Shedding light on dark matter with recent muon (*g*–2) and Higgs exotic decay measurements

Chih-Ting Lu (KIAS)

Collaborators:

Raymundo Ramos, Kingman Cheung

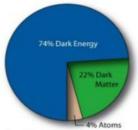
Ref: arXiv:2104.04503

Contents

- Motivation
- •2. Renormalizable simplified dark matter model
- •3. Experimental constraints
- •4. Results
- •5. Conclusion

Motivation – Dark Matter

Evidences for Dark Matter (DM)


- WMAP measurement ($\Omega_{\rm m}$ =0.25)
- · rotation curves of galaxies
- · the "bullet" cluster

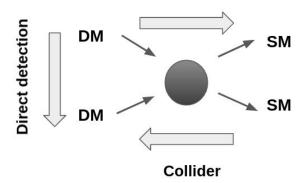
Open Problems

- · DM nature
- DM interactions
- DM formation mechanism

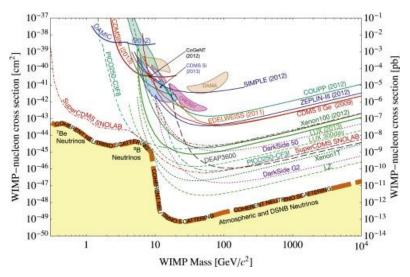
Detection techniques

- · signals from colliders
- direct detection
- indirect detection of annihilation products such as neutrinos, antiprotons or gamma-rays

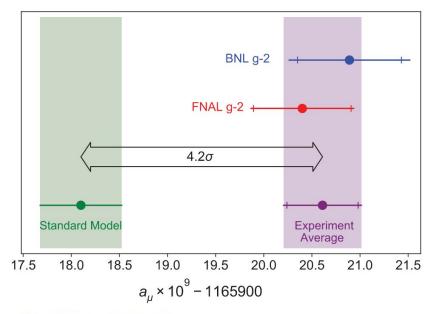
Chandra photo album: X-ray image of 1E0657-558

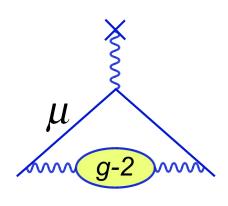


Mattia Fornasa and Marco Taoso


Motivation – Dark Matter

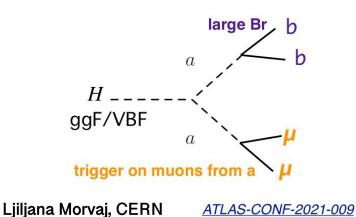
Indirect detection

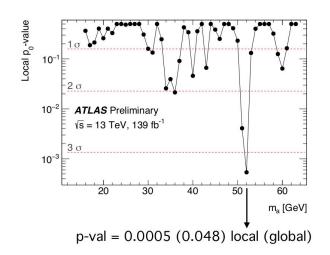



Is the Weakly Interacting
Massive Particles (WIMP) dead?

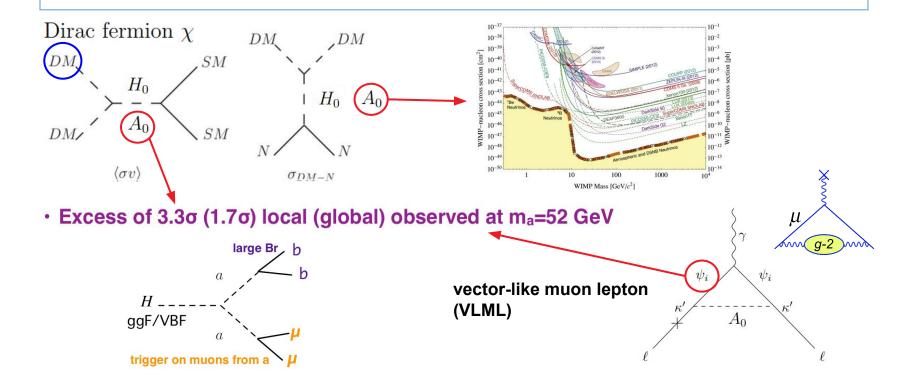
DM direct detection

Motivation – Muon (g-2)




BSM inside the loop?

