\mathbb{Z}_5 Symmetries in F-theory, Homological Projective Duality and Modular Forms

PASCOS 2021

Thorsten Schimannek

14.06.2021

- Genus-one fibrations w/ N-sections for N ≤ 4
 →Z_{top.} can be expanded in Γ₁(N) weak Jacobi forms
 [Huang,Katz,Klemm'15],[DelZotto,Gu,Huang,Kashani-Poor,Klemm,Lockhart'17],[Lee,Lerche,Weigand'18],[Cota,Klemm,T.S.'19]
- Result of monodromies in stringy Kähler moduli space
 [T.S.'19],[Cota,Klemm,T.S.'19]

Torus fibered Calabi-Yau are abundant

[Huang, Taylor'19]: 99.99994% of 4d reflexive polytopes have structure indicating T^2 fibration

(see also e.g. [Anderson,Gao,Gray,Lee'16])

Moreover, they encode F-theory vacua and play pivotal role in network of string dualities!

- Genus-one fibrations w/ N-sections for N ≤ 4 → Z_{top.} can be expanded in Γ₁(N) weak Jacobi forms [Huang,Katz,Klemm'15],[DelZotto,Gu,Huang,Kashani-Poor,Klemm,Lockhart'17],[Lee,Lerche,Weigand'18],[Cota,Klemm,T.S.'19]
- Result of monodromies in stringy Kähler moduli space
 [T.S.'19],[Cota,Klemm,T.S.'19]

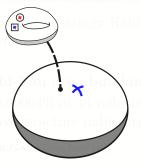
Torus fibered Calabi-Yau are abundant

[Huang, Taylor'19]: 99.99994% of 4d reflexive polytopes have structure indicating T^2 fibration

(see also e.g. [Anderson,Gao,Gray,Lee'16])

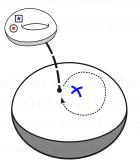
Moreover, they encode F-theory vacua and play pivotal role in network of string dualities!

Not all torus fibrations are elliptic! Some only have *N*-sections



Intersections experience monodromy along base!

Not all torus fibrations are elliptic! Some only have *N*-sections



Intersections experience monodromy along base!

- Genus-one fibrations w/ N-sections for N ≤ 4
 →Z_{top.} can be expanded in Γ₁(N) weak Jacobi forms
 [Huang,Katz,Klemm'15],[DelZotto,Gu,Huang,Kashani-Poor,Klemm,Lockhart'17],[Lee,Lerche,Weigand'18],[Cota,Klemm,T.S.'19]
- Result of monodromies in stringy Kähler moduli space
 [T.S.'19],[Cota,Klemm,T.S.'19]

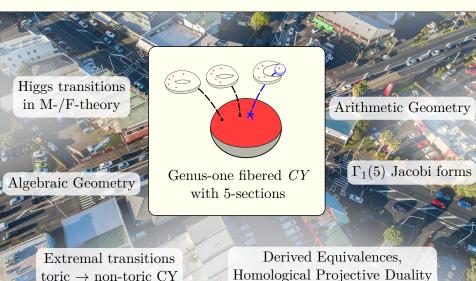
Torus fibered Calabi-Yau are abundant

[Huang, Taylor'19]: 99.99994% of 4d reflexive polytopes have structure indicating T^2 fibration

(see also e.g. [Anderson,Gao,Gray,Lee'16])

Moreover, they encode F-theory vacua and play pivotal role in network of string dualities!

This talk: $N = 5 \rightarrow \text{Rich in novel phenomena}$ published soon [Johanna Knapp, Emanuel Scheidegger, T.S.'21]



 $toric \rightarrow non-toric CY$

Conjecture: For genus-one fibered Calabi-Yau with N-sections

[Huang,Katz,Klemm'15],[DelZotto,Gu,Huang,Kashani-

Poor, Klemm, Lockhart' 17], [Lee, Lerche, Weigand' 18], [Cota, Klemm, T.S.' 19]

$$Z_{\text{top}}(\underline{t},\lambda) = Z_0(\tau,\lambda) \left(1 + \sum_{\beta \in H_2(B,\mathbb{Z})} Z_{\beta}(\tau,\underline{m},\lambda) Q^{\beta} \right)$$

 $Z_{\beta}(\tau, \underline{m}, \lambda)$ are $\Gamma_1(N)$ lattice Jacobi forms

 \rightarrow All-genus results for compact CY 3-folds!

