

PASCOS 2021

Dark matter searches in CMS

June 16th, 2021

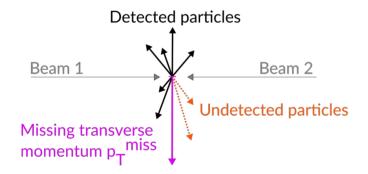
Andreas Albert, on behalf of the CMS collaboration

BOSTON UNIVERSITY

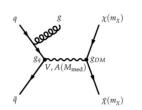
DM, the LHC and CMS

Dark matter is well-established in the cosmos

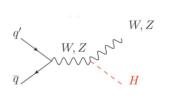
Is it a WIMP? (weakly interacting massive particle)

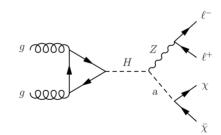


June 16th, 2021 A. Albert - DM @ CMS


Dark matter detection principle

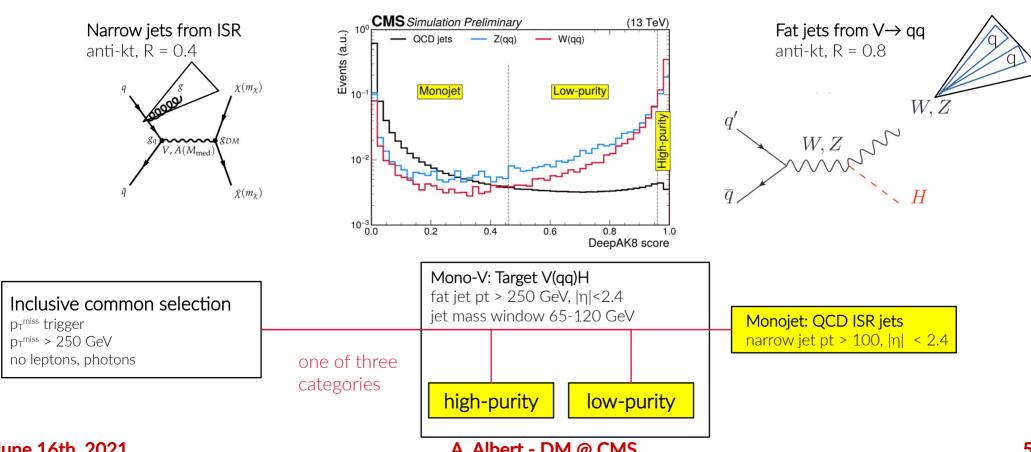
Dark matter particles would not be detected directly at the LHC (DM particle flux) × (interaction probability) just too low


Instead: p_T^{miss} = imbalance of detected particles


Additional tag particles needed for detection

Basic simplified model
parametrize qq ↔ DM DM
Tag from unavoidable radiation

Higgs portal
Otherwise SM-like Higgs
decays to DM
Tag from SM H production

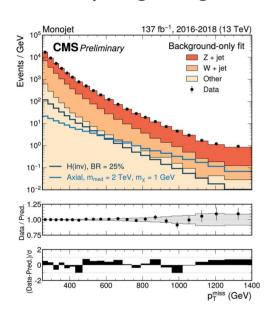


Simplified model with boson interactions Otherwise SM-like Higgs decays to DM Tag from SM H production Monojet + mono-V(qq) search

