\rm DE} &\simeq \omega_{\rm eff} \longrightarrow \omega_{\rm DE} [\omega_0, \omega_a, N] \simeq -1 - \frac{\tilde{f}''' - \left(2 \frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} - 3 \frac{H'}{H} + 1 \right) \tilde{f}'' - \left(2 \frac{\tilde{\mathcal{G}}'''}{\tilde{\mathcal{G}}'} - \left(2 \frac{\tilde{\mathcal{G}}'''}{\tilde{\mathcal{G}}'} - 3 \frac{H'}{H} + 1 \right) \frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} \right) \tilde{f}'}{3 \tilde{f}'' - \left(3 \frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} + \frac{H_0^4}{H^4} \frac{\tilde{\mathcal{G}}}{8} \right) \tilde{f}' + \frac{H_0^4}{H^4} \frac{\tilde{\mathcal{G}}'}{8} \tilde{f}} \,. \end{split}$$

Model buildings

$$\begin{split} \frac{H^2}{H_0^2} &= -4 \frac{H^4}{H_0^4} \frac{1}{\tilde{\mathcal{G}}'} \left[\tilde{f}'' - \left(\frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} + \frac{1}{24} \frac{H_0^4}{H^4} \tilde{\mathcal{G}} \right) \tilde{f}' + \frac{1}{24} \frac{H_0^4}{H^4} \tilde{\mathcal{G}}' \tilde{f} \right] + \Omega_{\text{m0}} \exp[-3N] \,, \\ \frac{H'}{H} &= -2 \frac{H^2}{H_0^2} \frac{1}{\tilde{\mathcal{G}}'} \left[\tilde{f}''' + \left(3 \frac{H'}{H} - 2 \frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} - 1 \right) \tilde{f}'' - \left(\frac{\tilde{\mathcal{G}}'''}{\tilde{\mathcal{G}}'} + \left(3 \frac{H'}{H} - 2 \frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} - 1 \right) \frac{\tilde{\mathcal{G}}''}{\tilde{\mathcal{G}}'} \right) \tilde{f}' \right] \\ &- \frac{3}{2} \frac{H_0^2}{H^2} \Omega_{m0} \exp[-3N] \,. \end{split}$$

$$\tilde{f}_{0}^{""} - \left(2\frac{\tilde{\mathcal{G}}_{0}^{"'}}{\tilde{\mathcal{G}}_{0}^{"}} + \frac{H_{0}^{\prime}}{H_{0}}\right)\tilde{f}_{0}^{"'} - \left(\frac{\tilde{\mathcal{G}}_{0}^{""}}{\tilde{\mathcal{G}}_{0}^{"}} - \frac{H_{0}^{\prime}}{H_{0}}\frac{\tilde{\mathcal{G}}_{0}^{"}}{\tilde{\mathcal{G}}_{0}^{\'}} - 2\left(\frac{\tilde{\mathcal{G}}_{0}^{"'}}{\tilde{\mathcal{G}}_{0}^{\'}}\right)^{2}\right)\tilde{f}_{0}^{\prime} + \left(1 - 2\frac{H_{0}^{\prime}}{H_{0}}\right)\tilde{f}_{0} = -\frac{3}{4}\left(1 - \Omega_{\text{m0}}\right)\left(1 + \omega_{\text{DE0}}\right)\tilde{\mathcal{G}}_{0}^{\prime},$$

$$rac{\delta_{
m m}^{\prime\prime}}{\delta_{
m m}} + \left(2 + rac{H^{\prime}}{H}
ight)rac{\delta_{
m m}^{\prime}}{\delta_{
m m}} = rac{3}{2}\Omega_{m}\left(rac{A_{1} + A_{2}\left(rac{ck}{aH}
ight)^{2}}{B_{1} + B_{2}\left(rac{ck}{aH}
ight)^{2}}
ight)$$

master equation

INITIAL CONDITIONS

$$1 = -4\frac{1}{\tilde{\mathcal{G}}_{0}'} \left[\tilde{f}_{0}'' - \left(\frac{\tilde{\mathcal{G}}_{0}''}{\tilde{\mathcal{G}}_{0}'} + \frac{1}{24} \tilde{\mathcal{G}}_{0} \right) \tilde{f}_{0}' + \frac{1}{24} \tilde{\mathcal{G}}_{0}' \tilde{f}_{0} \right] + \Omega_{\text{m0}} ,$$