B. Abi $et\ al.$ (Muon g-2 Collaboration) Phys. Rev. Lett. **126**, 141801 – Published 7 April 2021


Motivation – ATLAS Higgs boson exotic decay excess

- $H \rightarrow aa \rightarrow 2b2\mu$, $16 < m_a[GeV] < 62$
 - Excess of 3.3σ (1.7σ) local (global) observed at m_a=52 GeV

Motivation – Combine them together?

Renormalizable simplified dark matter model

$$\mathcal{L} = \mathcal{L}_{SM} + \overline{\chi}(i\partial \!\!\!/ - M_{\chi} - ig_{\chi}A\gamma_{5})\chi + \frac{1}{2}\partial_{\mu}A\partial^{\mu}A - \frac{1}{2}m_{A}^{2}A^{2}$$

$$- (\mu_{A}A + \lambda_{HA}A^{2})(H^{\dagger}H - \frac{v^{2}}{2}) - \frac{\mu'_{A}}{3!}A^{3} - \frac{\lambda_{A}}{4!}A^{4}$$

$$+ \left[-\kappa \overline{L}_{\mu}H\psi_{R} + i\kappa'\overline{\mu}_{R}A\psi_{L} - iy\overline{\psi}_{L}A\psi_{R} + M_{\psi}\overline{\psi}_{L}\psi_{R} + \text{H.c.} \right].$$

Note that the dimension-3 terms with μ_A and μ'_A break the parity

- S. Baek, P. Ko and J. Li, Phys. Rev. D 95, no.7, 075011 (2017)
- G. Hiller, C. Hormigos-Feliu, D. F. Litim and T. Steudtner, Phys. Rev. D 102, no.7, 071901 (2020)

Similarly, the VLML and muon will mix together after EWSB.

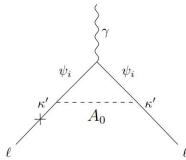
$$Z \to l^+ l^-$$
 precision measurements
$$\frac{\kappa v}{\sqrt{2}M_{\psi}} < \mathcal{O}(10^{-2}).$$
 where $M_{\psi} \sim v$ implies $\kappa \lesssim \mathcal{O}(10^{-2})$.

Renormalizable simplified dark matter model

we can read off ten undetermined parameters in this model:

 g_{χ} , s_{α} , M_{χ} , λ_{HA} , μ'_{A} , λ_{A} , κ , κ' , y, M_{ψ} .

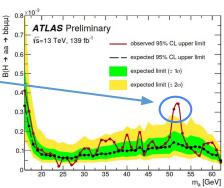
where the star (*) indicates that the parameter is scanned logarithmically in base 10.


1.0 $< \kappa' < \sqrt{4\pi}$.

1. Muon g-2

$$\Delta a_{\mu} = (2.51 \pm 0.59) \times 10^{-9}$$

$$\Delta a_{\mu} = \frac{\kappa'^2}{96\pi^2} \frac{m_{\mu}^2}{M_{\psi}^2} \left[c_{\alpha}^2 f \left(\frac{M_{A_0}^2}{M_{\psi}^2} \right) + s_{\alpha}^2 f \left(\frac{M_{H_0}^2}{M_{\psi}^2} \right) \right]$$


where
$$f(t) = (2t^3 + 3t^2 - 6t^2 \ln t - 6t + 1)/(t - 1)^4$$
.

2. ATLAS Higgs boson exotic decay excess

$$BR(H_0 \to A_0 A_0 \to b\bar{b}\mu^+\mu^-)$$
 is around 3.5×10^{-4}

A0 cannot simply be a SM singlet scalar or one of scalar/pseudoscalar in 2HDMs.

A. The LHC Higgs boson measurements

• Higgs boson exotic and invisible decays

 $BR(H_0 \to undetected) < 19\%$ and $BR(H_0 \to invisible) < 9\%$ at 95% C.L.

•
$$H_0 \to \mu^+ \mu^-$$

 $1.19^{+0.44}_{-0.42}(\text{stat})^{+0.15}_{-0.14}(\text{syst})$

•
$$H_0 \rightarrow \gamma \gamma \over 1.12^{+0.07}_{-0.06} (\text{stat})^{+0.06}_{-0.07} (\text{syst})$$

B. The DM phenomenology

• DM relic density

$$\Omega_{\chi}h^2 = 0.12 \pm 0.001$$

• DM direct detection

DM interacts with quarks via H0/A0 exchange resulting in a suppressed tree-level amplitude for DM-nucleon elastic scattering due to small momentum transfer.

