5D BPS quivers and KK towers

Dongwook Ghim

KIAS School of Physics

Jun. 14th, PASCOS 2021 via ZOOM

Based on joint work (arXiv:2011.04661) with Zhihao Duan (KIAS) and Piljin Yi (KIAS)

5D BPS quivers and KK towers

- [1] Construction of D=5 BPS quivers (facilitated by brane tiling of toric CY₃)
- [2] Witten Index of abelian BPS quivers (single KK)
 (L² BPS states as L² cohomology of quiver Higgs moduli)
- [3] Witten Index of non-abelian BPS quivers (higher KK, etc) (Coulomb branch formula and weak-coupling chamber)

What is BPS quiver?

(4D) BPS quiver

Effective SUSY QM for BPS objects in D=4 SW theories

e.g. BPS quiver of 4D SU(2) theory

- [1] Node for each elementary object (basis)
- [2] Arrows from Schwinger product of basis charges (m, e)
- NB Stable bound states ⇔ non-zero Witten index of SQM

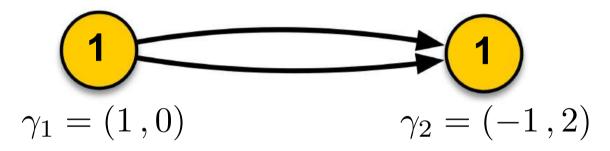
$$\Gamma = \sum_{i} N_i \gamma_i$$

[Seiberg, Witten 94] [Denef 02]

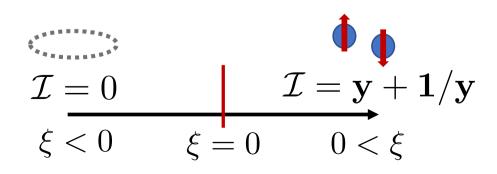
(4D) BPS quiver

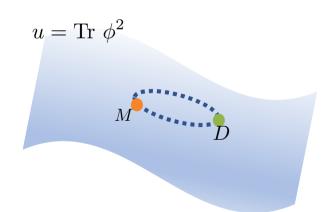
Effective SUSY QM for BPS objects in D=4 SW theories

e.g. stability of W-boson SU(2) SW theory; $\gamma_W = (0, 2)$



NB Wall-crossing in moduli space is $u = \text{Tr } \phi^2$ captured by jump of index under the variation of FI constant.





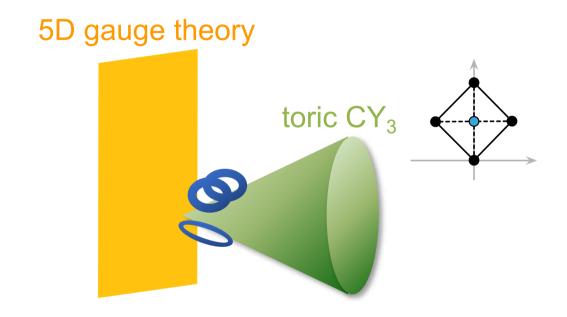
[Seiberg, Witten 94] [Denef 02]

5D BPS quivers and KK towers

- [1] Construction of D=5 BPS quivers [Closset, Del Zotto 19] (facilitated by brane tiling of toric CY₃)
 e.g. [Franco, Hanany, Kennaway, Vegh, Wecht 96]
- [2] Witten Index of abelian BPS quivers (single KK)
 (L² BPS states as L² cohomology of quiver Higgs moduli)
- [3] Witten Index of non-abelian BPS quivers (higher KK, etc) (Coulomb branch formula and weak-coupling chamber)

Geometric engineering

D=5 gauge theory can be engineered by M-theory 'compactified' over toric Calabi-Yau 3-folds.



NB M-branes wrapping on internal 2- and 4-cycles of CY3 give BPS objects in 5D gauge theory.

[Klemm, Lerche, Mayr, Vafa, Warner 96] [Katz, Klemm, Vafa 96]

5D BPS quiver

Effective SUSY QM for BPS objects in circle-compactified D=5 gauge theories

[1] Node for each elementary object (... + instanton + KK)

[2] Arrows from Schwinger products of charges (m, e)

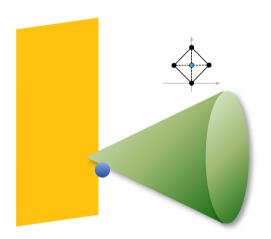
NB Circle compacitification is essential in that we have spatially extended BPS objects like monopole strings in D=5.