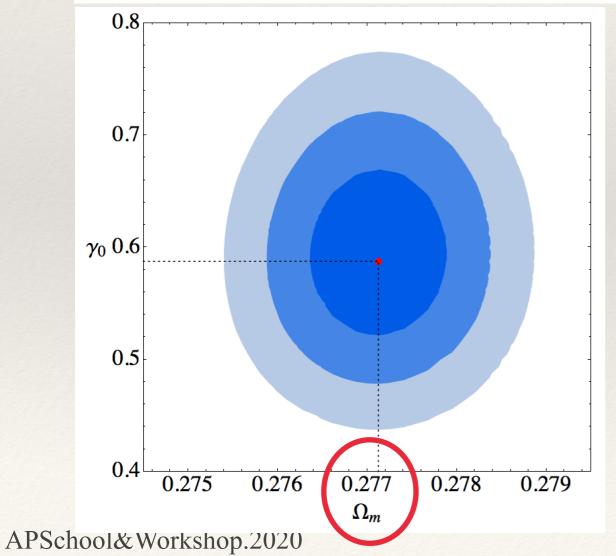
$$\frac{H_{0}'}{H_{0}} = -2\frac{1}{\tilde{\mathcal{G}}_{0}'} \left[\tilde{f}_{0}''' + \left(3\frac{H_{0}'}{H_{0}} - 2\frac{\tilde{\mathcal{G}}_{0}''}{\tilde{\mathcal{G}}_{0}'} - 1 \right) \tilde{f}_{0}'' - \left(\frac{\tilde{\mathcal{G}}_{0}'''}{\tilde{\mathcal{G}}_{0}'} + \left(3\frac{H_{0}'}{H_{0}} - 2\frac{\tilde{\mathcal{G}}_{0}''}{\tilde{\mathcal{G}}_{0}'} - 1 \right) \frac{\tilde{\mathcal{G}}_{0}''}{\tilde{\mathcal{G}}_{0}'} \right) \tilde{f}_{0}' \right] - \frac{3}{2} \Omega_{\text{m0}}$$

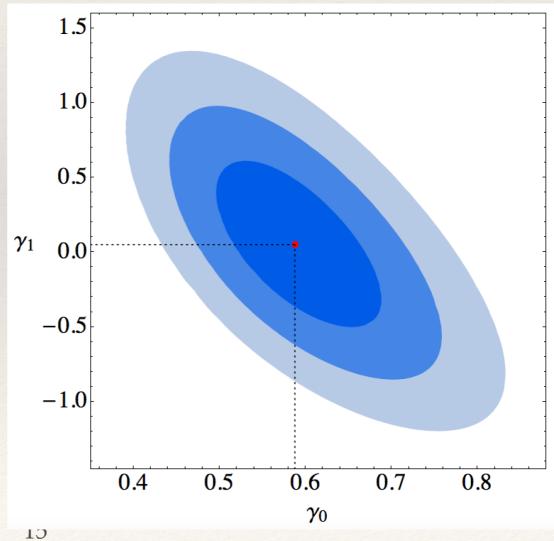
$$= -\frac{3}{2} \left(1 + Q_{0} \right) = -\frac{3}{2} \left(1 + \omega_{\text{DE0}} \Omega_{\text{DE0}} \right) ,$$

$$\frac{2}{3} \frac{\mathcal{P}_{0}}{\Omega_{\text{m0}}} - 1 = A_{10}^{(3)} \tilde{f}_{0}''' + \left[A_{10}^{(2)} - B_{10}^{(2)} + \left(A_{20}^{(2)} - B_{20}^{(2)} \right) \left(\frac{ck}{H_{0}} \right)^{2} \right] \tilde{f}_{0}'' + \left[A_{10}^{(1)} - B_{10}^{(1)} + \left(A_{20}^{(1)} - B_{20}^{(1)} \right) \left(\frac{ck}{H_{0}} \right)^{2} \right] \tilde{f}_{0}''$$

