Wash-in Leptogenesis as a New Framework for Baryogenesis

Based on: V. Domcke (CERN), KK, K. Mukaida (KEK), K, Schmitz (CERN), M. Yamada (Tohoku), Phys. Rev. Lett 126 (2021) 201802 (arXiv: 2011.09347[hep-ph])

Kohei Kamada (RESCEU, U Tokyo)

PASCOS 2021 18/06/2021 @ on-line / Institute for Basic Science

Sakharov's condition ('67 Sakharov) ... necessary condition for the BAU.

- 1. B-violation
- 2. C & CP-violation
- 3. Deviation from thermal equilibrium

Heavy particle decay in B/C&CP-violating way easily satisfies this condition.

e.g.) GUT gauge boson/Higgs boson decay

('78 Yoshimura, '78 Dimopoulous & Suskind, '79 Toussaint+, '79 Weinberg, '79 Barr+, ...)

Well-motivated model.

We have understood the origin of the matter-antimatter asymmetry of the Universe, though difficult to prove it experimentally…?

Sakharov's condition ('67 Sakharov) ... necessary condition for the BAU.

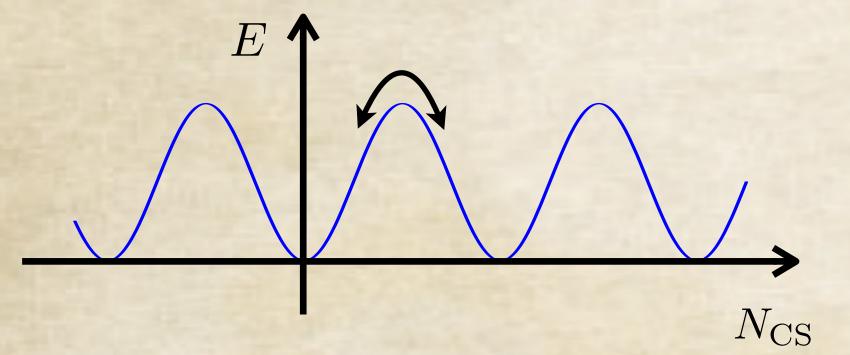
- 1. B-violation
- 2. C & CP-violation
- 3. Deviation from thermal equilibrium

Heavy particle decay in B/C&CP-violating way easily satisfies this condition.

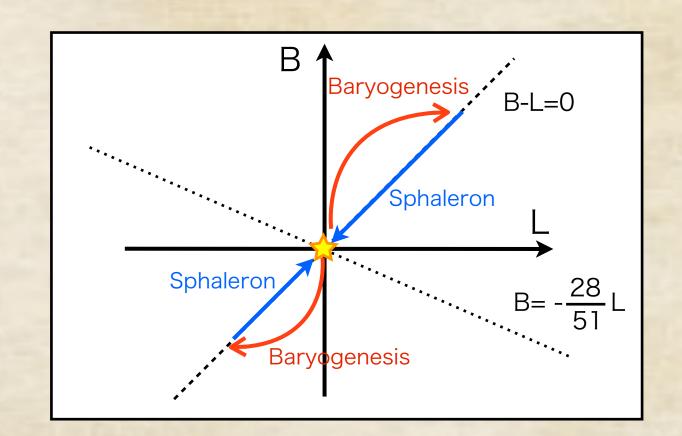
e.g.) GUT gauge boson/Higgs boson decay

('78 Yoshimura, '78 Dimopoulous & Suskind, '79 Toussaint+, '79 Weinberg, '79 Barr+, ···)

Well-motivated model.


We have understood the origin of the matter-antimatter asymmetry of the Universe, though difficult to prove it experimentally…?

The story is not so simple.


