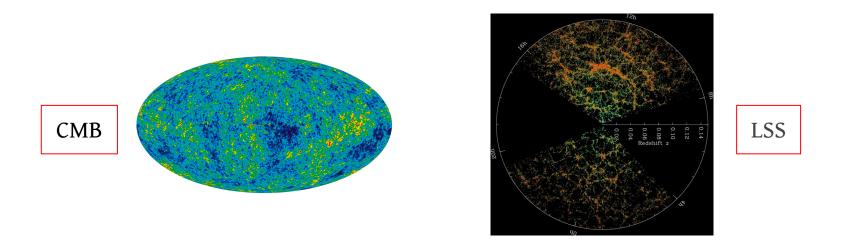
Cosmological collider physics beyond the Hubble scale

Arushi Bodas

with Soubhik Kumar and Raman Sundrum JHEP 2021, 79 arxiv: 2010.04727

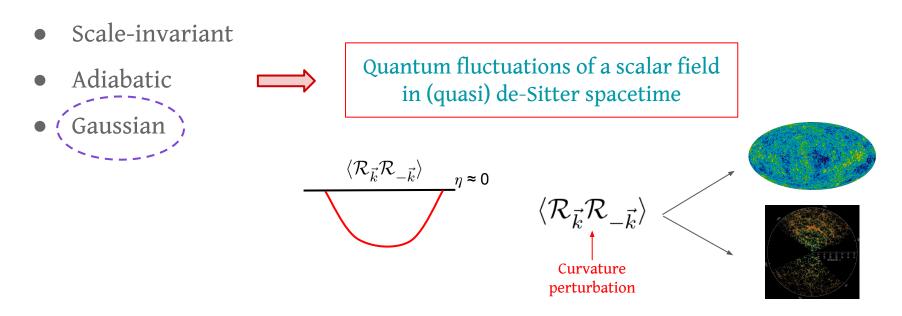
PASCOS 2021

Universe is homogeneous with small inhomogeneities



Density fluctuations seeded by the 'quantum fluctuations' of the inflaton field that sources inflation.

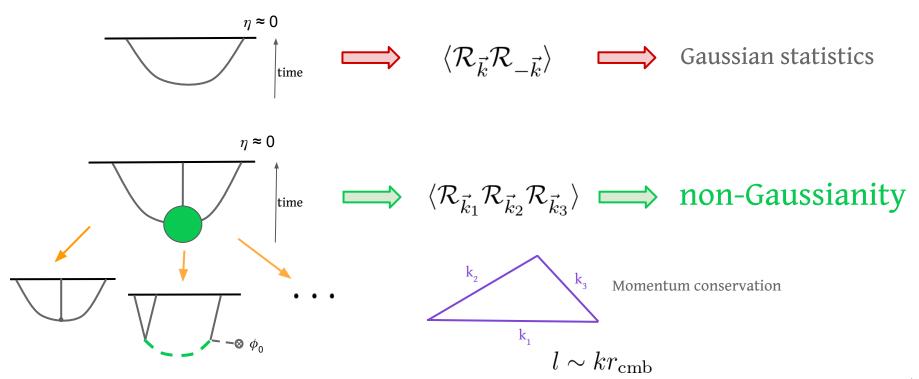
Properties of fluctuations



New physics affecting statistics of fluctuations \rightarrow Macroscopic observables like CMB, LSS etc

Detectors of physics at high energy scales (10¹³ GeV)!

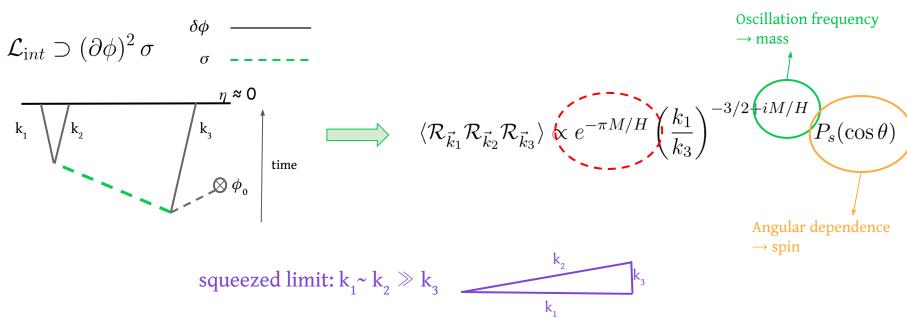
Interactions impart non-Gaussianities (NG)



