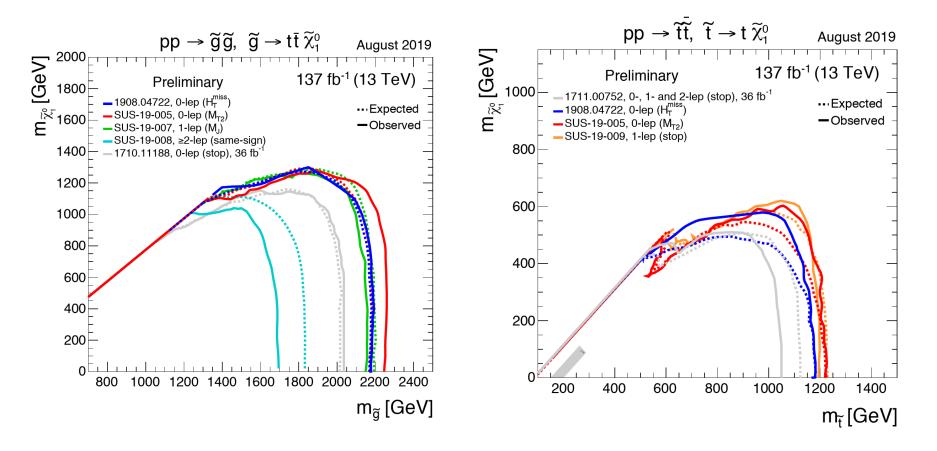
New physics searches via Axion-like particles

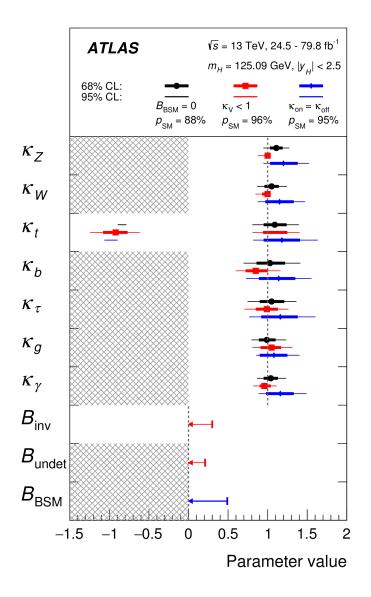
Sang Hui Im (Pusan National Univ.)
Jan 3, 2020, IBS-CTPU

Outline


ALPs as a portal to new physics: Motivation and structure

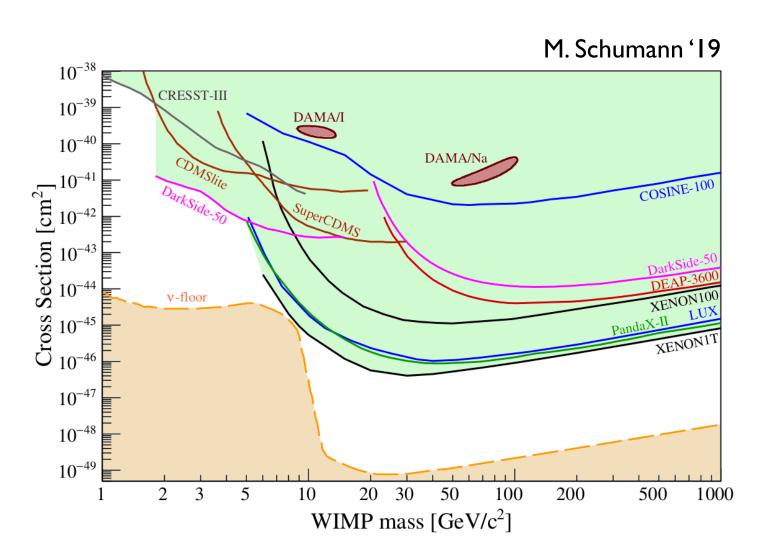
Bottom-up approach : SM problems

Top-down approach: UV complete theories


Conclusion

LHC up to 2019

: New physics scale seems higher than conventional expectation.


Higgs couplings

: Good agreement with the SM predictions

:Allow only small mixing with the SM Higgs boson and small radiative corrections to the couplings

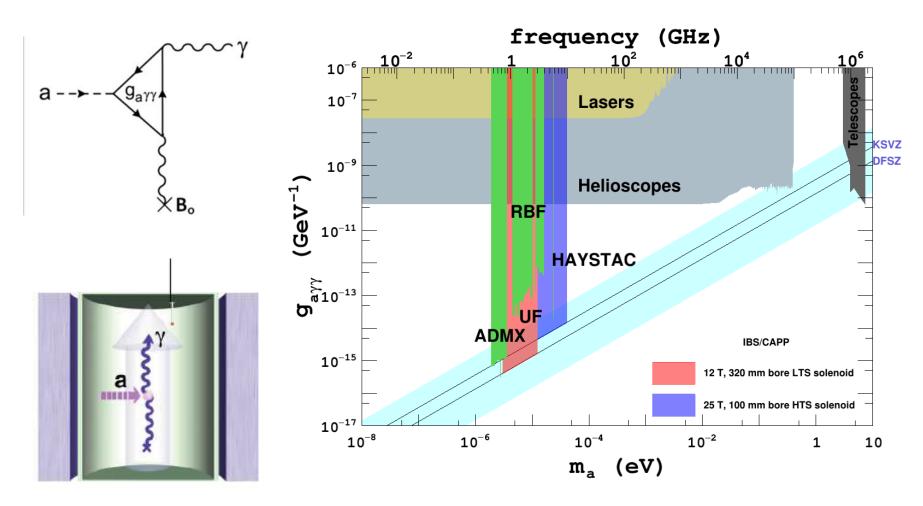
WIMP paradigm being challenged

A new physics sector seems coupled to the SM rather weakly.