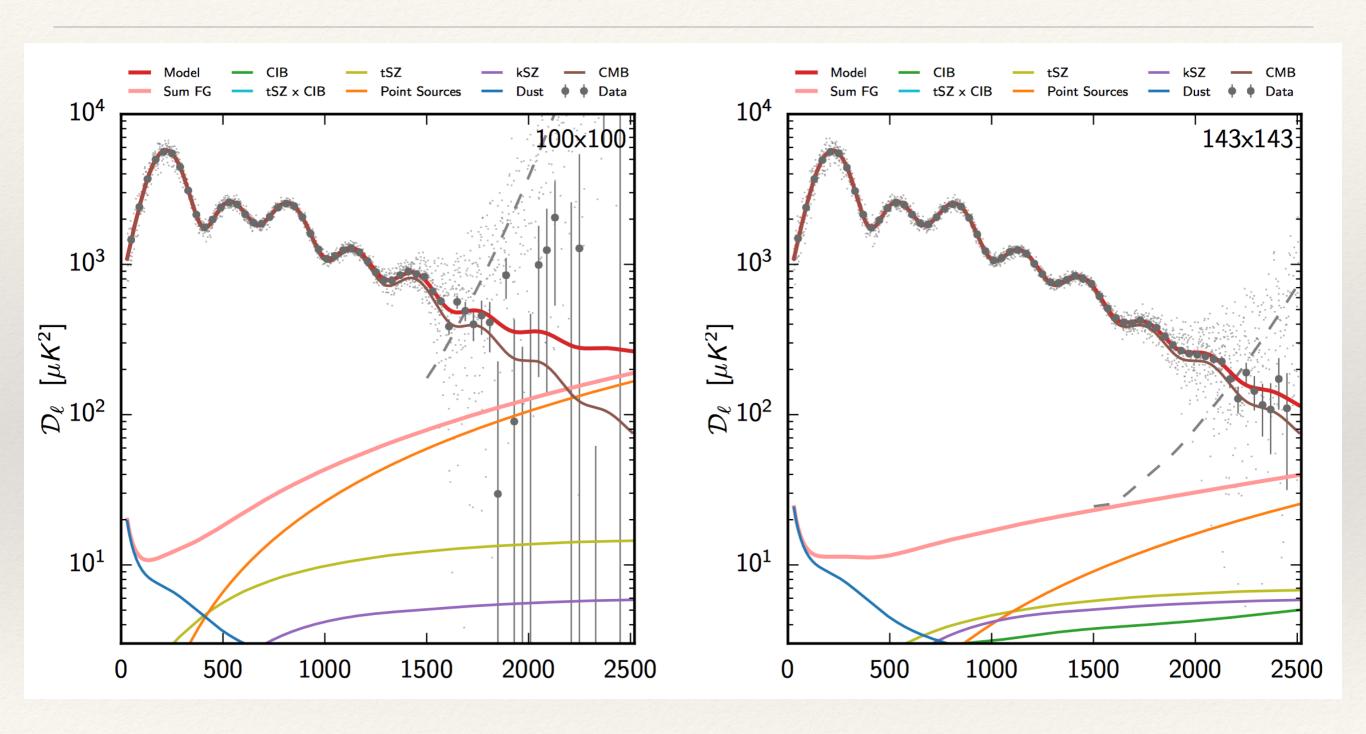
$$= \frac{2}{3} \Omega_{\text{m0}}^{\gamma_{0}-1} \left[\Omega_{\text{m0}}^{\gamma_{0}} - \gamma_{a} \ln \Omega_{\text{m0}} + 3\gamma_{0} Q_{0} + \frac{1}{2} \left(1 - 3Q_{0} \right) \right] - 1 ,$$