"Cosmological collider"

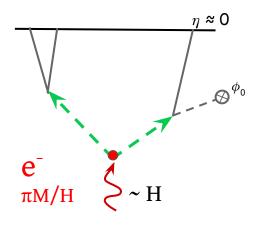
X. Chen, Y. Wang, 0911.3380 Nima Arkani-Hamed, J. Maldacena, 1503.08043, X. Chen, Y. Wang, Z. Xianyu, 1612.08122

Heavy fields produced during inflation leave a unique non-analytic signature in inflaton n-point correlation fluctuations.



Caveat-Boltzmann-like suppression

Space-time expansion provides energy ~ $H_{infl} \rightarrow M$ ~ H_{infl} can be produced.

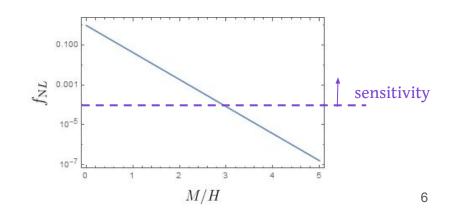


Production at $T_{Hawking} = H/2\pi$

For M \gg H, amplitude suppressed by Boltzmann factor $\sim e^{-M/2T} \sim e^{-\pi M/H}$

Loss of distinct signature for $M \ll H$.

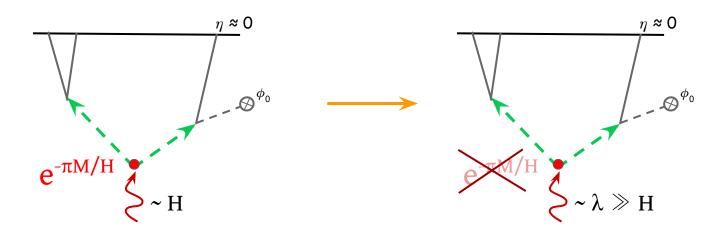
Severely limits the range as well as the reach of new physics that can be explored.



Motivation: Possible to overcome the suppression?

If high-frequency source $\lambda \gg H_{infl} \to M \sim \lambda$ can be produced without suppression.

Extending thermal analogy \rightarrow Chemical potential λ : $e^{-(E - \lambda)/T}$



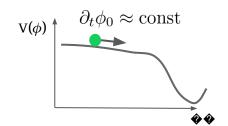
Model description

Consider a complex scalar field derivatively coupled to the inflaton with soft U(1)-breaking.

$$\mathcal{L}_{\chi} = \sqrt{-g} \left\{ -|\partial \chi|^2 - M^2 |\chi|^2 - \underbrace{\left[i \partial_{\mu} \phi \left(\chi \partial^{\mu} \chi^{\dagger} - \chi^{\dagger} \partial^{\mu} \chi \right) \right] - \frac{c \left(\partial \phi \right)^2}{\Lambda^2} |\chi|^2 + \underbrace{\left(\alpha \left(\chi + \chi^{\dagger} \right) \right)} \right\}$$

Effective chemical potential:
$$-\frac{1}{\Lambda}\partial_{\mu}\phi J^{\mu}\supset\frac{\partial_{t}\phi_{0}}{\Lambda}J_{0}=\lambda J_{0}$$

Symmetry-breaking term



Good derivative expansion in $\frac{(\partial \phi)^2}{\Lambda^4}$

$$\Lambda > \sqrt{\partial_t \phi_0} \Longrightarrow \boxed{\lambda \lesssim 60H}$$

Planck'18

Model description

Minimal derivative coupling of inflaton to χ maintains radiative stability of inflaton potential $\mathcal{L}_{\chi} = \sqrt{-g} \left\{ -|\partial\chi|^2 - M^2|\chi|^2 - \frac{i\partial_{\mu}\phi}{\overline{\Lambda}} \left(\chi \partial^{\mu}\chi^{\dagger} - \chi^{\dagger}\partial^{\mu}\chi \right) - \frac{c\,(\partial\phi)^2}{\Lambda^2} |\chi|^2 + \alpha\,\left(\chi + \chi^{\dagger}\right) \right\}$