[Banerjee, Longhi, Romo 18, 19] [Closset, Del Zotto 19]

BPS quiver from Probe theory

Upon the reduction to D=4 KK theory, there is a canonical way to draw 5D BPS quiver due to states attributed to **D0 branes (without D2 or D4)**⇔ pure **KK** modes of D=4 KK theory

$$\Gamma = \eta_m \hat{m} + \eta_e \hat{e} + \eta_I I + n_K \hat{K} = \sum_i N_i \gamma_i$$



4D KK gauge theory

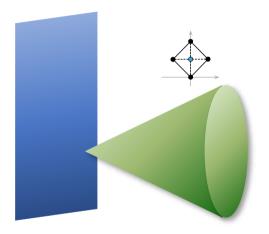
[Closset, Del Zotto 19]

BPS quiver from Probe theory

Upon the reduction to D=4 KK theory, there is a canonical way to draw 5D BPS quiver due to states attributed to **D0 branes (without D2 or D4)**

- ⇔ pure **KK** modes of D=4 KK theory
- ⇔ T-dual³ of D3 brane probing CY3

$$\Gamma = \eta_m \hat{m} + \eta_e \hat{e} + \eta_e \hat{I} + n_K \hat{K} = \sum_i N_i \gamma_i$$

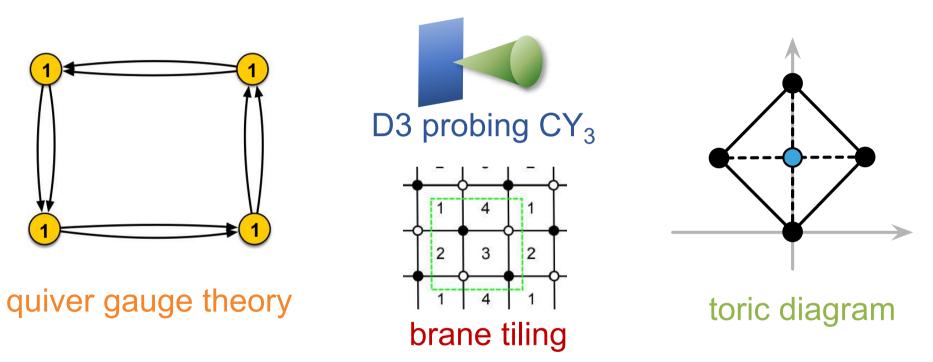


4d gauge theory on D3

[Closset, Del Zotto 19]

Brane Tiling

A combinatorial tool exists to engineer 4d N=1 quiver gauge theories supported by D3 probing toric CY 3-folds.



NB BPS quiver of **pure KK** = single D0

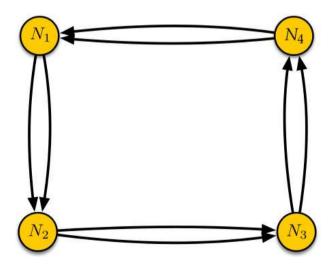
⇔ single D3 = abelian quiver of **brane tiling**

e.g. [Franco, Hanany, Kennaway, Vegh, Wecht 96]

5D BPS quiver

Effective SUSY QM for BPS objects in circle-compactified D=5 gauge theories

- [1] (equal-ranked) quivers from brane tiling → pure KK sector
- [2] (unequal-ranked) extension → non-trivial charged sector
 - e.g. BPS quiver of 5D SU(2) gauge theory on circle

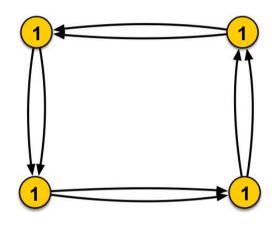


$$\Gamma = n_m \hat{m} + n_e \hat{e} + n_I \hat{I} + n_K \hat{K} = \sum_i N_i \gamma_i$$