A good physics candidate for naturally small couplings while solving the SM problems?

An example : QCD axion

Solves the strong CP problem of the SM:


$$\theta_{OCD} < 10^{-10}$$

Dark matter problem as well:

$$f_a \approx 10^9$$
 or 10^{12} GeV

$$rac{\partial_{\mu}a}{f_a}ar{\psi}\gamma^{\mu}\psi+rac{1}{32\pi^2}rac{a}{f_a}G_{\mu
u}\widetilde{G}^{\mu
u}$$
 : tiny couplings to the SM

Still within the experimental reach

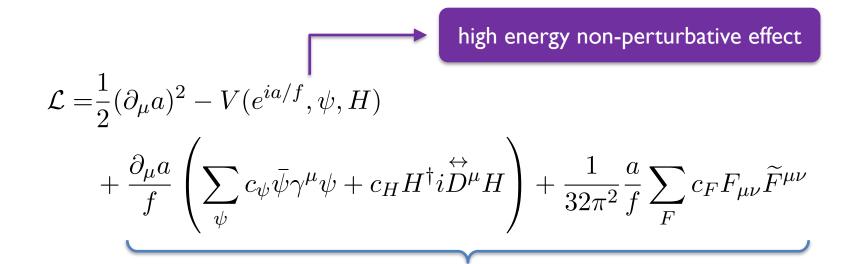
with targeted couplings and mass

Axion-like particle (ALP)

- i) Perturbative (approximate) shift symmetry: $a \rightarrow a + c$
- ii) Discrete gauge symmetry : $a \rightarrow a + 2\pi n f$ ($\frac{a}{f} = \theta$; angle)

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 + \frac{\partial_{\mu} a}{f} J^{\mu} + \frac{1}{32\pi^2} \frac{a}{f} G_{\mu\nu} \widetilde{G}^{\mu\nu}$$

Natural size of ALP couplings is determined by f.


ALP mass

$$\frac{1}{32\pi^2} \frac{a}{f} G_H \widetilde{G}_H \qquad \qquad V(a) = \Lambda_{HC}^4 \cos\left(\frac{a}{f}\right)$$

$$m_a = \frac{\Lambda_{HC}^2}{f}$$

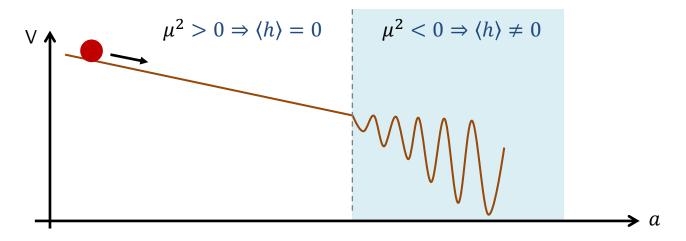
 m_a and f are free parameters with (technical) naturalness. What values would we look at experimentally?

ALP effective interactions to the SM

Perturbative shift symmetry conserving interactions

Which interactions are we interested in?

Bottom-up approach


Similarly to the QCD-axion, ALPs may be involved in solving SM problems.

- i) Weak scale hierarchy
- ii) Dark Matter
- iii) Baryogenesis

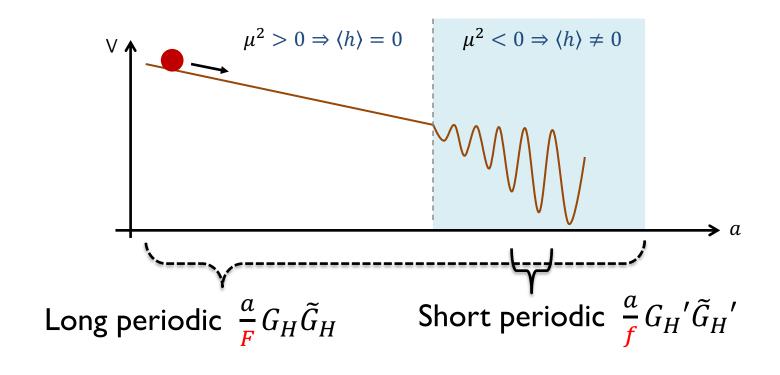
Weak scale hierarchy: Relaxion

Graham, Kaplan, Rajendran '15

- Promoting the Higgs mass to a dynamical field (ALP) : $\mu^2(a)|H|^2$
- Cosmological ALP evolution to select the Higgs mass