Electroweak sphaleron ('84 Klinkhamer & Manton)

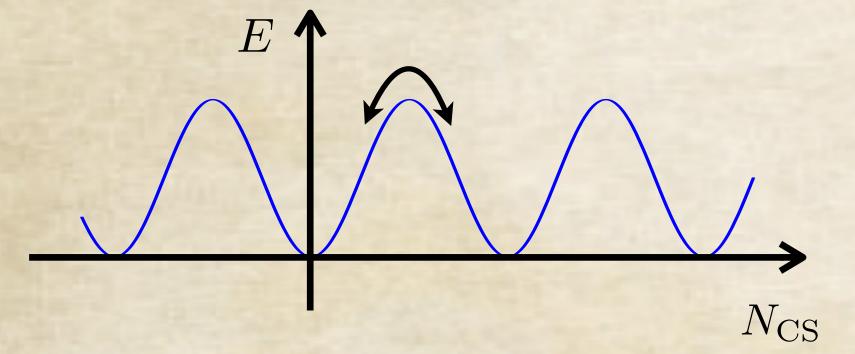
··· washes out B+L asymmetry ('85 Kuzmin, Rubakov & Shaposhnikov).

killed SU(5) GUT baryogenesis.

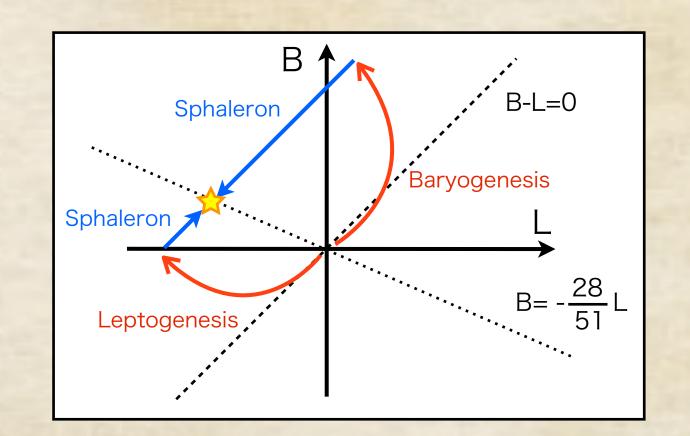
$$\Delta N_{\rm CS} \propto \Delta B = \Delta L$$

Options thus far:

- Generate B-L asymmetry (much) before EWSB.
- Generate B(+L) asymmetry after EWSB


First option…

need to violate B-L asymmetry, exact (non-anomalous) symmetry of the SM.


Electroweak sphaleron ('84 Klinkhamer & Manton)

··· washes out B+L asymmetry ('85 Kuzmin, Rubakov & Shaposhnikov).

killed SU(5) GUT baryogenesis.

$$\Delta N_{\rm CS} \propto \Delta B = \Delta L$$

Options thus far:

- Generate B-L asymmetry (much) before EWSB.
- Generate B(+L) asymmetry after EWSB

First option…

need to violate B-L asymmetry,

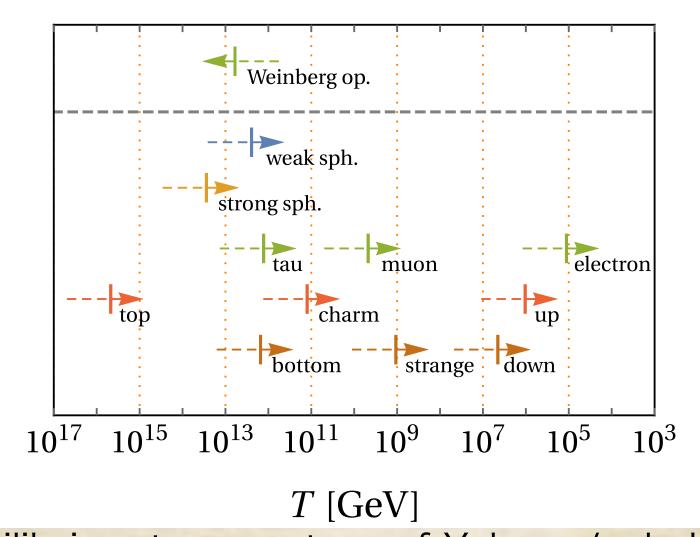
exact (non-anomalous) symmetry of the SM.

Right-handed neutrinos can be naturally introduced.

(Leptogenesis; '86 Fukugita & Yanagida)

But BAU from their decay needs severe conditions on the CP-violation and right-handed neutrino mass.