C. The ATLAS multi-lepton search

Search for supersymmetry in events with four or more charged leptons in $139\,{\rm fb}^{-1}$ of $\sqrt{s}=13\,{\rm TeV}\,pp$ collisions with the ATLAS detector

ATLAS Collaboration • Georges Aad (Marseille, CPPM) et al. (Mar 22, 2021)

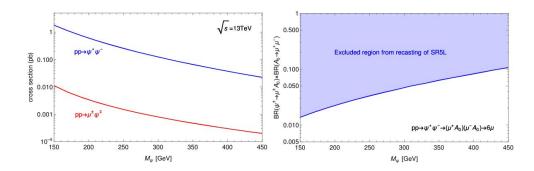
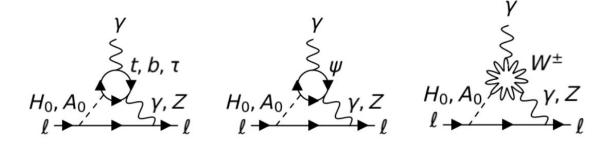
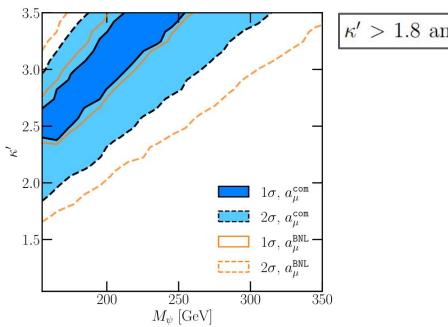



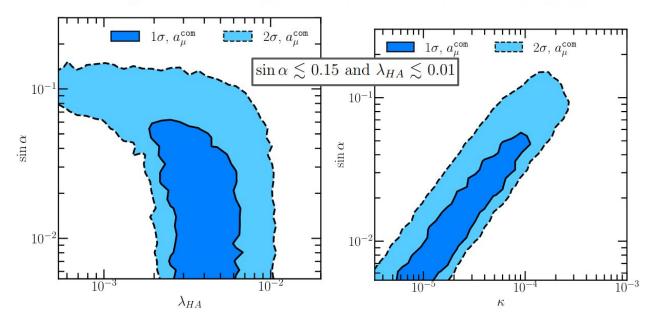
FIG. 1. Left panel: The production cross sections for the VLML ψ^{\pm} at $\sqrt{s}=13$ TeV. We fix $\sin \alpha = 0.1$, $\kappa = 5 \times 10^{-2}$ and $\kappa' = 2.0$ but vary M_{ψ} from 150–450 GeV. Right panel: Exclusion limit from recasting of the signal region SR5L in [69] on $(M_{\psi}, BR(\psi^{\pm} \to \mu^{\pm} A_0) \times BR(A_0 \to \mu^{+} \mu^{-}))$ plane.