• a slow-rolls while scanning μ^2 from Λ_{cut}^2 to negative, and stops by barriers formed by EWSB.

$$\mu^2(a)|H|^2 \subset V(e^{ia/f},\psi,H)$$


: shift symmetry breaking interaction to the SM

How do we obtain it?

$$\frac{|H|^2}{\Lambda} N_H N_H^c + \frac{1}{32\pi^2} \frac{a}{f} G_H \widetilde{G}_H \qquad \qquad \frac{|H|^2}{\Lambda} \Lambda_{HC}^3 \cos\left(\frac{a}{f}\right)$$

high scale confinement

Trouble: ALP scale hierarchy

To stop relaxion with the weak scale Higgs VEV

$$\frac{F}{f} \approx \frac{\Lambda_{cut}^4}{v^4} > 10^4$$

Discrete gauge symmetry: $a \rightarrow a + 2\pi n f$

$$a \rightarrow a + 2\pi n f$$

$$\frac{a}{F}G_H\tilde{G}_H + \frac{a}{f}G_H'\tilde{G}_H' \qquad F = f \times \text{integer}$$

$$F = f \times integer$$

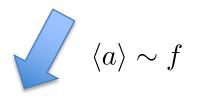
Clockwork scheme

second

Choi, SHI '15 Kaplan, Rattazzi '15

$$V(\phi_i) = \sum_{i=0}^N rac{1}{2} \, m_i^2 \, (\phi_i - rac{q}{q}\phi_{i+1})^2$$
 $f = f imes q^N$
 $1/q \quad 1/q^2 \qquad \text{jth gear} = \phi_j \qquad N : \text{Number of } q^N$

minute


hour

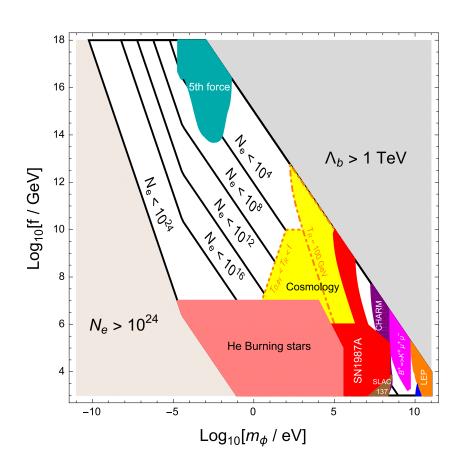
$$F = f \times q^N$$

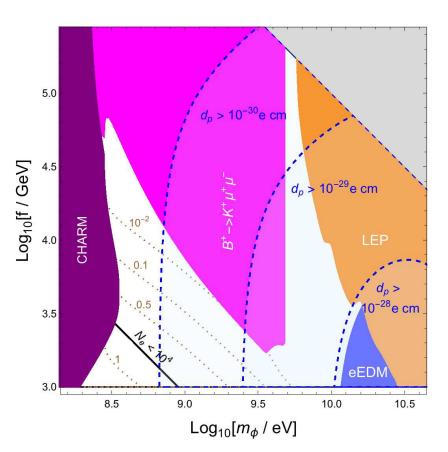
jth gear = ϕ_i N: Number of ALPs

Relaxion interactions to the SM

$$|M^2|H|^2\cos\left(\frac{a}{f}\right) + c_\gamma \frac{e^2}{16\pi^2} \frac{a}{f} F\widetilde{F}$$

Relaxion-Higgs mixing

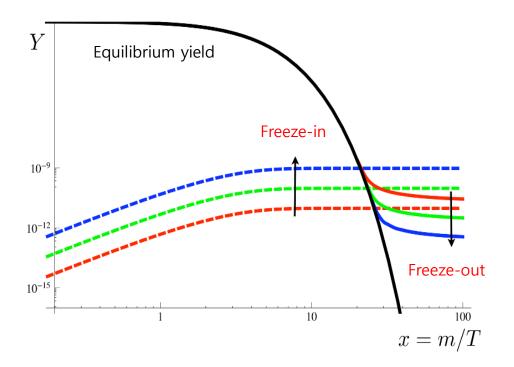

Relaxion-photon coupling

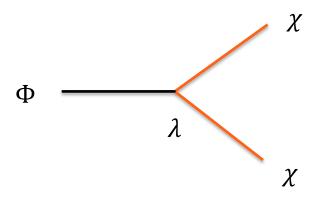

Choi, SHI '16 Flacke, Frugiuele, Fuchs, Gupta, Perez '16 Choi, SHI '16

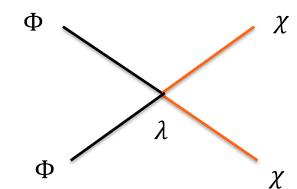
Simultaneous presence of them breaks CP.

What should we look for?