(See e.g., '05 Buchmüller, Di Bari, & Plumacher)



It completes when the electron Yukawa gets in equilibrium @ $T\lesssim 100{\rm TeV}$ ('92 Campbell+)

Approx. conserved quantities prevents from the completion of washout.

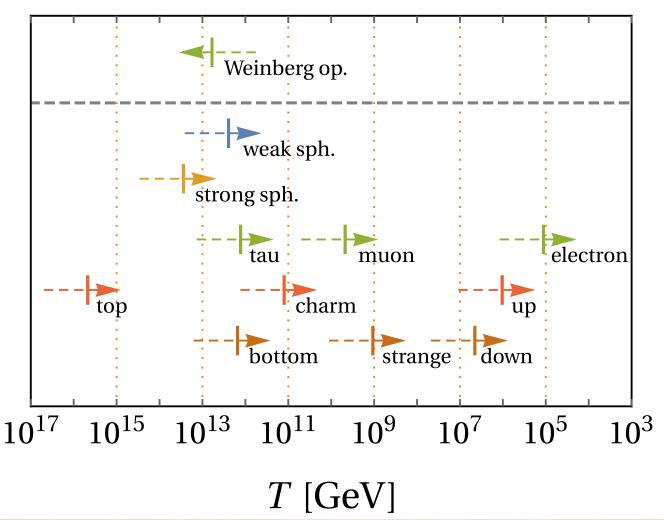
@lower temp., the SM has only B/3-Li as a global conserved quantities

@higher temp., many other global conserved quantities appear, depending on temp.

Equilibrium temperature of Yukawa/sphalerons	
	Ξ
(Figure from '20 Domcke+	

	T[GeV]	y_e	y_{ds}	y_d	y_s	y_{sb}	\mathcal{Y}_{μ}	y_c	$y_{ au}$	y_b	WS	SS	y_t
(v)	$(10^5, 10^6)$	q_e	√	√	√	√	√	√	√	√	√	√	√
(iv)	$(10^6, 10^9)$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	✓	✓	✓	✓	√	✓	√	1	1
(iii)	$(10^9, 10^{11-12})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1 - B_2}$	q_{μ}	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1
(ii)	$(10^{11-12}, 10^{13})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	1	/
(i)	$(10^{13}, 10^{15})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	q_u	1

List of conserved quantities at several temperature regime
('21 Domcke, KK+)

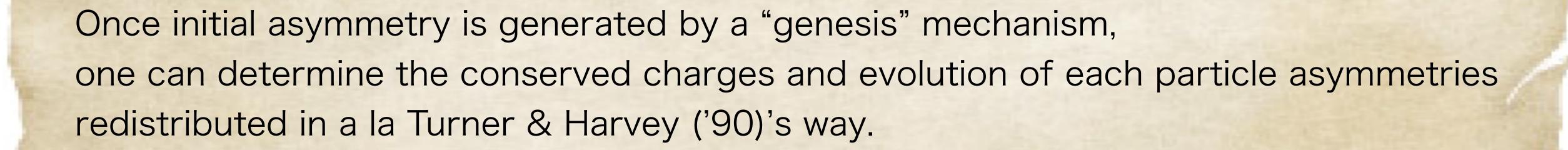

An issue in the B+L washout by EW sphalerons.

It completes when the electron Yukawa gets in equilibrium @ $T\lesssim 100{\rm TeV}$ ('92 Campbell+) Approx. conserved quantities prevents from the completion of washout.

@lov Something can be implemented after the generation of asymmetry

White with B-L=0, before the completion of washout for net B generation.

g on temp.



	T[GeV]	y_e	y_{ds}	y_d	y_s	y_{sb}	\mathcal{Y}_{μ}	y_c	$y_{ au}$	y_b	WS	SS	y_t
(v)	$(10^5, 10^6)$	q_e	√	√	√	√	√	√	√	√	√	√	√
(iv)	$(10^6, 10^9)$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	✓	✓	\checkmark	\checkmark	✓	\checkmark	✓	\checkmark	1
(iii)	$(10^9, 10^{11-12})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	\checkmark	1	\checkmark	\checkmark	\checkmark	✓
(ii)	$(10^{11-12}, 10^{13})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	\checkmark	\checkmark
(i)	$(10^{13}, 10^{15})$	q_e	$q_{2B_1-B_2-B_3}$	q_{u-d}	q_{d-s}	$q_{B_1-B_2}$	q_{μ}	q_{u-c}	$q_{ au}$	q_{d-b}	q_B	q_u	1