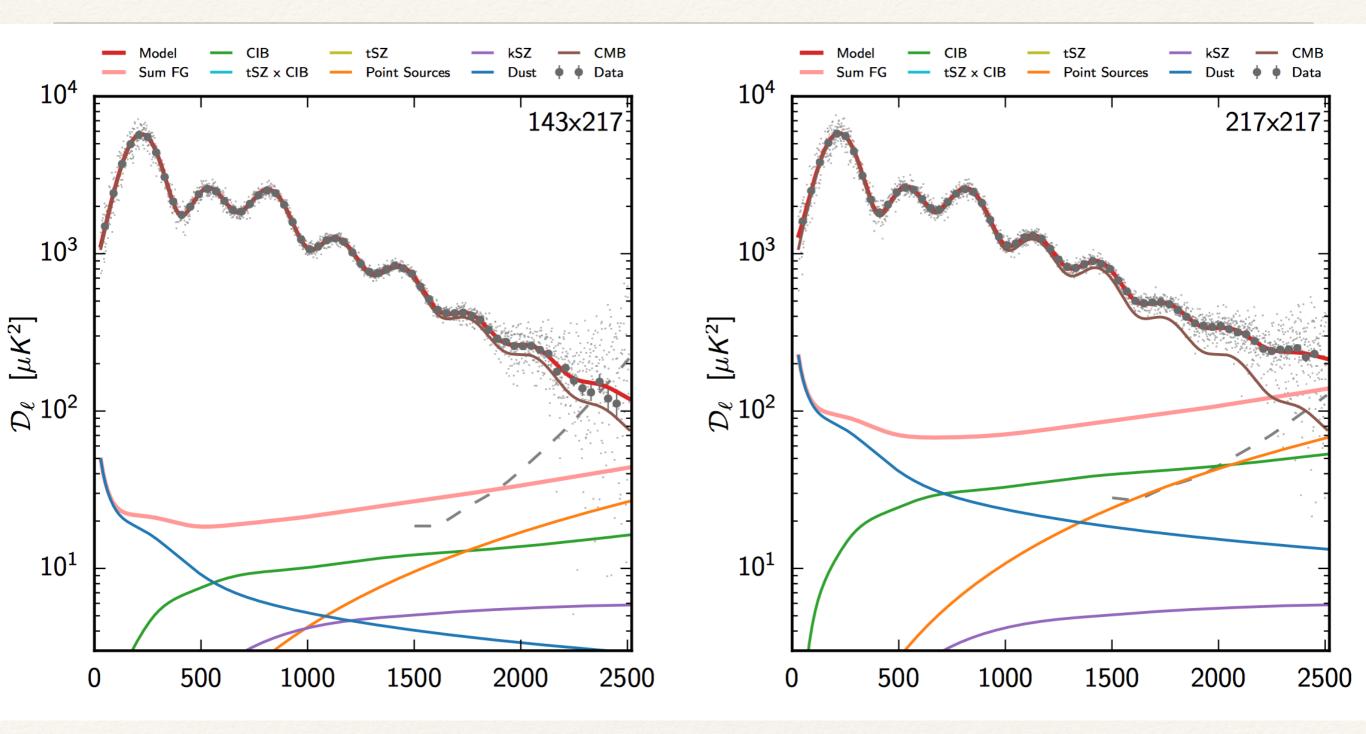
$$(66)$$


MAIN NOTICE


- * One need three initial conditions. However, one can obtain only two initial conditions.
- * One can have a further constraint from stability condition $f_{,gg} > 0$
- * In order to avoid the singularity problem, one needs to extend the simple f(G) model. We assume

$$\begin{split} \mathcal{G}_{\mathcal{A}} &\equiv \mathcal{G} + \mathcal{A}H^4 = 24H^4 \left(\mathcal{A} + 1 + \frac{H'}{H} \right) \,, \\ \tilde{\mathcal{G}}_{\mathcal{A}} &\equiv \tilde{\mathcal{G}} + \mathcal{A} \left(\frac{H}{H_0} \right)^4 = 24 \left(\frac{H}{H_0} \right)^4 \left(\mathcal{A} + 1 + \frac{H'}{H} \right) \,, \end{split}$$


OBSERVATIONS


CMB[6, 43], Supernovae type Ia (SnIa) [44], BAO [45–49], Hubble expansion H(z) [50, 51], and the growth-rate data [52, 53]. The total likelihood function \mathcal{L}_{tot} can, therefore, be given as the product of the separate likelihoods of each data as follows: $\mathcal{L}_{tot} = \mathcal{L}_{CMB} \times \mathcal{L}_{SnIa} \times \mathcal{L}_{BAO} \times \mathcal{L}_{H(z)} \times \mathcal{L}_{growth}$, which is also related to the total χ^2 via $\chi^2_{tot} = -\log \mathcal{L}_{tot}$ or $\chi^2_{tot} = \chi^2_{CMB} + \chi^2_{SnIa} + \chi^2_{BAO} + \chi^2_{H(z)} + \chi^2_{growth}$. By employing the aforementioned cosmological data together with the statistical methods of minimizing the χ^2_{tot} , we can obtain the best-fit values of the cosmological parameters $\{\Omega_{m0}, \omega_0, \omega_a, \gamma_0, \gamma_a\}$ and their uncertainties.

S.Lee

Best-fit cosmological parameters from WMAP seven-year results^[29]