Conjecture: For genus-one fibered Calabi-Yau with N-sections

[Huang, Katz, Klemm'15], [DelZotto, Gu, Huang, Kashani-

Poor, Klemm, Lockhart'17], [Lee, Lerche, Weigand'18], [Cota, Klemm, T.S.'19]

$$Z_{\text{top}}(\underline{t},\lambda) = Z_0(\tau,\lambda) \left(1 + \sum_{\beta \in H_2(B,\mathbb{Z})} Z_\beta(\tau,\underline{m},\lambda) Q^\beta\right)$$

$$Z_{\text{top}}(\underline{t},\lambda) = Z_0(\tau,\lambda) \left(1 + \sum_{\beta \in H_2(B,\mathbb{Z})} Z_\beta(\tau,\underline{m},\lambda) Q^\beta\right)$$

$$\underline{\underline{m}} \text{: Volumes of fiber components}$$
bit forms

 \rightarrow All-genus results for compact CY 3-folds!

Conjecture: For genus-one fibered Calabi-Yau with N-sections

[Huang,Katz,Klemm'15],[DelZotto,Gu,Huang,Kashani-

Poor, Klemm, Lockhart' 17], [Lee, Lerche, Weigand' 18], [Cota, Klemm, T.S.' 19]

$$Z_{\text{top}}(\underline{t},\lambda) = Z_0(\tau,\lambda) \left(1 + \sum_{\beta \in H_2(B,\mathbb{Z})} Z_{\beta}(\tau,\underline{m},\lambda) Q^{\beta} \right)$$

 $Z_{\beta}(\tau, \underline{m}, \lambda)$ are $\Gamma_1(N)$ lattice Jacobi forms

 \rightarrow All-genus results for compact CY 3-folds!

Modularity from brane monodromies

Interpret cplx. volumes $\tau, \underline{m}, \underline{t}$ as 2-brane charges

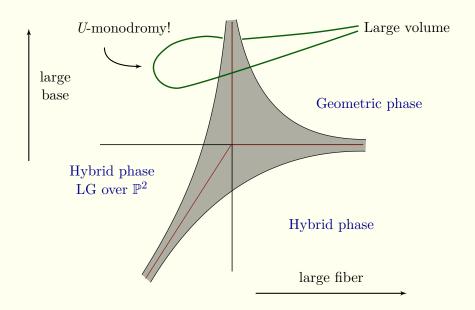
- \rightarrow For $N \leq 4$ auto-equivalences of brane category generate $\Gamma_1(N)$ -action
- B-field shifts act as $\tau \mapsto \tau + 1$, $m \to m + 1$, ...
- ◆ Moreover, the fiberwise conifold transformation acts as

$$U: \begin{cases} \tau & \mapsto \tau/(1+N\tau) \\ m_i & \mapsto m_i/(1+N\tau), \quad i=1,..., \text{rk}(G) \\ Q_i & \mapsto (-1)^{a_i} \exp\left(-\frac{N}{1+N\tau} \cdot \frac{1}{2} m^a m^b C_{ab}^i + \mathcal{O}(Q_i)\right) Q_i \end{cases}$$

[T.S.'19], [Cota,Klemm,T.S.'19]

Together leads to modular properties of $Z_{top.}$!

Moduli space of genus-1 fibration with $N \le 4$ -sections (Example: genus one fibration w/ 2-sections over \mathbb{P}^2)



Puzzle 1:

For N > 4 the group $\Gamma_1(N)$ has at least 3 generators!

 \rightarrow Let's consider N=5 to see how it works.

But how do we obtain genus-one fibrations with 5-sections?

Normal forms for genus-one curves

•• N=1: Weierstraß form in
$$\mathbb{P}_{123}$$
 $y^2 = x^3 + f \cdot xz^4 + g \cdot z^6$:

N=4: Intersection of two quadrics in \mathbb{P}^3 $x^2 + c_1xy + c_2xz + c_3xw + \cdots + c_9w^2 = 0$

$$c_{10}x^2 + c_{11}xy + c_{12}xz + c_{13}xw + \dots + c_{19}w^2 = 0$$

Note: All are complete intersections in toric varieties

What about N = 5?

