Parity violation and new physics in superconductors

Deog Ki Hong

Pusan National University

June 18, 2021

PASCOS 2021, Daejeon, Korea

Phys. Lett. B 811 (2020), arXiv:2009.01494

1. Motivation

Parity violation in particle physics Atomic parity violation

2. Parity violation in superconductors
Weak interactions in superconductors

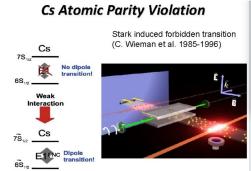
New physics in superconductors
 Majorana neutrino in superconductors
 Doubly charged Higgs

Parity violation in particle physics

▶ The parity is intrinsically broken in nature: For instance

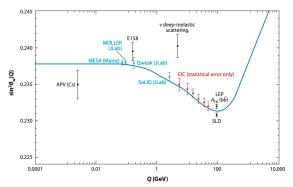
$$n \rightarrow p^+ + e^- + \bar{\nu}_R$$

Only left-handed neutrinos (right-haned anti-neutrinos) are observed in the beta decay.


- According to the standard model of particle physics the weak-interaction depends on the handedness (chirality) of particles, breaking intrinsically the parity.
- The weak interaction is of very short-range and thus very weak at a large distance $d \gg M_W^{-1} \simeq 10^{-17} \text{ m}$

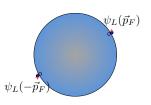
$$V(r) = \frac{\alpha_{\rm w}}{r} e^{-M_W r} \,.$$

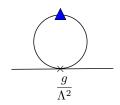
Atomic parity violation


► The APV has been measured (Wood et al, Science 1997), agreeing with SM by 1.5σ : For $6s_{1/2}(F) \rightarrow 7s_{1/2}(F')$

$$\operatorname{Im}(E_{\mathrm{PNC}}) = Q_w \frac{k_{\mathrm{PNC}}}{N} \sim |e|a_0 \times 10^{-11}; \ \ Q_w^{\mathrm{exp}} = -73.16(28)(20)$$

Atomic parity violation

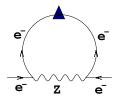

▶ The measurement of APV places strong constraints on new physics, complementing the collider searches, to give $\Lambda_{\rm NP} \gtrsim 10~{\rm TeV}$. (Kumar et al 1302.6263)



Parity violation in superconductors

▶ The low energy EFT of electrons in metal is described by

$$\mathcal{L}_{\mathrm{eff}} = \Psi^{\dagger} \left[i D_t + \frac{1}{2m_*} \left(\vec{\sigma} \cdot \vec{D} \right)^2 + \mu \right] \Psi + \frac{g}{\Lambda^2} \left(\Psi^{\dagger} \sigma^2 \Psi \right)^2 + \cdots$$



► The phonon int. opens a gap at the Fermi surface (BCS):

$$\langle \psi_{\mathsf{L}}(ec{p}_{\mathsf{F}})\psi_{\mathsf{L}}(-ec{p}_{\mathsf{F}})
angle = \langle \psi_{\mathsf{R}}(ec{p}_{\mathsf{F}})\psi_{\mathsf{R}}(-ec{p}_{\mathsf{F}})
angle \sim \Delta$$

Parity violation in superconductors

▶ In addition to the phonon exchange the electrons interact with each other via the weak Z gauge-boson exchange:

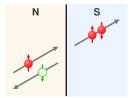
▶ At low energy the Z-boson exchange is approximately

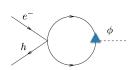
$$\mathcal{L}_{ ext{eff}}^{ extit{NC}} = -rac{G_F}{\sqrt{2}}J_{\mu}^ZJ^{Z\mu}$$

where
$$J_{\mu}^{Z}=-\bar{\psi}_{L}\gamma^{\mu}\psi_{L}+2\sin^{2}\theta_{W}\,\bar{\psi}\gamma^{\mu}\psi$$
.