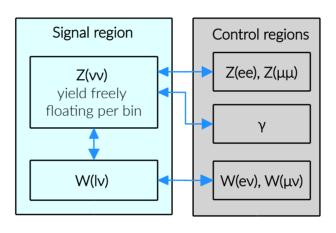
Combined jet + p_Tmiss search

Use neural network tagger to distinguish V(qq) from QCD jets

Generic "DeepAK8" tagger 10.1088/1748-0221/15/06/P06005

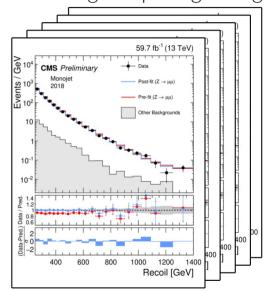

June 16th, 2021

A. Albert - DM @ CMS

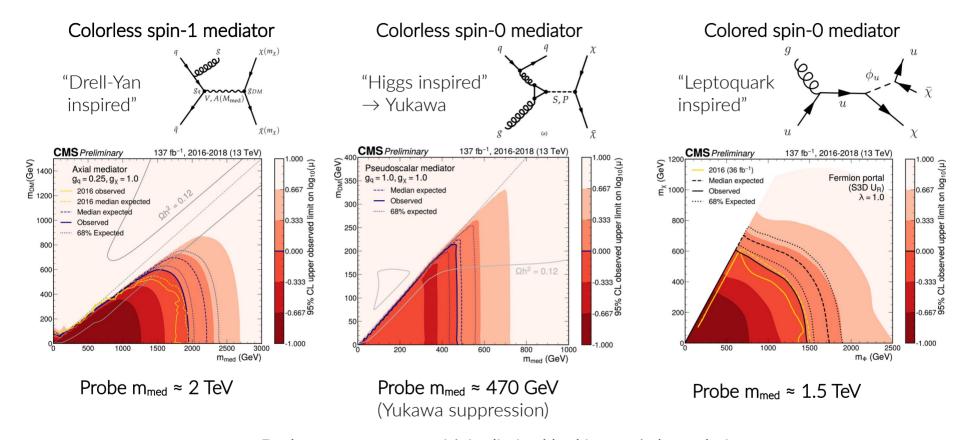

Background estimation

Challenge: Estimate boson p_T in Z(vv), W(lv) over large range

Monojet signal region


Maximum-likelihood fit

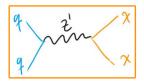
Transfer factors from MC


Normalization and shape from data \rightarrow Common uncertainties cancel especially theory, jet/p_T^{miss} calibration

5 control regions per signal region

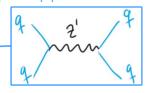
June 16th, 2021 A. Albert - DM @ CMS

Bounds in plane of mediator (x) and DM mass (y)

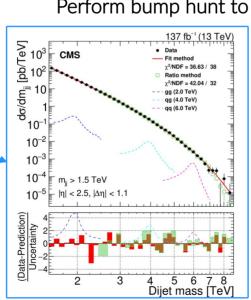


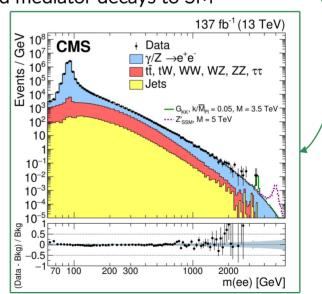
Dark matter mass sensitivity limited by kinematic boundaries

For recasters: We are publishing simplified likelihood info + MadAnalysis implementation of selection