List of conserved quantities at several temperature regime

Equilibrium temperature of Yukawa/sphalerons (Figure from '20 Domcke+)

('21 Domcke, KK+)

Yukawa:
$$\mu_{u_R} = \mu_{H_0} + \mu_{u_L}$$
 or
$$\mu_i : \text{chemical potential for each particle}$$
 Sphaleron: $3N_f \sum_q \mu_q + \sum_l \mu_= 0$
$$\mu_{\alpha} : \text{chemical potential for conserved charge}$$

$$\mu_{\alpha} : \text{chemical potential for approx. conserved charge, such as B or B+L}$$

From this calculation we obtain the well-known formula $\mu_B = \frac{28}{79} \mu_{B-L}^{\rm ini}$ after the electron Yukawa equilibration.

Once we introduce the right-handed neutrinos, the way how asymmetries are redistributed changes.

We might expect the L asymmetry is induced.

(also see '02 Fukugita & Yanagida)

New equilibrium condition:

$$\mu_{L_{\alpha}} + \mu_H = \mu_{N_R^i}$$

When the right-handed neutrinos are almost massless, the L-violating effect should not be relevant.

Once we introduce the right-handed neutrinos, the way how asymmetries are redistributed changes.

We might expect the L asymmetry is induced.

(also see '02 Fukugita & Yanagida)

New equilibrium condition:

$$\mu_{L_{\alpha}} + \mu_{H} = \mu_{N_{R}^{i}} \longrightarrow 0$$
 when $T \simeq m_{N_{R}}$

When the right-handed neutrinos become massive, the L-violating effects should be effective.

At this point, $\Delta_i \equiv B/3 - L_i$ are not conserved charge.

$$\mu_{\alpha} = \sum_{C} S_{\alpha C} \mu_{C} \qquad \qquad 0 = \sum_{C \neq \Delta_{i}} S_{\alpha C} \mu_{C} + \sum_{i} S_{\alpha \Delta_{i}} \mu_{\Delta_{i}} \qquad \qquad \mu_{\Delta_{i}} = \sum_{C} S_{\alpha \Delta_{i}}^{-1} S_{\alpha C} \mu_{C}$$

B-L asymmetry is induced in the system (and fixed quickly)!

We name it "wash-in" process.