Parameter	Symbol	Best fit (WMAP only)	Best fit (WMAP + BAO ^[30] + H ₀ ^[31])
Age of the universe (Ga)	t_0	13.75 ±0.13	13.75 ±0.11
Hubble's constant (km/Mpc·s)	H_0	71.0 ±2.5	70.4 ^{+1.3} _{-1.4}
Baryon density	Ω_b	0.0449 ±0.0028	0.0456 ±0.0016
Physical baryon density	$\Omega_b h^2$	0.022 58 ^{+0.000} 57 -0.000 56	0.022 60 ±0.000 53
Dark matter density	Ω_c	0.222 ±0.026	0.227 ±0.014
Physical dark matter density	$\Omega_c h^2$	0.1109 ±0.0056	0.1123 ±0.0035
Dark energy density	Ω_{Λ}	0.734 ±0.029	0.728 ^{+0.015} _{-0.016}
Fluctuation amplitude at 8h ⁻¹ Mpc	σ_8	0.801 ±0.030	0.809 ±0.024
Scalar spectral index	n_s	0.963 ±0.014	0.963 ±0.012
Reionization optical depth	au	0.088 ±0.015	0.087 ±0.014
*Total density of the universe	Ω_{tot}	1.080 ^{+0.093} _{-0.071}	1.0023 ^{+0.0056} _{-0.0054}
*Tensor-to-scalar ratio, $k_0 = 0.002 \text{ Mpc}^{-1}$	r	< 0.36 (95% CL)	< 0.24 (95% CL)
*Running of spectral index, $k_0 = 0.002 \text{ Mpc}^{-1}$	$dn_s/d\ln k$	-0.034 ±0.026	-0.022 ±0.020
Note: * = Parameters for extended models (parameters place limits on deviations from the Lambda-CDM model) ^[29]			

Best-fit cosmological parameters from WMAP nine-year results^[16]

Parameter	Symbol	Best fit (WMAP only)	Best fit (WMAP + eCMB + BAO + H ₀)
Age of the universe (Ga)	t_0	13.74 ±0.11	13.772 ±0.059
Hubble's constant (km/Mpc·s)	H_0	70.0 ±2.2	69.32 ±0.80
Baryon density	Ω_b	0.0463 ±0.0024	0.046 28 ±0.000 93
Physical baryon density	$\Omega_b h^2$	0.022 64 ±0.000 50	0.022 23 ±0.000 33
Cold dark matter density	Ω_c	0.233 ±0.023	0.2402 ^{+0.0088} _{-0.0087}
Physical cold dark matter density	$\Omega_c h^2$	0.1138 ±0.0045	0.1153 ±0.0019
Dark energy density	Ω_{Λ}	0.721 ±0.025	0.7135 ^{+0.0095} _{-0.0096}
Density fluctuations at 8h ⁻¹ Mpc	σ_8	0.821 ±0.023	$0.820^{\ +0.013}_{\ -0.014}$
Scalar spectral index	n_s	0.972 ±0.013	0.9608 ±0.0080
Reionization optical depth	au	0.089 ±0.014	0.081 ±0.012
Curvature	1 $-\Omega_{ m tot}$	-0.037 ^{+0.044} _{-0.042}	$-0.0027 ^{\ +0.0039}_{\ -0.0038}$
Tensor-to-scalar ratio ($k_0 = 0.002 \text{ Mpc}^{-1}$)	r	< 0.38 (95% CL)	< 0.13 (95% CL)
Running scalar spectral index	$dn_s/d\ln k$	-0.019 ±0.025	-0.023 ±0.011