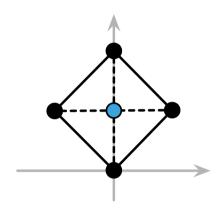
[Banerjee, Longhi, Romo 18, 19] [Closset, Del Zotto 19]

Remark

The **Higgs branch** of 4d N=1 **abelian** quiver corresponds to the probed toric Calabi-Yau 3-fold.



$$W = X_{12}X_{23}Y_{34}Y_{41} + Y_{12}Y_{23}X_{34}X_{41} - X_{12}Y_{23}Y_{34}X_{41} - Y_{12}X_{23}X_{34}Y_{41}$$



$$\mathcal{W} = X_{12}X_{23}Y_{34}Y_{41} + Y_{12}Y_{23}X_{34}X_{41}$$
 $\mathcal{M}_{\text{Higgs}}^{(4d)} = (\mathbb{C}[X'\text{s}]/\langle\partial\mathcal{W} = 0\rangle)//U(1)^{N-1}$

- The quiver always involves fine-tuned superpotential. NB
- NB Coulomb moduli pops up in 1d;

$$\mathcal{M}^{(1d)} = \mathbb{R}^3 \times (\mathbb{C}[X's]/\langle \partial \mathcal{W} = 0 \rangle) / U(1)^{N-1}$$

e.g. [Franco, Hanany, Kennaway, Vegh, Wecht 96]

5D BPS quivers and KK towers

[1] Construction of D=5 BPS quivers (facilitated by brane tiling of toric CY₃)

- [2] Witten Index of abelian BPS quivers (single KK)
 (L² BPS states as L² cohomology of quiver Higgs moduli)
 [Witten 82], [Alvarez-Gaume 83]
- [3] Witten Index of non-abelian BPS quivers (higher KK, etc) (Coulomb branch formula and weak-coupling chamber)

Witten Index

Definition

Twisted partition function with fermionic parity weight

[Witten 82]

$$\operatorname{Tr} (-1)^{\mathcal{F}} e^{-\beta \mathcal{H}} \int_{\beta \to +\infty} \mathcal{I} = \lim_{\beta \to +\infty} \operatorname{Tr} (-1)^{\mathcal{F}} e^{-\beta \mathcal{H}}$$

$$\Omega = \lim_{\beta \to 0^{+}} \operatorname{Tr} (-1)^{\mathcal{F}} e^{-\beta \mathcal{H}}$$

reduction to matrix integral or localization leaving JK residue.

NB JK-residue formula gives Witten index of N=4 SQM!

NOT ALWAYS

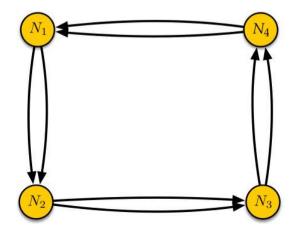
[Hori, Kim, Yi 14]

Failure of JK-residue formula

To be precise, Witten index counts L²-normalizable states. Contamination from continuous spectra must not be counted.

$$\operatorname{Tr}_{\mathcal{H}_{L^2}}(-1)^{\mathcal{F}}e^{-\beta\,\mathcal{H}}$$

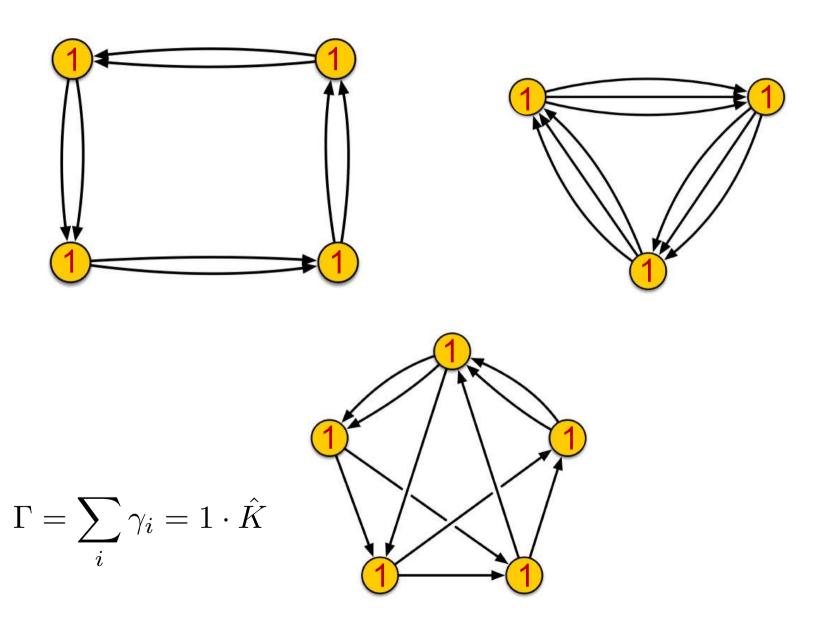
Furthermore, 5D BPS quivers entail **fine-tuned super- potentials** whereas localization formula assumes generic one.