Parity violation in superconductors

▶ The parity-violating Cooper-pair gap is found to be


$$\delta\Delta = \Delta_R - \Delta_L = \left(1 - 4\sin^2\theta_W\right) \cdot \frac{G_F}{\sqrt{2}} \cdot \frac{2p_F^2}{\pi^2} \frac{\Delta}{v_F} \cdot \ln\left(\frac{E_F}{\Delta}\right) \approx 1.2 \times 10^{-15} \,\Delta \,,$$

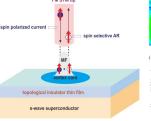

where we have taken the weak mixing angle $\sin^2\theta_W=0.23$, $E_F=\frac{p_F^2}{2m_e}=10\,\mathrm{eV}$ and $\Delta=10^{-2}\,\mathrm{eV}$.

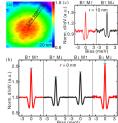
▶ The weak interaction induces the helicity-dependence on the Cooper-pair gap $\sim 10^{-15} \Delta$, which might be measurable for the processes that depend directly on the gap such as the Andreev reflection.

Andreev reflection

► The Andreev-reflection vertex is found to be

$$\mathcal{L}_{ar} = i\kappa \,\partial^{\mu}\theta(x) \,\partial_{\mu}\phi \,\bar{\psi}^{C}\sigma^{2}\psi \,,$$


with the coupling $\kappa = \frac{g}{2\pi^2} \cdot \frac{\Delta}{F} \cdot \frac{\rho_F^2}{\Lambda^2} \, \ln\left(\frac{E_F}{\Delta}\right)$.


Andreev reflection

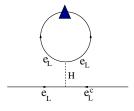
▶ Upon the Andreev reflection electrons gets polarized: the bigger the gap, the more reflected. At each scattering the electrons will be polarized by

$$\frac{\delta\Delta}{\Delta}\sim 10^{-15}$$

► This polarization might be measured by the Spin-selective Andreev reflection (SSAR) used to detect Majorana fermions -Sun et al PRL (2016)

Majorana neutrino in superconductors

▶ If the neutrinos are Majorana fermions, its mass violates the electron number by two and contributes to the gap of left-handed electron:


$$\delta \Delta = \Delta_L - \Delta_R = 10^{-36} \, \Delta \, \left(\frac{m_\nu}{0.1 \, \mathrm{eV}}\right)^2 \, \left(\frac{E_F}{10 \, \mathrm{eV}}\right)^2,$$

Doubly charged Higgs

 Certain BSM model such as type II seesaw predicts a heavy, doubly charged Higgs, which will induce at low energy

$$\mathcal{L}_{4F} = rac{y^2}{M_H^2} \left(ar{\psi}_L^c \psi_L \right)^2 + \mathrm{h.c.}$$

► The doubly charge Higgs will contribute to the gap of left-handed electrons:

$$\frac{\delta \Delta_L}{\Delta_L} \sim 10^{-16} \, \left(\frac{p_F}{3 \, \mathrm{keV}}\right)^2 \cdot \left(\frac{500 \, \mathrm{GeV}}{M_H}\right)^2$$

- We estimate the effect of parity-violating weak interactions on the superconducting gap.
- The effect is tiny but comparable to APV that has been measured.

$$\delta \Delta = \Delta_R - \Delta_L \approx 1.2 \times 10^{-15} \, \Delta$$

- We propose to measure the parity-violating gap by using SSAR
- ► This new effect could test SM at low energy and put constraints on possible new BSM physics.

- We estimate the effect of parity-violating weak interactions on the superconducting gap.
- The effect is tiny but comparable to APV that has been measured.

$$\delta \Delta = \Delta_R - \Delta_L \approx 1.2 \times 10^{-15} \, \Delta$$
,

- We propose to measure the parity-violating gap by using SSAR
- ► This new effect could test SM at low energy and put constraints on possible new BSM physics.

- We estimate the effect of parity-violating weak interactions on the superconducting gap.
- The effect is tiny but comparable to APV that has been measured.

$$\delta \Delta = \Delta_R - \Delta_L \approx 1.2 \times 10^{-15} \, \Delta$$
,

- We propose to measure the parity-violating gap by using SSAR
- This new effect could test SM at low energy and put constraints on possible new BSM physics.

- We estimate the effect of parity-violating weak interactions on the superconducting gap.
- The effect is tiny but comparable to APV that has been measured.

$$\delta \Delta = \Delta_R - \Delta_L \approx 1.2 \times 10^{-15} \, \Delta$$
,

- We propose to measure the parity-violating gap by using SSAR
- ► This new effect could test SM at low energy and put constraints on possible new BSM physics.