Cosmological parameters from 2013 Planck results ^{[30][32]}													
Parameter	Symbol	Planck Best fit	Planck 68% limits	Planck+lensing Best fit	Planck+lensing 68% limits	Planck+WP Best fit	Planck+WP 68% limits	Planck+WP +HighL Best fit	Planck+WP +HighL 68% limits	Planck+lensing +WP+highL Best fit		Planck+WP +highL+BAO Best fit	Planck+WP +highL+BAO 68% limits
Baryon density	$\Omega_b h^2$	0.022068	0.022 07 ±0.000 33	0.022242	0.022 17 ±0.000 33	0.022032	0.022 05 ±0.000 28	0.022069	0.022 07 ±0.000 27	0.022199	0.022 18 ±0.000 26	0.022161	0.022 14 ±0.000 24
Cold dark matter density	$\Omega_c h^2$	0.12029	0.1196 ±0.0031	0.11805	0.1186 ±0.0031	0.12038	0.1199 ±0.0027	0.12025	0.1198 ±0.0026	0.11847	0.1186 ±0.0022	0.11889	0.1187 ±0.0017
100x approximation to r _s / D _A (CosmoMC)	$100 heta_{MC}$	1.04122	1.041 32 ±0.000 68	1.04150	1.041 41 ±0.000 67	1.04119	1.041 31 ±0.000 63	1.04130	1.041 32 ±0.000 63	1.04146	1.041 44 ±0.000 61	1.04148	1.041 47 ±0.000 56
Thomson scattering optical depth due to reionization	τ	0.0925	0.097 ±0.038	0.0949	0.089 ±0.032	0.0925	0.089 ^{+0.012} -0.014	0.0927	0.091 ^{+0.013} -0.014	0.0943	0.090 ^{+0.013} -0.014	0.0952	0.092 ±0.013
Power spectrum of curvature perturbations	$\ln(10^{10}A_s)$	3.098	3.103 ±0.072	3.098	3.085 ±0.057	3.0980	3.089 ^{+0.024} _{-0.027}	3.0959	3.090 ±0.025	3.0947	3.087 ±0.024	3.0973	3.091 ±0.025
Scalar spectral index	n_s	0.9624	0.9616 ±0.0094	0.9675	0.9635 ±0.0094	0.9619	0.9603 ±0.0073	0.9582	0.9585 ±0.0070	0.9624	0.9614 ±0.0063	0.9611	0.9608 ±0.0054
Hubble's constant (km Mpc ⁻¹ s ⁻¹)	H_0	67.11	67.4 ±1.4	68.14	67.9 ±1.5	67.04	67.3 ±1.2	67.15	67.3 ±1.2	67.94	67.9 ±1.0	67.77	67.80 ±0.77
Dark energy density	Ω_{Λ}	0.6825	0.686 ±0.020	0.6964	0.693 ±0.019	0.6817	0.685 ^{+0.018} -0.016	0.6830	0.685 ^{+0.017} _{-0.016}	0.6939	0.693 ±0.013	0.6914	0.692 ±0.010
Density fluctuations at 8h ⁻¹ Mpc	σ_8	0.8344	0.834 ±0.027	0.8285	0.823 ±0.018	0.8347	0.829 ±0.012	0.8322	0.828 ±0.012	0.8271	0.8233 ±0.0097	0.8288	0.826 ±0.012
Redshift of reionization	z_{re}	11.35	11.4 ^{+4.0} -2.8	11.45	10.8 ^{+3.1} -2.5	11.37	11.1 ±1.1	11.38	11.1 ±1.1	11.42	11.1 ±1.1	11.52	11.3 ±1.1
Age of the Jniverse (Gy)	t_0	13.819	13.813 ±0.058	13.784	13.796 ±0.058	13.8242	13.817 ±0.048	13.8170	13.813 ±0.047	13.7914	13.794 ±0.044	13.7965	13.798 ±0.037
100× angular scale of sound horizon at ast-scattering	$100 heta_*$	1.04139	1.041 48 ±0.000 66	1.04164	1.041 56 ±0.000 66	1.04136	1.041 47 ±0.000 62	1.04146	1.041 48 ±0.000 62	1.04161	1.041 59 ±0.000 60	1.04163	1.041 62 ±0.000 56
Comoving size of the		147.04	147.50 . 0.64	147.74	147.70 . 0.60	147.06	147.40 . 0.50	147.05	147.47 . 0.50	147.60	147.67 . 0.50	147.614	147.60 . 0.45
sound	r_{drag}	147.34	147.53 ±0.64	147.74	147.70 ±0.63	147.36	147.49 ±0.59	147.35	147.47 ±0.59	147.68	147.67 ±0.50	147.611	147.68 ±0.45

		Planck Collaboration Cosmological parameters ^[18]					
		Description	Symbol	Value			
		Physical baryon density parameter ^[a]	$\Omega_{\rm b} h^2$	0.022 30 ±0.000 14			
		Physical dark matter density parameter ^[a]	$\Omega_{\rm c}h^2$	0.1188 ±0.0010			
	Indepen-	Age of the universe	<i>t</i> ₀	13.799 ±0.021 × 10 ⁹ years			
	dent para-	Scalar spectral index	ns	0.9667 ±0.0040			
	meters	Curvature fluctuation amplitude, $k_0 = 0.002 \text{ Mpc}^{-1}$	Δ_R^2	$2.441^{+0.088}_{-0.092} \times 10^{-9[21]}$			
		Reionization optical depth	τ	0.066 ±0.012			
		Total density parameter ^[b]	Ω_{tot}	1			
		Equation of state of dark energy	w	-1			
	Fixed	Tensor/scalar ratio	r	0			
	para-	Running of spectral index	$dn_{ m s}/d\ln k$	0			
	meters	Sum of three neutrino masses	$\sum m_ u$	0.06 eV/c ^{2[c][17]:40}			
		Effective number of relativistic degrees of freedom	N _{eff}	3.046 ^{[d][17]:47}			
	Calcu-	Hubble constant	H ₀	67.74 ±0.46 km s ⁻¹ Mpc ⁻¹			
		Baryon density parameter ^[b]	Ω_{b}	0.0486 ±0.0010 ^[e]			
		Dark matter density parameter ^[b]	Ω_{c}	0.2589 ±0.0057 ^[f]			
		Matter density parameter ^[b]	Ω_{m}	0.3089 ±0.0062			
		Dark energy density parameter ^[b]	Ω_{Λ}	0.6911 ±0.0062			
		Critical density	$ ho_{ m crit}$	$(8.62 \pm 0.12) \times 10^{-27} \text{ kg/m}^{3[g]}$			
Bennet et.al	values	The present root-mean-square matter fluctuation averaged over a sphere of radius $8h^{-1}$ Mpc	σ_8	0.8159 ±0.0086			
19		Redshift at decoupling	Z *	1 089.90 ±0.23			
11 0	•1•	a that assmalagical model differ	, <u>,</u> 1	277 700 + 2000 years[21]			