$$W = X_{12}X_{23}Y_{34}Y_{41} + Y_{12}Y_{23}X_{34}X_{41} - X_{12}Y_{23}Y_{34}X_{41} - Y_{12}X_{23}X_{34}Y_{41}$$

What to count?

Abelian quivers



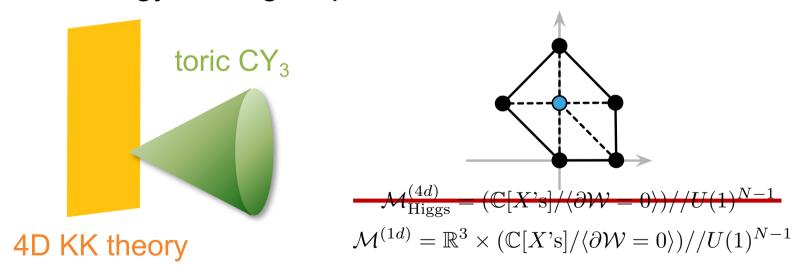
Witten index and L² cohomology

Witten index counts L²-normalizable states.

Contamination from continuous spectra must not be counted.

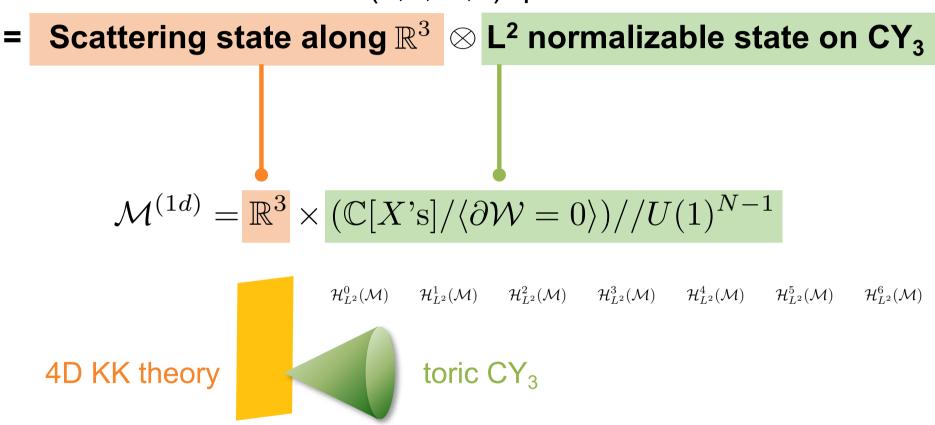
$$\operatorname{Tr}_{\mathcal{H}_{L^2}}(-1)^{\mathcal{F}}e^{-\beta\,\mathcal{H}}$$

Wave function of corresponding particles correspond to entries of L² cohomology on target space.



Witten index and L² cohomology

Relevant state of abelian (1,1,...,1) quiver of IIA frame



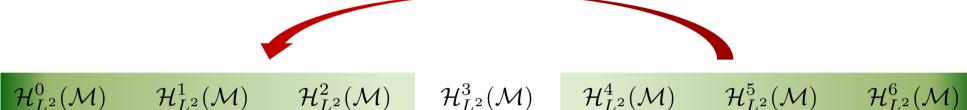
NB There exists well-known machinery and mathematical theorem for counting L² cohomology of toric CY's.