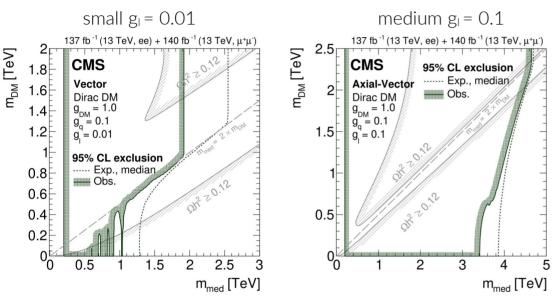

Mediator searches

Shooting the messenger


SM SM \rightarrow DM DM process implies SM SM \rightarrow SM SM scattering

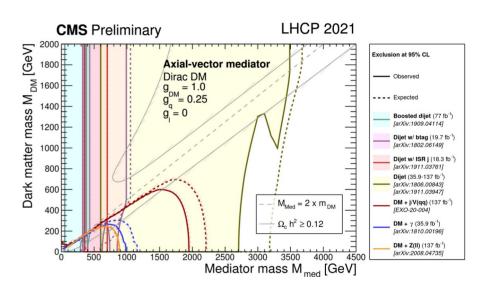

 $qq \leftrightarrow qq$ unavoidable, $qq \leftrightarrow$ leptons possible

Perform bump hunt to find mediator decays to SM



Dilepton
Profit
from lepton
resolution

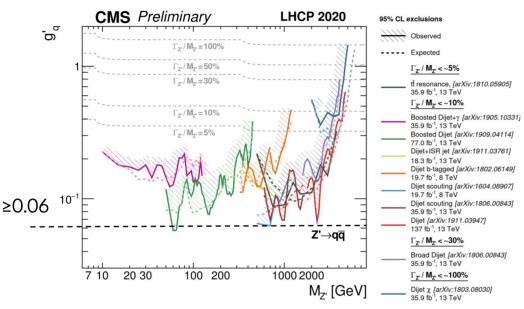
Dijet gigantic SM mass range


Constraints from mediator searches

Dilepton: Mediator-lepton coupling free

TeV-range constraints even for modest lepton couplings

Dijet: Quark coupling benchmark g_q=0.25

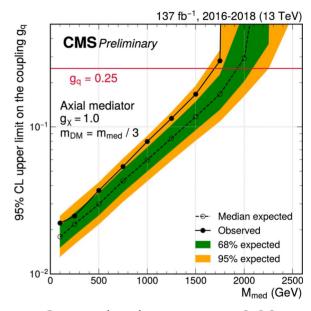

Dominant channel in benchmark case

Mediator searches provide strong constraints especially for $m_{DM} > m_{med} / 2$, but also below

June 16th, 2021 A. Albert - DM @ CMS 10

Exploring the coupling dimension

Dijet: g'_q assumes BR(Z' \rightarrow qq) = 100%



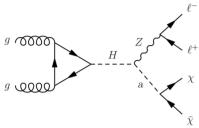
Best probes locally down to g_q'≈0.06

Many analyses to cover full mass range

BR(Z' \rightarrow DM DM) would weaken this by factor $\approx 2 \rightarrow > 0.1$

Monojet: gq assumes nonzero BR to DM

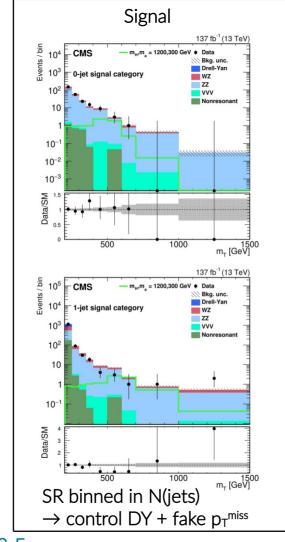
Can probe down to $g_q \approx 0.02$


$$g_q < 0.1 @ m_{med} < 1 \text{ TeV}$$

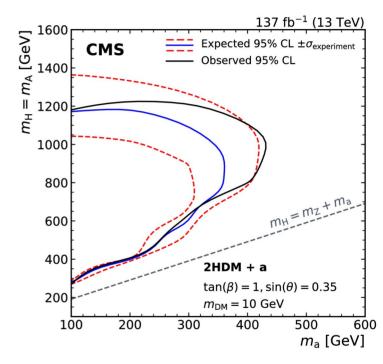
Monojet dominates in low-g_q regime if DM coupling sizable more broadly: analysis ranking depends on parameter choice

Interactions with SM bosons

Mono-Z(II)


Heavy Higgs H, pseudoscalar mediator "a"

Good Z(II) candidate lepton triggers, $p_T(I) > 25 / 20 \text{ GeV}$ $|m(II) - m_7| < 15 \text{ GeV}$


Moderate p_T^{miss} $p_T^{miss} > 100 \text{ GeV}$

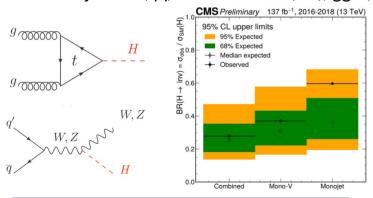
Z and p_T^{miss} balanced, back to back $|p_T^{miss} - p_T^{\parallel}| / |p_T^{\parallel}| < 0.4$ $\Delta \phi (p_T^{miss}, |p_T^{\parallel}|)$