model. Our results indicate that cosmological model differences between Planck and WMAP do not arise from measurement differences, but from the high multipoles not measured by WMAP.

VIABLE f(G) GRAVITIES

$$ilde{f}_1\left(\mathcal{G}_{\mathcal{A}}\right) = \left(ilde{\mathcal{G}}_{\mathcal{A}}\right)^{m_1} \left[a_1 + b_1 \left(ilde{\mathcal{G}}_{\mathcal{A}}\right)^{n_1}\right],$$
 $ilde{f}_2\left(\mathcal{G}_{\mathcal{A}}\right) = rac{a_2 + b_2 \left(ilde{\mathcal{G}}_{\mathcal{A}}\right)^{m_2}}{c_2 + d_2 \left(ilde{\mathcal{G}}_{\mathcal{A}}\right)^{n_2}},$

1.
$$Model \ 1 : \Lambda CDM \ model$$

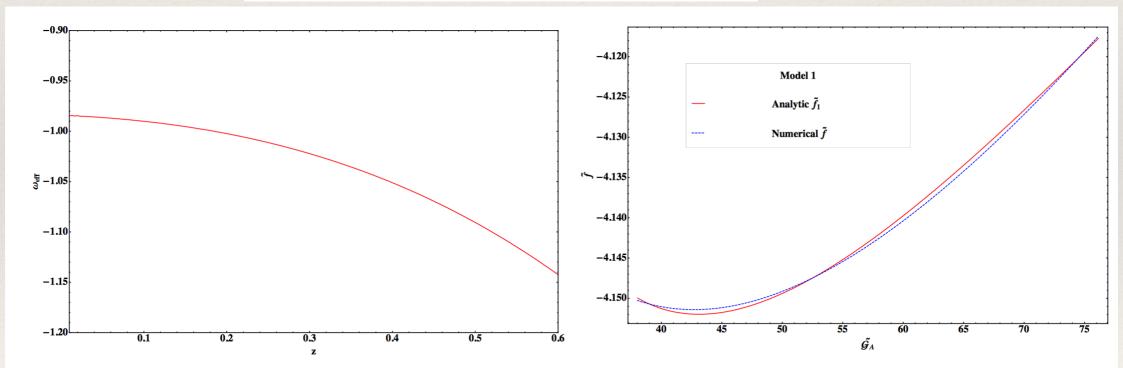


FIG. 1: For $Model\ 1$: a) The red-shift evolution of ω_{eff} . b) Evolutions of the numerical and the analytic solutions as a function $\tilde{\mathcal{G}}_{\mathcal{A}}$. The solid line indicates the analytic solution and the dashed one denotes the numerical one, respectively.

VIABLE f(G) GRAVITIES

$$\tilde{f}_{1}\left(\mathcal{G}_{\mathcal{A}}\right) = \left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{m_{1}} \left[a_{1} + b_{1}\left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{n_{1}}\right],$$

$$\tilde{f}_{2}\left(\mathcal{G}_{\mathcal{A}}\right) = \frac{a_{2} + b_{2}\left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{m_{2}}}{c_{2} + d_{2}\left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{n_{2}}},$$