Normal forms for genus-one curves w/ 5-sections

Can be mapped into **Pfaffian curve** in \mathbb{P}^4

- •• Consider anti-symmetric 5×5 matrix A with entries linear in $[x_1 : \cdots : x_5] \in \mathbb{P}^4$
- •• $\{\operatorname{rk}(A) \leq 2\} \subset \mathbb{P}^4$ is genus-one curve with "5-point"
 - \rightarrow Vanishing locus of 4×4 Pfaffians

Dual description as **complete intersection in Grassmanian!**

Plücker embedding $Gr(2,5) \to \mathbb{P}^9$ also defined by 4×4 Pfaffians

 \rightarrow Can also represent curve as codim 5 CI in Gr(2,5)

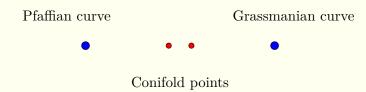
see e.g. [Fisher'06]

Example of homological projective duality! [Kuznetsov'05] 1-fold analogon of Rødland Calabi-Yau [Rødland'98]

GLSM for Pfaffian curve constructed in [Hori,Knapp'14] Gauge group G = U(2), fields $p_{1,...,5}$ in \det^{-1} , $x_{1,...,5}$ in \Box

Periods via localization using
[Benini,Cremonesi'12],[Doroud,Gomis,Le Floch,Lee'12]
[Jockers,Kumar,Lapan,Morrison,Romo'13]

Moduli space:

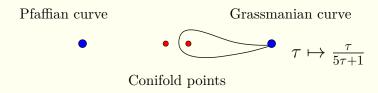


(we use numerical analytic continuation)

GLSM for Pfaffian curve constructed in [Hori,Knapp'14] Gauge group G = U(2), fields $p_{1,...,5}$ in \det^{-1} , $x_{1,...,5}$ in \Box

Periods via localization using [Benini,Cremonesi'12],[Doroud,Gomis,Le Floch,Lee'12] [Jockers,Kumar,Lapan,Morrison,Romo'13]

Moduli space:

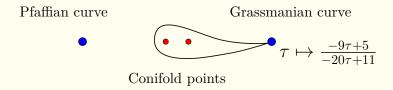


(we use numerical analytic continuation)

GLSM for Pfaffian curve constructed in [Hori,Knapp'14] Gauge group G = U(2), fields $p_1,...,5$ in \det^{-1} , $x_1,...,5$ in \Box

Periods via localization using
[Benini,Cremonesi'12],[Doroud,Gomis,Le Floch,Lee'12]
[Jockers,Kumar,Lapan,Morrison,Romo'13]

Moduli space:

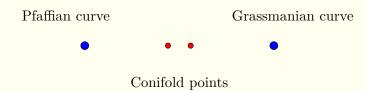


(we use numerical analytic continuation)

GLSM for Pfaffian curve constructed in [Hori,Knapp'14] Gauge group G = U(2), fields $p_{1,...,5}$ in \det^{-1} , $x_{1,...,5}$ in \Box

Periods via localization using
[Benini,Cremonesi'12],[Doroud,Gomis,Le Floch,Lee'12]
[Jockers,Kumar,Lapan,Morrison,Romo'13]

Moduli space:

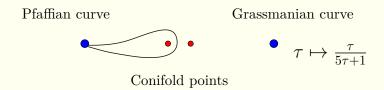


Together monodromies generate $\Gamma_1(5)$!

GLSM for Pfaffian curve constructed in [Hori,Knapp'14] Gauge group G = U(2), fields $p_1,...,5$ in \det^{-1} , $x_1,...,5$ in \Box

Periods via localization using
[Benini,Cremonesi'12],[Doroud,Gomis,Le Floch,Lee'12]
[Jockers,Kumar,Lapan,Morrison,Romo'13]

Moduli space:

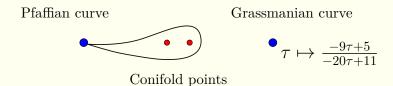


Together monodromies generate $\Gamma_1(5)$!

GLSM for Pfaffian curve constructed in [Hori,Knapp'14] Gauge group G = U(2), fields $p_1,...,5$ in \det^{-1} , $x_1,...,5$ in \Box

Periods via localization using [Benini,Cremonesi'12],[Doroud,Gomis,Le Floch,Lee'12] [Jockers,Kumar,Lapan,Morrison,Romo'13]

Moduli space:



Together monodromies generate $\Gamma_1(5)$!

Let's move on to CY 3-folds!

The monodromies of fiber embed into moduli space of fibration. \rightarrow Can try to apply the modular bootstrap!

But how do we get the such 3-folds?