Choi, SHI '16



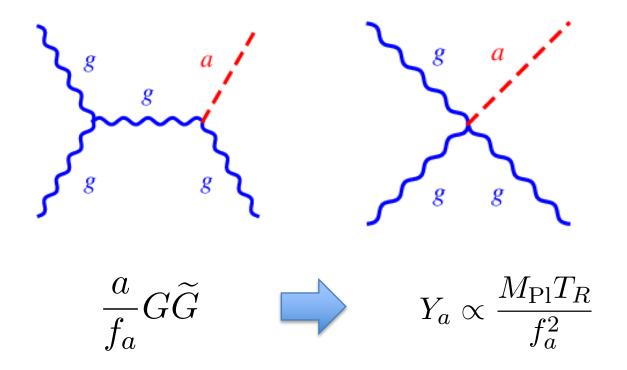

- Beam dump (SHiP), Proton EDM
- HL-LHC, CLIC [Frugiele, Fuchs, Perez, Schlaffer '18]


Dark Matter: Freeze-in paradigm

McDonald 2001, Choi, Roszkowski 2005, Petraki, Kusenko 2007 Hall, Jedamzik, March-Russell, West 2009

- Alternative to freeze-out
- •Never in thermal equilibrium: feebly coupled to SM
- •Produced via decay or annihilation of particles in thermal bath

 Φ : particle in thermal bath


 χ : dark matter

$$\Omega_{\chi} \propto m_{\chi} \frac{\lambda^2}{m_{\Phi}}$$
 , λ^2

- Observed DM abundance if $\lambda \sim 10^{-12}~$ for $m_\chi \sim m_\Phi$
- Need an explanation for $\lambda \ll 1!$

QCD-axion freeze-in production

Graf, Steffen '10 Bae, Choi, SHI '11

QCD-axion is cosmologically stable due to its small mass (meV $\sim \mu$ eV) but cannot be freeze-in DM because it shall be hot.

Freeze-in ALP dark matter

SHI, Jeong '19

Cold DM with $m_a > 100$ keV while cosmologically stable

$$M^2 \cos\left(\frac{a}{f}\right) |H|^2$$

Suppose that this is an only operator that breaks ALP shift symmetry.

$$M^2 \cos\left(\frac{a}{f}\right) |H|^2 + \frac{1}{16\pi^2} M^2 \Lambda_{\text{cut}}^2 \cos\left(\frac{a}{f}\right)$$

Radiative correction

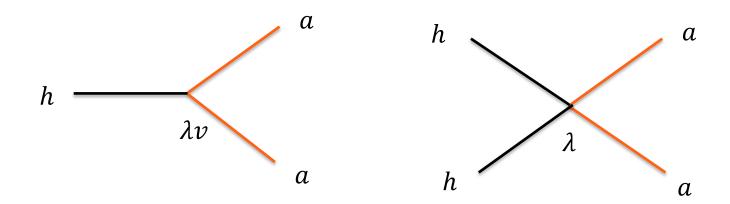
No phase difference

$$V = -M^2 \cos\left(\frac{a}{f}\right) |H|^2 - \frac{1}{16\pi^2} M^2 \Lambda_{\text{cut}}^2 \cos\left(\frac{a}{f}\right)$$

ALP is stabilized at a = 0.

The vacuum preserves

 Z_2 symmetry : $a \rightarrow -a$.


So ALP does not decay.

Around the vacuum,

$$V = \frac{1}{2}\lambda |H|^2 a^2 + \frac{1}{2}m_a^2 a^2 + \cdots$$

where
$$\lambda = \left(\frac{M}{f}\right)^2, \quad m_a pprox rac{\sqrt{\lambda_{ha}}}{4\pi} \Lambda_{
m cut}$$

: naturally small λ while having large enough mass!

Fixing λ to obtain the correct relic density,

$$m_a \approx 1 \,\mathrm{MeV} \left(\frac{\Lambda_{\mathrm{cut}}}{1 \,\mathrm{TeV}}\right)^{4/5}$$
 $f \approx 10^8 \,\mathrm{GeV} \left(\frac{M}{1 \,\mathrm{TeV}}\right) \left(\frac{\Lambda_{\mathrm{cut}}}{1 \,\mathrm{TeV}}\right)^{1/5}$

Experimental probe?

Unfortunately very challenging as much as other freeze-in models

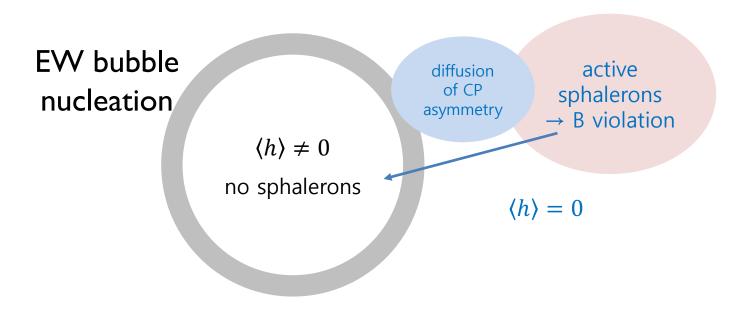
$$V = \frac{1}{2}\lambda |H|^2 a^2 + \frac{1}{2}m_a^2 a^2 + \cdots \qquad \lambda < 10^{-10}$$