L² cohomology counting

$$\mathcal{H}^0_{L^2}(\mathcal{M})$$
 $\mathcal{H}^1_{L^2}(\mathcal{M})$ $\mathcal{H}^2_{L^2}(\mathcal{M})$ $\mathcal{H}^3_{L^2}(\mathcal{M})$ $\mathcal{H}^4_{L^2}(\mathcal{M})$ $\mathcal{H}^5_{L^2}(\mathcal{M})$ $\mathcal{H}^6_{L^2}(\mathcal{M})$

L² cohomology counting

[1] Pairing btw. L² cohomology $\int_{\mathcal{M}} \omega_{(k)} \wedge \omega_{(2d-k)}$

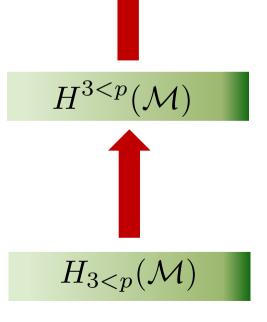


[2] Theorem for manifolds with conical metric [Hausel, Hunsicker, Mazzeo 02]

$$H^{p<3}(\mathcal{M},\partial\mathcal{M})$$
 $\operatorname{Im}(H^3(\mathcal{M},\partial\mathcal{M})\to H^3(\mathcal{M}))$ $H^{3< p}(\mathcal{M})$

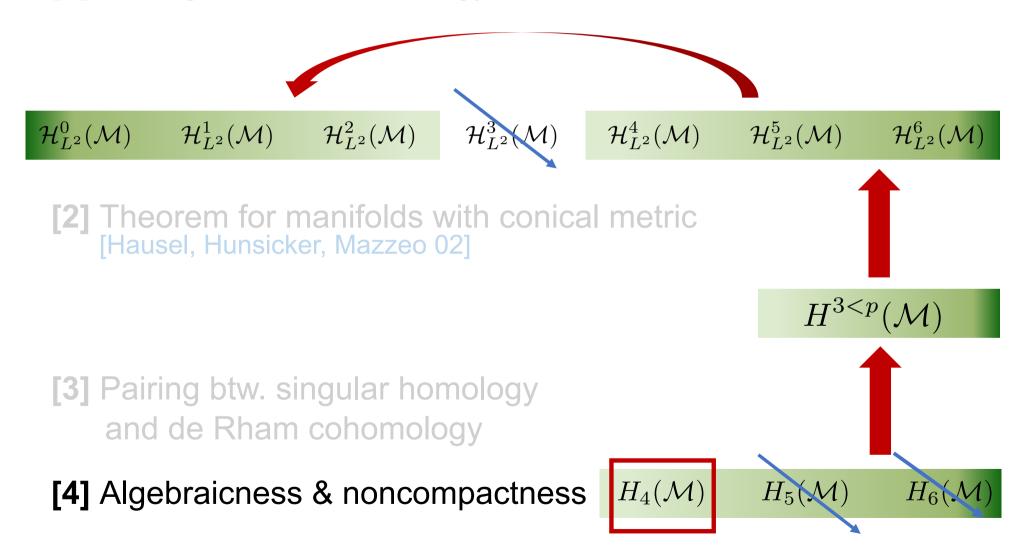
[3] Pairing btw. singular homology and de Rham cohomology

$$\int_{\Sigma^{(p)}} \omega_{(p)}$$



L² cohomology counting

[1] Pairing btw. L² cohomology



Remark

L² Witten index of BPS quiver shares the following features:

[1] It counts the number of **4-cycles** of toric CY₃ of interest.

$$\mathcal{I} = -2 \cdot \dim H_4(\mathcal{M})$$

[2] symmetric Laurent polynomial in $SU(2)_R$ R-sym. fugacity y

$$\mathcal{I}(\mathbf{y}) = \dim H_4(\mathcal{M}) \cdot \left(-\mathbf{y} - \frac{1}{\mathbf{y}}\right)$$

NB grading by \mathbf{y} : (p-d) for $\mathcal{H}_{L^2}^p$ cohomology and $d=\dim_{\mathbb{C}}\mathcal{M}$