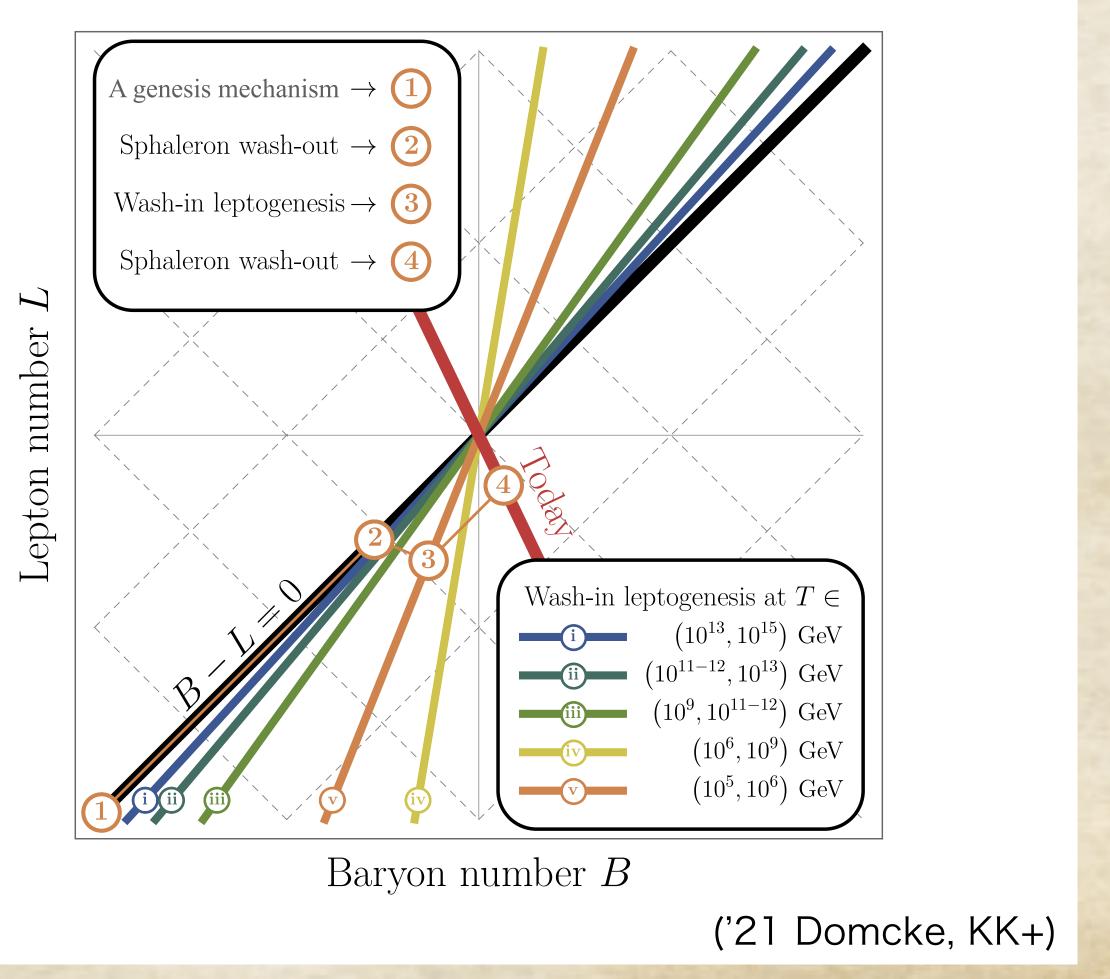
uced.

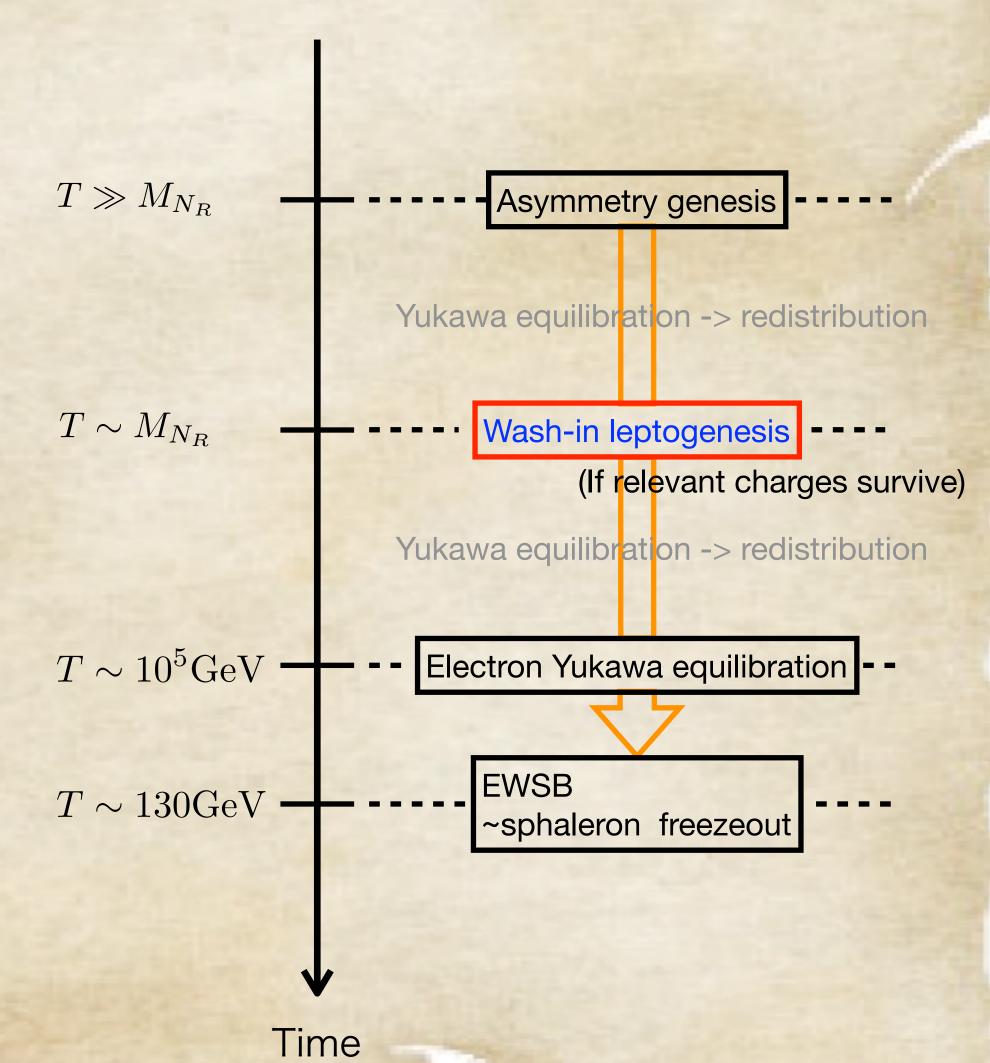
ugita & Yanagida)