Field redefinition:
$$\chi = e^{-i\phi/\Lambda}\,\tilde{\chi}$$

Phase from chemical potential

$$\mathcal{L}_{\tilde{\chi}} = \sqrt{-g} \left\{ -|\partial \tilde{\chi}|^2 - M^2 |\tilde{\chi}|^2 + (1-c) \frac{(\partial \phi)^2}{\Lambda^2} |\tilde{\chi}|^2 + \alpha \left(\tilde{\chi} e^{-i\phi/\Lambda} + \tilde{\chi}^{\dagger} e^{i\phi/\Lambda} \right) \right\}$$

Shift symmetry maintained by $\widetilde{\chi}$ rotation

Model description

$$\mathcal{L}_{\tilde{\chi}} = \sqrt{-g} \left\{ -|\partial \tilde{\chi}|^2 - M^2 |\tilde{\chi}|^2 + (1-c) \frac{(\partial \phi)^2}{\Lambda^2} |\tilde{\chi}|^2 \right\} + \alpha \left(\tilde{\chi} e^{-i\phi/\Lambda} + \tilde{\chi}^{\dagger} e^{i\phi/\Lambda} \right) \right\}$$

$$M_{eff} = \sqrt{M^2 + (1-c)\lambda^2} \qquad e^{-i\frac{\phi}{\Lambda}} = e^{-i\frac{(\partial_t \phi_0)t}{\Lambda}} e^{-i\frac{\delta\phi}{\Lambda}} \right]$$

$$\mathcal{H}_{mix} \supset \delta \tilde{\chi} \ \delta \phi e^{-i\lambda t} + cc$$

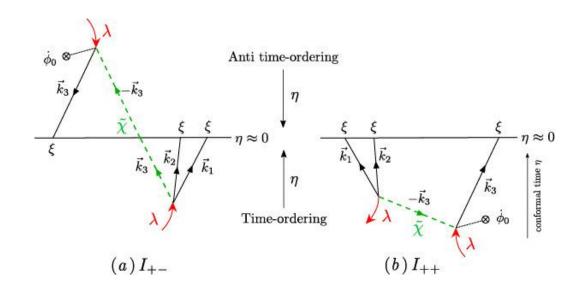
$$\mathcal{H}_{int} \supset \delta \tilde{\chi} \ (\delta \phi)^2 (e^{-i\lambda t}) + cc$$

High frequency source $\lambda \sim 60 \text{H} \gg \text{H}$

Contribution to 3-point function

We use in-in formalism to calculate late-time correlators of the inflaton fluctuations.

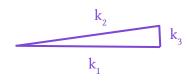
$$\langle \mathcal{R}_{\vec{k}_1} \mathcal{R}_{\vec{k}_2} \mathcal{R}_{\vec{k}_3} \rangle |_{\eta \to 0} = \langle 0 | \left(\bar{T} e^{i \int_{-\infty}^{0} H_{\rm int} d\eta} \right) \mathcal{R}_{\vec{k}_1} \mathcal{R}_{\vec{k}_2} \mathcal{R}_{\vec{k}_3} \left(T e^{-i \int_{-\infty}^{0} H_{\rm int} d\eta} \right) | 0 \rangle$$



$$\mathcal{H}_{mix} \supset \delta \tilde{\chi} \ \delta \phi \ e^{-i\lambda t} + cc$$
$$\mathcal{H}_{int} \supset \delta \tilde{\chi} \ (\delta \phi)^2 \ e^{-i\lambda t} + cc$$

3-point correlation function

To quantify NG, we define
$$F(k_1, k_2, k_3) = \frac{5}{6} \frac{\langle \mathcal{R}_{k_1} \mathcal{R}_{k_2} \mathcal{R}_{k_3} \rangle}{(\langle \mathcal{R}_{k_1} \mathcal{R}_{k_1} \rangle \langle \mathcal{R}_{k_3} \mathcal{R}_{k_3} \rangle + \text{combi.})}$$