D. The EDM of electron and muon

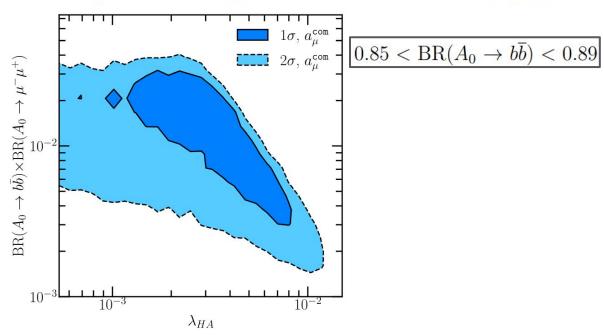

$$|d_e^E| < 1.1 \times 10^{-29} \text{ ecm at } 90\% \text{ C.L.}$$

$$|d_{\mu}^{E}| < 1.9 \times 10^{-19} \text{ ecm at } 95\% \text{ C.L.}$$

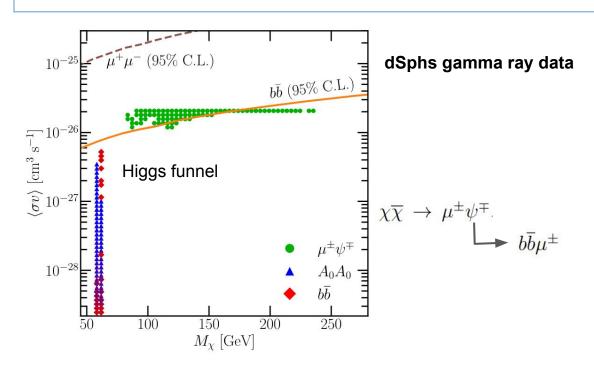
Results


A. The impact from $(g-2)_{\mu}$ results on κ' and M_{ψ}

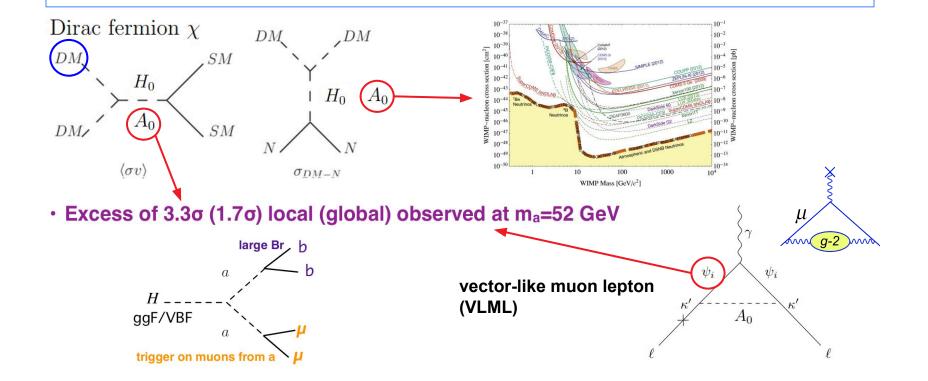
 $\kappa' > 1.8$ and $M_{\psi} < 315 \,\mathrm{GeV}$


Results

B. The impact from Higgs measurements on $\sin \alpha$, λ_{HA} , and κ



Results


B. The impact from Higgs measurements on $\sin \alpha$, λ_{HA} , and κ

The 2σ allowed samples projected to $(M_{\chi}, \langle \sigma v \rangle)$ plane

Conclusion

Thank you for your attention

Backup-1

The Lagrangian to describe the interactions between the SM sector and DM sector via H_0 and A_0 portal can be written as

$$\mathcal{L}_{int}^{(H_0,A_0)} = -ig_{\chi} \left(H_0 s_{\alpha} + A_0 c_{\alpha} \right) \overline{\chi} \gamma_5 \chi - \left(H_0 c_{\alpha} - A_0 s_{\alpha} \right) \left[\sum_{f \neq \mu} \frac{m_f}{v} \overline{f} f - \sum_{V=Z,W^{\pm}} \frac{\delta_V m_V^2}{v} V_{\mu} V^{\mu} \right] \\
- \left(\frac{m_{\mu}}{v} c_{\alpha} + ig_A \gamma_5 s_{\alpha} \right) H_0 \overline{\mu} \mu + \left(\frac{m_{\mu}}{v} s_{\alpha} - ig_A \gamma_5 c_{\alpha} \right) A_0 \overline{\mu} \mu \tag{5}$$

where $s_{\alpha} = \sin \alpha$, $c_{\alpha} = \cos \alpha$ and in the first-order approximation of κ ,

$$g_A = \frac{\kappa' \kappa}{\sqrt{2}} \frac{v}{M_{\psi}} \tag{6}$$

and $\delta_V = 1(2)$ for $V = Z(W^{\pm})$.

Backup-2

$$\mathcal{L}_{int}^{\psi} = -e\overline{\psi}\gamma^{\mu}\psi A_{\mu} + \frac{g}{c_{W}}\overline{\psi}\gamma^{\mu}\psi Z_{\mu} - iy\overline{\psi}(H_{0}s_{\alpha} + A_{0}c_{\alpha})\gamma^{5}\psi$$

$$+ \left[-\frac{\kappa}{\sqrt{2}}(H_{0}c_{\alpha} - A_{0}s_{\alpha})\overline{\mu}_{L}\psi_{R} + i\kappa'(H_{0}s_{\alpha} + A_{0}c_{\alpha})\overline{\mu}_{R}\psi_{L} + g'_{z}\overline{\mu}_{L}\gamma^{\mu}\psi_{L}Z_{\mu} + g'_{w}\overline{\nu}\gamma^{\mu}\psi_{L}W_{\mu}^{+} + \text{H.c.} \right]$$

where

$$g_z' = -\frac{g_w'}{\sqrt{2}c_W}, \quad g_w' = \frac{\kappa g}{2} \frac{v}{M_\psi}.$$