For a light ALP around MeV, there should be a new degree of freedom around TeV which couples to the Higgs.

$$m_a \approx 1 \, \mathrm{MeV} \left(\frac{\Lambda_{\mathrm{cut}}}{1 \, \mathrm{TeV}} \right)^{4/5}$$

Hidden-color confinement $\Lambda_{cut} = \Lambda_{HC}$

$$M^{2} \cos\left(\frac{a}{f}\right) |H|^{2} \qquad \frac{|H|^{2}}{\Lambda} N_{H} N_{H}^{c} + \frac{1}{32\pi^{2}} \frac{a}{f} G_{H} \widetilde{G}_{H}$$

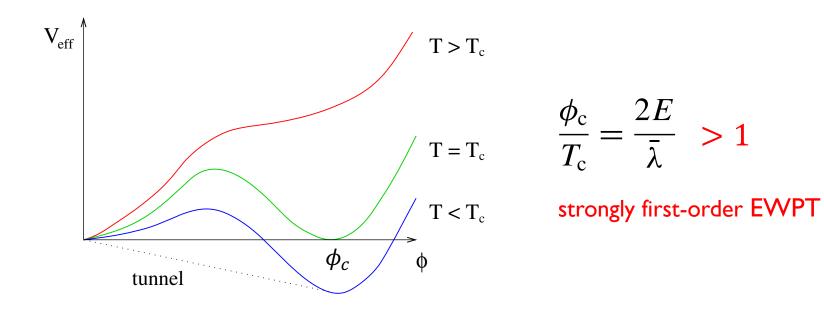

$$H L_{H} N_{H}^{c} + H^{\dagger} L_{H}^{c} N_{H} + m_{L} L_{H} L_{H}^{c}$$

$$(\Lambda = m_{L})$$

Higgs can sizably mix with hidden-color η' meson of mass Λ_{cut} .

Electroweak Baryogenesis

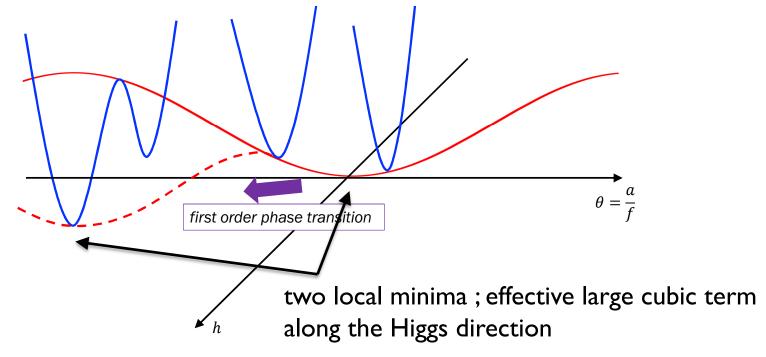
Appealing framework for experimental testability


- i) B violation: sphalerons ✓
- ii) C & CP violation: CKM not enough X
- iii) Out of equilibrium : strongly first-order EWPT X

NP

Finite temperature Higgs potential

$$V_{
m eff}(\phi,T) \simeq D(T^2-T_0^2)\phi^2 - ET\phi^3 + rac{ar{\lambda}}{4}\phi^4$$



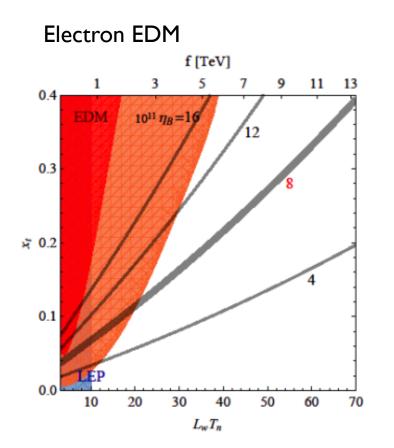
- A large cubic term is needed.
- It makes two local minima in the Higgs potential.

Axionic electroweak baryogenesis

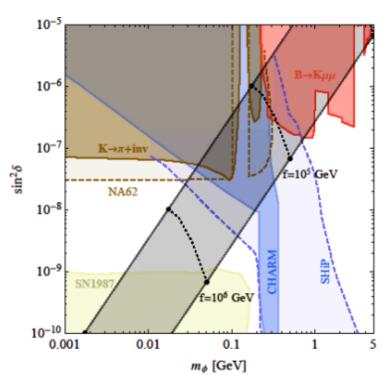
K S Jeong, T H Jung, C S Shin '18

$$V = \left[\mu^2 - M^2 \cos\left(\frac{a}{f} + \alpha\right)\right] |H|^2 - \Lambda^4 \cos\left(\frac{a}{f}\right) + \lambda |H|^4$$

$$V = \left[\mu^2 - M^2 \cos\left(\frac{a}{f} + \alpha\right)\right] |H|^2 - \Lambda^4 \cos\left(\frac{a}{f}\right) + \lambda |H|^4$$


The potential only depends on $\theta = \frac{a}{f}$, insensitive to f.