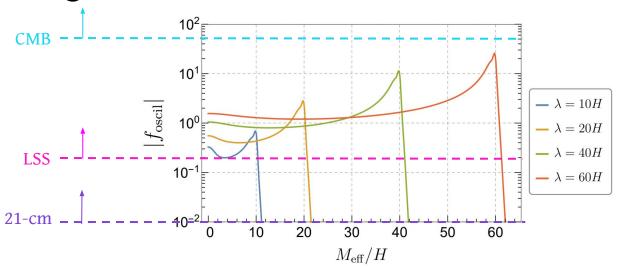


squeezed limit:
$$k_1 \sim k_2 \gg k_3$$

$$k_2$$
 k_3 k_4 k_5 k_5 k_5 k_5 k_5 k_6 k_7 k_8 k_8 k_8 k_8 k_8 k_8 k_8 k_8 k_8 k_9 k_9

$$|f_{\rm oscil}| = \frac{5\pi}{12\sqrt{2}}\times 10^{-2}\frac{\lambda^{7/2}}{M_{\rm eff}^{1/2}(\lambda^2-M_{\rm eff}^2)} \hspace{1cm} {\rm No~Boltzmann} \hspace{1cm} {\rm suppression!}$$

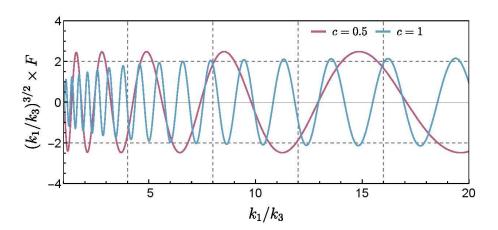
Signal strength



- \triangleright Large NG for $M_{eff} \lesssim \lambda$
- Observable at LSS and 21-cm
- Peak at $M_{eff} \approx \lambda$ due to resonance

Oscillatory signature

$$F_{\text{squeezed}} = f_{\text{oscil}}(M_{\text{eff}}, \lambda) \left(\frac{k_1}{k_3}\right)^{-3/2 + i(M_{\text{eff}} - \lambda)} + cc$$



$$M_{\rm eff} = 5H$$
, $M_{\rm eff} = 30$, $\lambda = 40H$

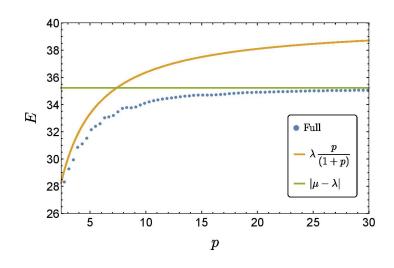
Function of both M_{eff} and λ

- Distinct oscillatory signature.
- Many observable oscillations before $(k_3/k_1)^{3/2}$ dilution makes the signal unobservable.

Extracting effective mass

- Use change in non-analytic exponent as a function of $p = k_1/k_3$ to extract M_{eff} .
- E(p) is the oscillation frequency

$$E(p) = \begin{cases} \lambda & \leftarrow \text{Small p} \\ |M_{\text{eff}} - \lambda| & \leftarrow \text{Large p} \end{cases}$$



$$M_{eff} = 5H$$
, $\lambda = 40H$

Previous studies of non-zero spin

- Similar chemical potential ideas have been proposed in the context of fermions and gauge bosons, but with qualitative differences.
- Signal is at loop level and generally difficult to calculate.
- For fermions, the mass reach is $M \lesssim (\dot{\phi}_0 H^2)^{1/4} \sim 10$ H, as opposed to full $\sqrt{\dot{\phi}_0}$ for scalars.
- For spin-1 bosons, although the mass reach is ~ 60H, fine-tuning of mass close to chemical potential is required to get large signal while avoiding instability and loss of perturbative control.

 P. Adshead et al, 1803.04501, X. Chen et al, 1805.02656

P. Adshead et al, 1803.04501, X. Chen et al, 1805.02656 A.Hook et al, 1908.00019 L. Wang, Z. Xianyu, 1910.12876 W. Garretson et al, 9209238 N. Barnaby et al, 1102.4333, L. Wang, Z. Xianyu, 2004.02887

. . . .

Conclusions

- Cosmological collider physics \rightarrow "direct detection" of heavy fields.
- Harness inflaton KE~ (60H)⁴ through chemical potential to overcome the Boltzmann suppression.
- We demonstrate implementation of chemical potential mechanism for a pair of real scalars at tree level in an analytically tractable way.
- The model predicts observable NG for a large range of masses with the maximum reach of M_{max}^{2} 60H, which can be as large as 10^{15} GeV (!)
- A schematic way to determine effective mass from the data is sketched.