Strategy: Promote coefficients to sections of bundles on base and construct associated non-Abelian GLSM, use localization to obtain quantum periods (loc. w/ techniques from [Gerhardus,Jockers'15])

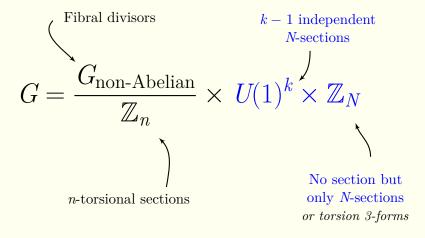
But which bundles lead to smooth fibrations?

+ Puzzle 2:

What do the two geometric phases mean in context of fibrations?

30 second introduction to F-theory

F-theory on CY 3-fold \leftrightarrow 6d supergravity



How do Higgs transitions work in M- and F-theory?

 $U(1) \to \mathbb{Z}_N$ relates elliptic and genus-one fibrations!

Extremal transition from elliptic to genus-one fibration

See e.g. [Morrison'99], [Morrison,Braun'14], [Morrison,Taylor'14]

[Anderson,Garcia-Extebarria,Grimm,Keitel'14],

[Klevers,Mayorga Pena,Oehlmann,Piragua,Reuter'14],

[Mayrhofer,Palti,Till,Weigand'14],

[Cvetic,Donagi,Klevers,Piragua,Poretschkin'15],

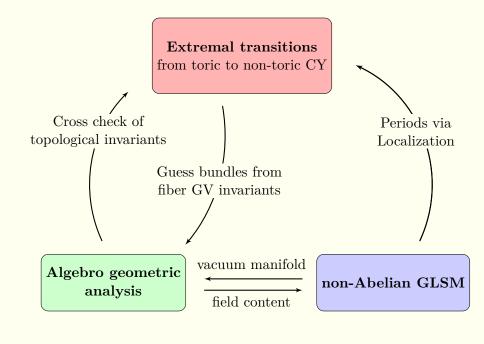
[Oehlmann,T.S.'19]

We engineer elliptic fibers as CICY in Toric varieties

- Use GV-Spectroscopy to obtain generic F-theory spectrum [Oehlmann, T.S.19]
 - \rightarrow Base-independent multiplicities of hypermultiplets
 - \rightarrow F-theory allows Higgs transition to \mathbb{Z}_5
- $\bullet \bullet$ Can construct all smooth fibrations over e.g. \mathbb{P}^2
 - \rightarrow Get Picard-Fuchs systems for 5-sect. fibrations

(all topological invariants can be deduced from GV-inv.)

Bonus: First F-theory vacua w/ charge 5 matter



Let's come back to The Puzzle of the 2 Geometric Phases

Moduli space of genus-1 fibration with 5-sections (Example: genus one fibration w/ 5-sections over \mathbb{P}^2)



Interlude:

A genus one fibration X has associated elliptic fibration the **Jacobian fibration** J(X).

F-theory only depends on J(X), M-theory differs on X and J(X)!

Elements are Geometry X + Action of Jacobian fibration on X $((X, a) \ and \ (X, a^{-1}) \ in \ general \ different \ in \ \coprod(X))$

Pfaffian/Grassmanian phase

 \rightarrow different elements of TS group!

Moreover, $Z_{\text{top.}}$ are related by $\Gamma_0(5)$ transformation

Pfaffian curve

Grassmanian curve

•

Conjecture: $Z_{\text{top.}}$ on all elements of TS group for all N are related by modular transformations.

(actually a bit more subtle)

 $(soon\ published\ [Knapp,Scheidegger,T.S.'21],\ [T.S.'21])$

Pfaffian/Grassmanian phase

 \rightarrow different elements of TS group!

Moreover, $Z_{\text{top.}}$ are related by $\Gamma_0(5)$ transformation

Conjecture: $Z_{\text{top.}}$ on all elements of TS group for all N are related by modular transformations. (actually a bit more subtle)

 $(soon\ published\ [Knapp,Scheidegger,T.S.'21],\ [T.S.'21])$

Summary

- Detailed study of T² fibered CY with 5-sections 23 examples from extr. transitions + non-Abelian GLSMs published soon [Knapp,Scheidegger,T.S.'21]
- Pfaffian and Grassmanian phases derived equivalent and share Jacobian
 → get all 4 non-elliptic geometries in Z₅ TS-group

Related by relative homological projective duality!

- - \rightarrow consequence of Higgs transition in M-/F-theory

More general story published soon [T.S.'21]

Thank you for your attention!