- \rightarrow Weak coupling limit $f \gg v$.
- → Free from EDM and LHC constraints while allowing testability.

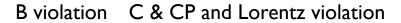

CP violation from top Yukawa : $Y_t = y_t + x_t e^{i\phi/f}$

For the correct baryon asymmetry,

$$3 \text{ TeV} \le f \le 10 \text{ TeV}$$
 $\text{GeV} \le m_a \le 20 \text{ GeV}$

Beam dump

Spontaneous EWBG with 2nd order EWPT


SHI, K.S. Jeong under progress

$$\theta_{\rm EW} W_L \widetilde{W}_L = \partial_{\mu} \theta_{\rm EW} J_B^{\mu} = \dot{\theta}_{\rm EW} (n_B - n_{\bar{B}})$$

 $\theta_{\rm EW} \neq 0$: energy preference of baryons over anti-baryons

$$rac{dn_B}{dt}pproxrac{3}{2}rac{\Gamma_{
m sph}}{T}\dot{ heta}_{
m EW}-rac{39}{4}rac{\Gamma_{
m sph}}{T^3}n_B$$
 B wash-out by sphalerons

Baryogenesis has to happen just before/during the sphaleron process turns off (i.e. EWPT) to avoid a strong wash-out.

$$V = V_{\rm SM} - M^2 |H|^2 \cos\left(\frac{a}{F} + \alpha\right) - \Lambda_{\rm HC}^4 \cos\left(\frac{a}{F}\right) + \frac{a}{f} W_L \widetilde{W}_L$$

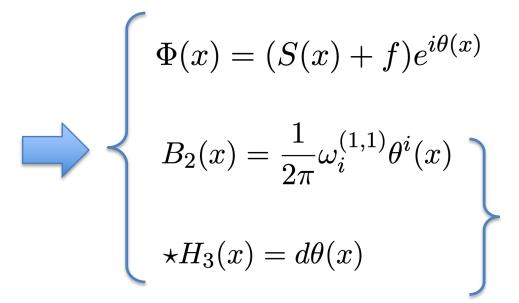
$$M^2 < v^2 \qquad \theta \qquad \qquad \theta_{EW}$$

As EWPT happens, α starts to move due to the Higgs VEV dependent potential, while not significantly affecting the SM phase transition structure.

$$\frac{dn_B}{dt} \approx \frac{3}{2} \frac{\Gamma_{\rm sph}}{T} \dot{\theta}_{\rm EW} - \frac{39}{4} \frac{\Gamma_{\rm sph}}{T^3} n_B$$

$$\dot{ heta}_{\mathrm{EW}} = rac{\dot{a}}{f} = rac{F}{f} \dot{ heta} \sim rac{F}{f} imes \mathrm{Hubble}$$
 persistent time scale ~ Hubble

For $F \sim f$, the produced baryon asymmetry is negligible. For the correct baryon asymmetry, $F \sim 10^9 f$ (clockwork)


Top-down approach

Origin of defining properties of ALP?

i) Discrete gauge symmetry: $a \rightarrow a + 2\pi n f$

$$\frac{a(x)}{f} = \theta(x) \qquad \text{angle variable}$$

axial degree of freedom of (elementray or composite) complex scalar field

string theoretic form fields

ii) Perturbative shift symmetry : $a \rightarrow a + c$

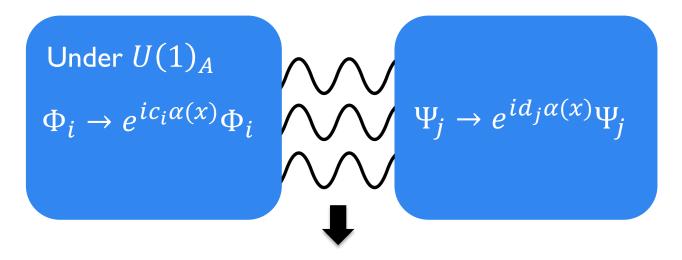
; Global $U(1) \rightarrow$ incompatible with quantum gravity (black hole argument)

- → cannot be a fundamental symmetry
- → To be identified as accidental symmetry from gauge symmetry or discrete symmetry

Example in the SM

 $: U(1)_B$ and $U(1)_L$ accidentally originated from the SM gauge symmetries

ALP physics often requires a very high quality of global U(1).


eg) QCD axion, Freeze-in ALP DM, ...

How to obtain it specifically?