$$\mu_{L_{\alpha}} + \mu_{H} = \mu_{N_{R}^{i}} \longrightarrow 0$$

when $T \simeq m_{N_R}$

When the right-handed neutrinos become massive, the L-violating effects should be effective.


At this point, $\Delta_i \equiv B/3 - L_i$ are not conserved charge.


$$\mu_{\alpha} = \sum_{C} S_{\alpha C} \mu_{C} \qquad \qquad 0 = \sum_{C \neq \Delta_{i}} S_{\alpha C} \mu_{C} + \sum_{i} S_{\alpha \Delta_{i}} \mu_{\Delta_{i}} \qquad \qquad \mu_{\Delta_{i}} = \sum_{C} S_{\alpha \Delta_{i}}^{-1} S_{\alpha C} \mu_{C}$$

B-L asymmetry is induced in the system (and fixed quickly)!

We name it "wash-in" process.

The way how B and L asymmetry is redistributed

- Sakharov's condition does not have to be satisfied simultaneously.

C&CP-violation/Deviation from equilibrium: asymmetry genesis @high temp.

(not have to be B-L)

B-L violation: Right-handed neutrino decoupling @ $T \simeq m_{N_R}$ # RHN sector does not have to violate C & CP.

- Depending on the initial asymmetries, wash-in works with relatively light RHNs.

can be consistent with naturalness $m_{N_R} \lesssim 10^7 {
m GeV}$ (Vissani bound ('98)) and also the neutrino option ('17 Brivio & Trott)

c.f.) The vanilla leptogenesis requires $m_{N_R} \gtrsim 10^9 {
m GeV}$ (Davidson-Ibarra bound ('02))

Applications/Realizations

- SU(5) GUT baryogenesis from the GUT Higgs decay

B+L but not B-L asymmetry is generated.

Wash-in helps to avoid the sphaleron washout.

Lowest RHN mass for the wash-in depends on the decay ratio of the GUT Higgs.

- Axion inflation

 $\phi Y_{\mu\nu}\tilde{Y}^{\mu\nu}$ coupling generate both B+L asym. and hypermagnetic helicity through chiral anomaly. They can annihilate each other at a later time.

Wash-in prevents from the complete cancellation of B+L and helicity.

Final baryon asymmetry is the summation of the B+L with wash-in and hypermagnetic helicity decay at EWSB. (Domcke, KK+, in prep.)

(See also F. Uchida's talk)

- Wash-in leptogenesis is a new framework for baryogenesis.
- It uses the redistribution of the asymmetries with the RHN mass term, between the asymmetry generation and completion of would-be sphaleron washout.
- The idea is based on the fact that the Sakharov's condition does not have to be satisfied simultaneously.
- Relatively light RHN can be useful, consistent with naturalness problem and neutrino option.
- SU(5) GUT baryogenesis and baryogenesis from axion inflation is rescued, but the idea does not have to be limited to these examples.