$${a_1, b_1, m_1, n_1} = {-4.0, 5.2 \times 10^{-3}, 3.3 \times 10^{-2}, 0.84}$$

2. Model 2: ω CDM model with $\omega_0 \neq -1$ and $\omega_a = 0$

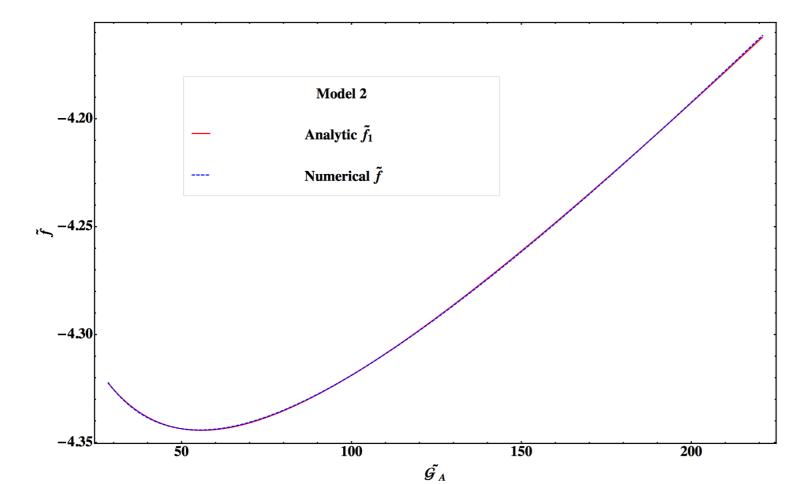


FIG. 3: The comparison of analytic forms \tilde{f}_1 with the numerical solution \tilde{f} for Model 2.

APSchoola workshop.2020

VIABLE f(G) GRAVITIES

$$\tilde{f}_{1}(\mathcal{G}_{\mathcal{A}}) = \left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{m_{1}} \left[a_{1} + b_{1}\left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{n_{1}}\right],$$

$$\tilde{f}_{2}(\mathcal{G}_{\mathcal{A}}) = \frac{a_{2} + b_{2}\left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{m_{2}}}{c_{2} + d_{2}\left(\tilde{\mathcal{G}}_{\mathcal{A}}\right)^{n_{2}}},$$

3. Model 3: ΛCDM with $\Omega_{m0} = 0.32$

$${a_1, b_1, m_1, n_1} = {-4.0, 5.2 \times 10^{-3}, 3.3 \times 10^{-2}, 0.84}$$

$${a_2, b_2, c_2, d_2, m_2, n_2} = {-314, -8.8, 82.9, 0.23, 0.41, 0.81}.$$

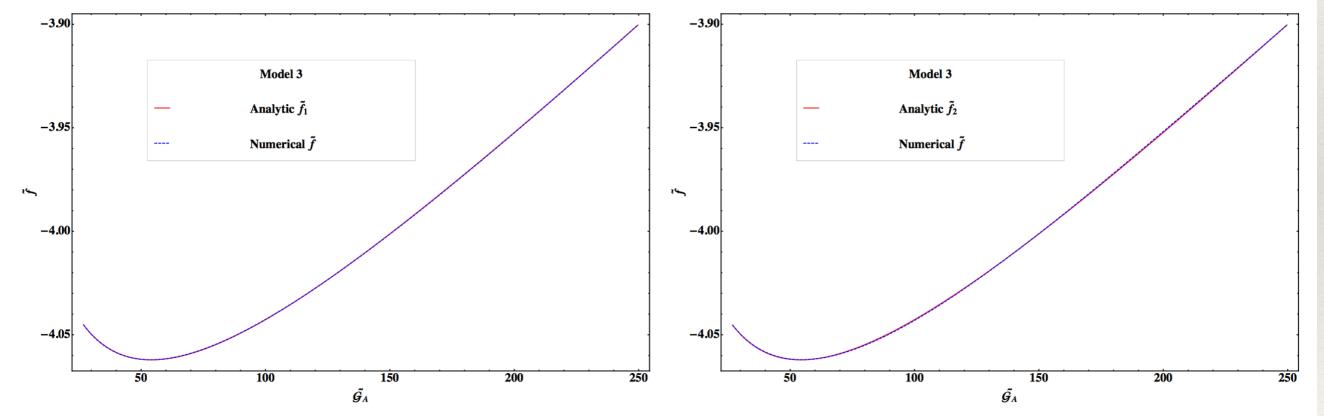


FIG. 5: The comparison of analytic forms \tilde{f}_1 and \tilde{f}_2 with the numerical solutions of \tilde{f} . a) The solid and dashed lines correspond \tilde{f}_1 and \tilde{f} , respectively. b) The solid and dashed lines correspond \tilde{f}_2 and \tilde{f} , respectively.

CONCLUSIONS

- * Instead of assume any specific form of f(G) model, one can reconstruct viable f(G) models from observations.
- * Constraint on G of viable f(G) in order to remove singularity can be generalized.
- They're first analytic forms of f(G) without any assumption.
- * One needs one more eq for initial conditions (might be obtained from GW mass constraints). Stability conditions provide a constraint on ICs.
- * Are there any physical origins of obtained analytic fitting forms.
- Extension to Horndeski's models are in progress.