High quality global $U(1)_{PO}$: gauge symmetry origin

Fukuda, Ibe, Suzuki, Yanagida '17

Two sequestered sectors interacting with each other only via gauge interactions $(U(1)_A)$ and $SU(N)_C$

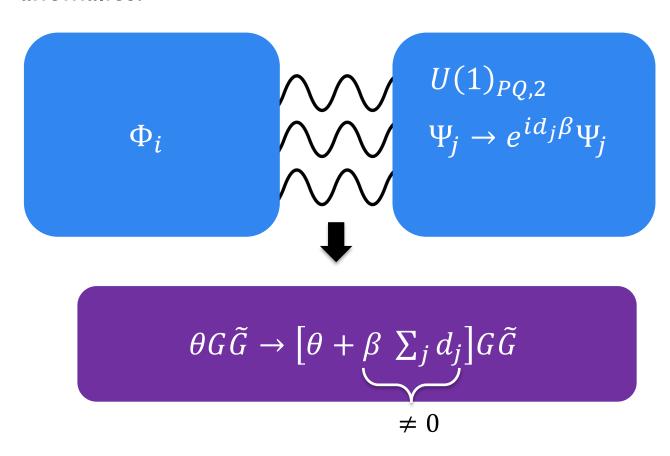
$$\theta G \tilde{G} \to \left[\theta + \alpha(x) \left(\sum_{i} c_{i} + \sum_{j} d_{j}\right)\right] G \tilde{G}$$

0 for $U(1)_A \times [SU(N)_C]^2$ anomaly cancellation High quality global $U(1)_{PO}$: gauge symmetry origin

We then have two accidental $U(1)_{PQ}$ broken only by anomalies.

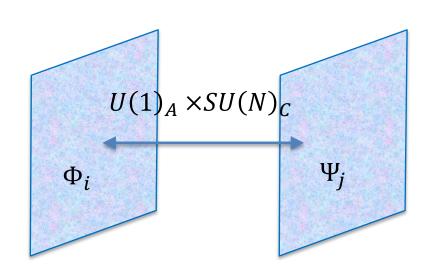
$$U(1)_{PQ,1}$$

$$\Phi_i \to e^{ic_i\alpha}\Phi_i$$


$$\Psi_j$$

$$\theta G \tilde{G} \to [\theta + \alpha \sum_i c_i]G \tilde{G}$$

$$\neq 0$$


High quality global $U(1)_{PO}$: gauge symmetry origin

We then have two accidental $U(1)_{PQ}$ broken only by anomalies.

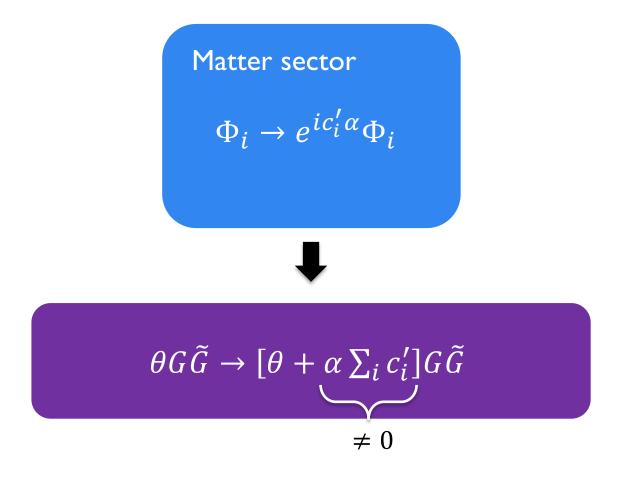
The previous construction needs a good sequestering of the two sectors. How could it be?

Extra dimensional locality

H C Cheng and D E Kaplan '01 Izawa, Watari , Yanagida '02

Implications for bottom-up ALPs? To be studied

$U(1)_A$ in string theory Witten '84


Matter sector

Green-Schwarz modulus

$$\Phi_i \to e^{ic_i\alpha(x)}\Phi_i \qquad \qquad \alpha \to \alpha + c_{GS}\alpha(x)$$

$$\theta G \tilde{G} \rightarrow [\theta + \alpha(x)(\sum_{i} c_{i} + c_{GS})]G \tilde{G}$$

0 for $U(1)_A \times [SU(N)_C]^2$ anomaly cancellation $U(1)_A$ gauge boson mostly gains its mass by eating GS modulus remaining accidental $U(1)_A$ for the matter sector.

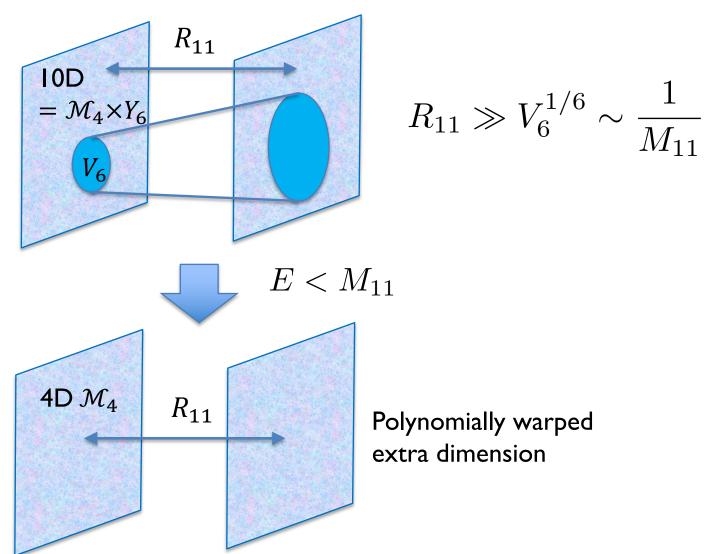
In order to preserve supersymmetry, however,