Use transverse mass as proxy for heavy Higgs mass

$$M_T^2
ightarrow 2 E_{T,1} E_{T,2} \left(1-\cos\phi
ight)$$

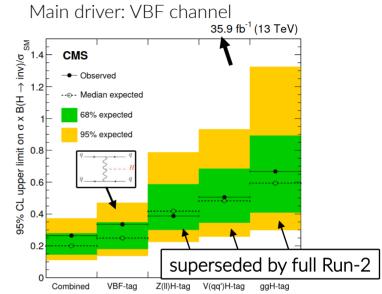
In benchmark scenario: Can probe m_H up to ≈ 1.2 TeV, m_a ≈ 400 GeV Large additional parameter space

10.1140/epjc/s10052-020-08739-5


Higgs portal

First full Run-2 results are ready

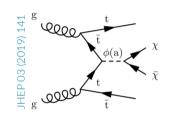
Mono-Z(II) constrains ZH(inv)

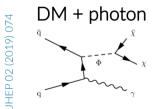


Monojet / -V(qq) constrains VH(inv), ggH(inv)

 $BR(H \rightarrow inv) < 28 \% (25\% exp)$

But H(inv) is a combination game

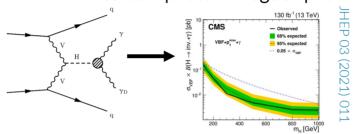

Best CMS result Early Run-2 combination + Run-1 (8 TeV) data BR(H→ inv) < 19 % (15% exp)

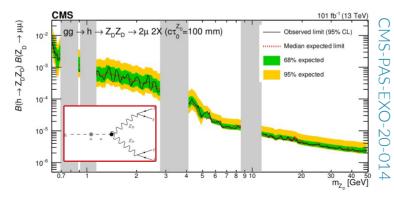

Full Run-2 combination of direct searches expected to break 10%

Many more interesting analyses in the DM orbit (list not exhaustive!)

"Standard" DM +X searches: partial Run-2 results

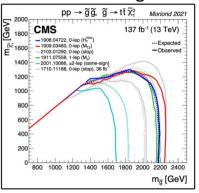
DM + top quarks

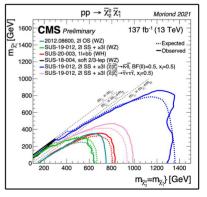




Extended dark sector: dark photon

VBF H to dark photon + regular photon


Displaced dark photon → muon decays


A. Albert - DM @ CMS

SUSY-like

from strong...

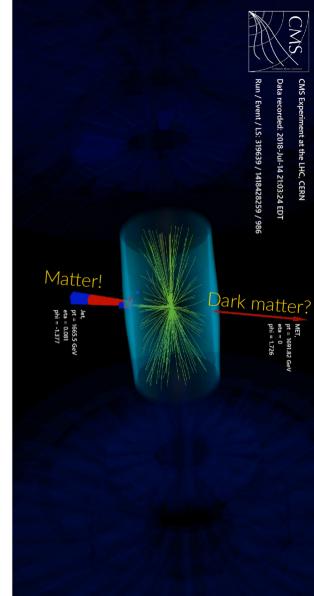
...to weak

SUSY results overview

JHEP 03 (2020) 025

Summary

Dark matter searches are core to CMS physics program


Wide range of probes for different types of SM-DM interactions

- DM + jet, Z, H, photon $\rightarrow p_T^{miss}$ based
- Mediator searches → visible resonances
- Dark sector → dark photons (short-lived, long-lived)

Full Run-2 data set is potent discovery tool

Strongest constraints from full data set typically in TeV range Still plenty of additional parameter space for small couplings, etc

Partial Run-2 results soon to be updated to full Run-2 → More to come here! All CMS results (Click)