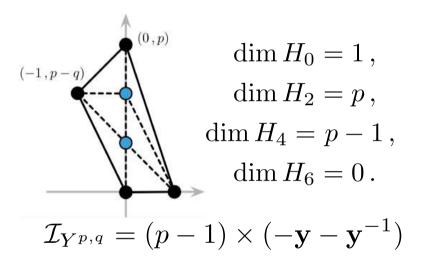
[3] SU(2) spin interpretation (Kähler 2-form J on CY_3)

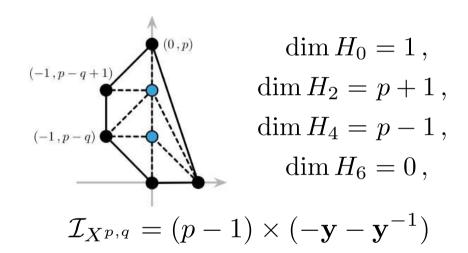
$$L_{+}[\omega_{(n)}] = J \wedge \omega_{(n)} , \quad L_{-}[\omega_{(n)}] = i_{J} \omega_{(n)} , \quad L_{3}[\omega_{(n)}] = \frac{(n-3)}{2} \omega_{(n)}$$

Examples

Two families of toric CY3, engineering 5D SU(p)_q theory

$$\mathcal{I}(\mathbf{y}) = \dim H_4(\mathcal{M}) \cdot \left(-\mathbf{y} - \frac{1}{\mathbf{y}}\right)$$





• $\dim H_4(\mathcal{M}_3)$ = number of 4-cycles = rank of 5d SCFTs

$$\mathcal{I}_{(1,1,\ldots,1)}(\mathbf{y}) = \operatorname{rank} \times (-\mathbf{y} - \mathbf{y}^{-1})$$

NB neutral KK modes = Cartan part of vector multiplets

5D BPS quivers and KK towers

More information @ following QR links 60-min talks @ Fudan University and Imperial Quiver meeting

[1] Construction of D=5 BPS quive (facilitated by brane tiling of too

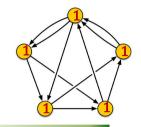
[2] Witten Index of abelian BPS q (L² BPS states as L² cohomology of quiver Higgs moduli)

[3] Witten Index of non-abelian BPS quivers (higher KK, etc)
(Coulomb branch formula and weak-coupling chamber)
[Yi 97], [Sethi, Stern 97], [Manschot, Pioline, Sen 10-14]

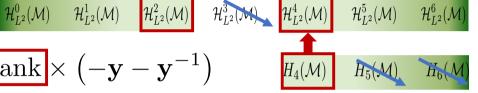
Summary

- Single KK mode

L² cohomology counting on Coulomb / Higgs branch of quiver



FI-independent!
$$\mathcal{I}_{(1,1,...,1)}(\mathbf{y}) = \text{rank} \times (-\mathbf{y} - \mathbf{y}^{-1})$$

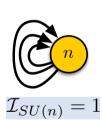


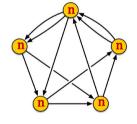
- Higher KK modes

$$\mathcal{N}_n \equiv \left[(\mathcal{M}_3)^n \times (\mathbb{R}^3)^n \right] / S_n = \mathbb{R}^3 \times \left[(\mathcal{M}_3)^n \times (\mathbb{R}^3)^{n-1} \right] / S_n$$

$$\simeq \left[\mathbb{R}^3 \times \mathcal{M}_3 \right] \times \left[(\mathbb{R}^6)^{n-1} \times (\mathbb{R}^3)^{n-1} \right] / S_n$$

$$\Psi \simeq \Psi_{\text{geometric}} \otimes \Psi_{SU(n)_*}$$



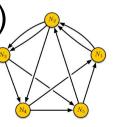


FI-independent! $\mathcal{I}_{(n,n,...,n)}(\mathbf{y}) = \operatorname{rank} \times (-\mathbf{y} - \mathbf{y}^{-1})$

- Electric / flavor particles (NO magnetic/instanton charge)

MPS wall-crossing formula with quiver invariant hypothesis

FI-dependent! $\mathcal{I}_{inv}(\gamma_i) = 1$ for single-node quiver



Thank you