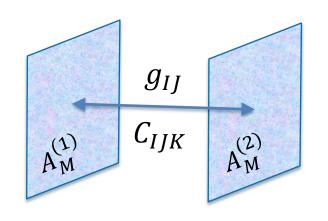
$$D_A=\sum_i q_i^2 |\Phi_i|^2 - \xi_{
m FI}^2=0$$
 $U(1)_A$ Fayet-Iliopouls term $\xi_{
m FI}\sim rac{lpha_{
m YM}}{4\pi}M_{
m Pl}~~{
m in~most~of~compactifications}$

$$f \sim \langle \Phi_i \rangle \sim M_{\rm GUT}$$

It seems hard to get a low scale ALP decay constant. The situation is similar for stringy form field ALPs.

Low scale ALP decay constant from large internal volume


Large Volume Scenario in Type IIB


Balasubramanian, Berglund, Conlon, Quevedo '05

Warped large IID in Heterotic M-theory

Svrcek, Witten '06 SHI, Nilles, Olechowski '19

Heterotic M-theory: 5D effective description

4D axions : C_{mn11} , $C_{\mu\nu11}$

gauge fixing

$$S_{\sigma-\mathcal{A}_{11}} = -\int d^5x \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi_L \partial_{\nu} \phi_L + \frac{1}{2} \eta^{\mu\nu} \partial_{\mu} \phi_R \partial_{\nu} \phi_R$$
$$+ e^{2px_{11}} \frac{1}{2} \left[(\partial_{11} \phi_L + m_{\mathcal{A}} \phi_L)^2 + (\partial_{11} \phi_R - m_{\mathcal{A}} \phi_R)^2 \right]$$

: two continuum clockwork axions

Choi, SHI, C S Shin '17

zero modes

$$\mathcal{L}_{4D} = -\frac{1}{2} (\partial_{\mu} a_1)^2 - \frac{1}{2} (\partial_{\mu} a_2)^2 - \epsilon_k \partial_{\mu} a_1 \partial^{\mu} a_2 + \frac{1}{16\pi^2} \left[\frac{a_1}{f_1} \text{tr} F_{(1)} \tilde{F}_{(1)} + \frac{a_2}{f_2} \text{tr} F_{(2)} \tilde{F}_{(2)} \right]$$

: two axions with kinetic mixing

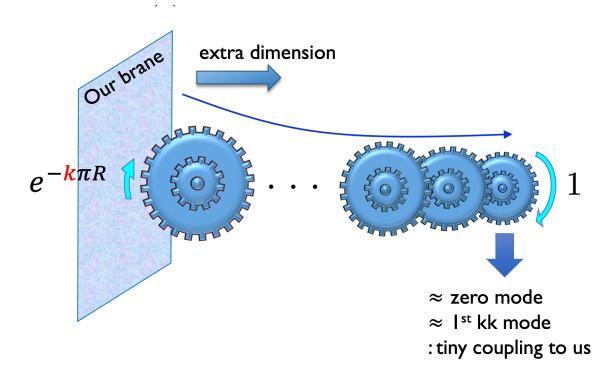
$$\mathcal{L}_{\rm 4D} = -\frac{1}{2}(\partial_{\mu}a_1)^2 - \frac{1}{2}(\partial_{\mu}a_2)^2 - \epsilon_k\partial_{\mu}a_1\partial^{\mu}a_2 + \frac{1}{16\pi^2}\left[\frac{a_1}{f_1}{\rm tr}F_{(1)}\tilde{F}_{(1)} + \frac{a_2}{f_2}{\rm tr}F_{(2)}\tilde{F}_{(2)}\right]$$

$$\epsilon_k \sim \left(\frac{M_{11}}{M_{\rm Pl}}\right)^5$$
 Visible sector
$$f_1 \sim M_{11}$$

$$f_2 \sim M_{11}\sqrt{\frac{M_{11}}{M_{\rm Pl}}}$$

 M_{11} can be lowered up to TeV scale. SHI, Nilles, Olechowski '18

 \rightarrow Successful QCD axion with M_{11} lying in the axion window


SHI, Nilles, Olechowski '19

Kaluza-Klein axions as ALPs from heterotic M-theory

SHI, Nilles, Olechowski '19

$$M_n \approx 9 \, n \, \text{GeV} \, \left(\frac{M_{11}}{10^{10} \, \text{GeV}} \right)^{9/4}$$

$$f_{L1}^{(n)} \sim f_{R1}^{(n)} \sim \frac{M_{\rm P}}{n^{3/10}} > 2.4 \times 10^{15} {\rm GeV} \left(\frac{M_{11}}{10^{10} {\rm GeV}}\right)^{3/8}$$

Conclusion

- A new physics sector seems to be quite weakly coupled to the SM.
- ALP provides a natural candidate as a weakly coupled portal for a new physics sector to interact with the SM.
- It has good potential to resolve the SM problems having experimental testability.
- From UV perspective, the origin of ALP shift symmetry needs a non-trivial structure in the theories, which may have implications for low energy physics.