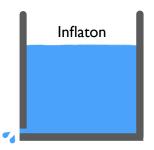
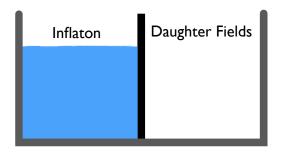
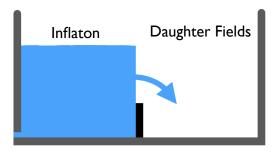
Spillway Preheating an efficient particle production mechanism

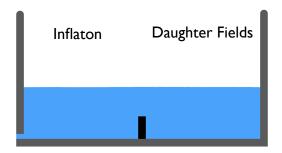

[arXiv:2101.11008] JHEP 05 (2021) 069 with JiJi Fan and Kaloian Lozanov

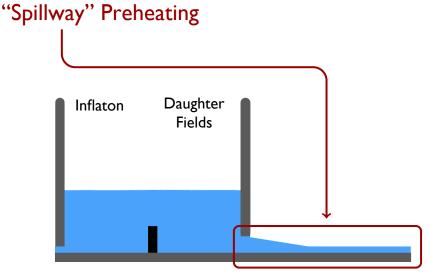
Qianshu Lu



PASCOS 2021, June 14 2021


ullet couple inflaton to other fields \Rightarrow slow perturbative decay


- couple inflaton to other fields ⇒ slow perturbative decay
- Instability driven by inflaton oscillation ⇒ resonant production of daughter fields: "preheating"



- couple inflaton to other fields ⇒ slow perturbative decay
- Instability driven by inflaton oscillation ⇒ resonant production of daughter fields: "preheating"

- couple inflaton to other fields ⇒ slow perturbative decay
- Instability driven by inflaton oscillation ⇒ resonant production of daughter fields: "preheating"
- But backreaction shuts off the instability and stops further transfer of energy.
 - Existing preheating models leave between $\sim 1\%$ to $\sim 50\%$ of residual inflaton energy density $\equiv \rho_{\phi}/\rho_{\rm tot}$ at end of preheating

"Spillway" alleviates backreaction, allows more energy transfer Achieves $\sim 0.01\%$ of residual inflaton energy density Parametric scaling shows potential for further improvement

Outline

- Field content and interactions
- Numerical simulations showing efficient energy transfer
- Parametric scaling of energy transfer efficiency
- Validity of our numerical study

Our Model

$$V = \frac{1}{2}m^2\phi^2 + \frac{M^2}{\Phi_0}\phi\chi^2 + \frac{\lambda}{4}\chi^4 + y\chi\bar{\psi}\psi$$
 Minimum of the potential is quadratic during reheating
$$\lambda \geq \lambda_{\min} = \frac{M^4}{2m^2\Phi_0^2}$$
 to stabilize potential

Our Model

M: mass scale of χ

$$V = \frac{1}{2}m^2\phi^2 + \frac{M^2}{\Phi_0}\phi\chi^2 + \frac{\lambda}{4}\chi^4 + y\chi\bar{\psi}\psi$$

 Φ_0 : initial oscillation amplitude after inflation, ϕ oscillates; time-dependent χ mass

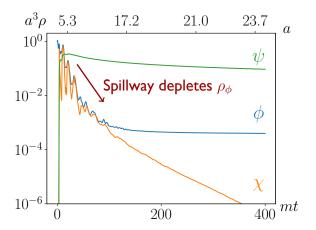
Our Model

$$V = \frac{1}{2}m^2\phi^2 + \frac{M^2}{\Phi_0}\phi\chi^2 + \frac{\lambda}{4}\chi^4 + y\chi\bar{\psi}\psi$$
 "spillway"

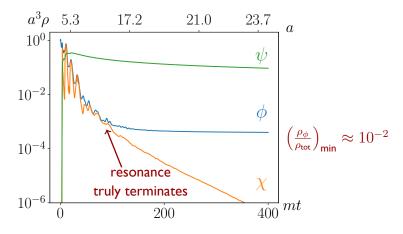
"tachyonic resonance/preheating"

(Dufaux, Felder, Kofman, Peloso, Podolsky '06)

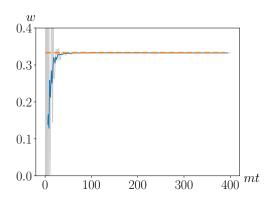
resonant production of χ when $q\equiv \frac{M^2}{m^2}\frac{\Phi}{\Phi_0}>1$


Spillway Improves Depletion of ho_ϕ

Simulation with modified LatticeEasy (Felder, Tkachev '00) fermion modeled by a perfect fluid, method follows (Repond, Rubio '16)

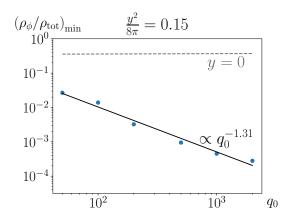


$$m=10^{-6}M_{\rm pl},\; \Phi_0=M_{\rm pl},\; q_0\equiv \frac{M^2}{m^2}=200,\; \frac{y^2}{8\pi}=0.15$$


Spillway Improves Depletion of ho_{ϕ}

Spillway Improves Depletion of ho_ϕ

Improved energy transfer = more radiation-like equation of state



Depletion Efficiency Scales with q_0

In the linear regime, tachyonic resonance happens when

$$q \equiv \frac{M^2}{m^2} \frac{\Phi}{\Phi_0} > 1$$

$$\frac{M^2}{m^2} \equiv q_0$$

$$\text{model parameter} \qquad \frac{\Phi}{\Phi_0} = \sqrt{\frac{m^2 \Phi^2}{m^2 \Phi_0^2}}$$

$$\approx \sqrt{\frac{\rho_\phi}{\rho_{\text{tot}}}}$$

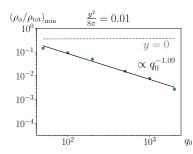
$$\Rightarrow \left(\frac{\rho_\phi}{\rho_{\text{tot}}}\right)_{\min} \propto q_0^{-2}$$

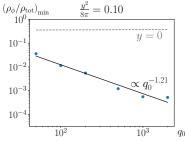
Numerical Study Confirms Scaling Law

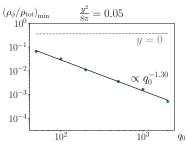
Similar scaling law was found for $\frac{y^2}{8\pi}=0.01, 0.05, 0.10$

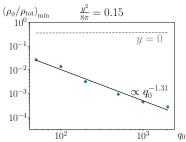
Validity of the Numerical Study

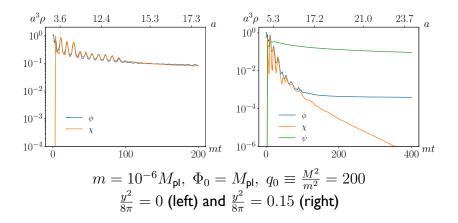
For the numerical study to hold,


- The scalar fields need to have large occupation numbers to justify use of classical equations of motion
- Fermion backreaction on the scalar potential needs to be negligible
- ϕ perturbative decay cannot be significant during the time scale of our simulations


To satisfy all the constraints, need to couple N_f fermions to χ , where $N_f \gtrsim 1/\lambda$, and $y^2 \lesssim N_f \lambda$.


Conclusion

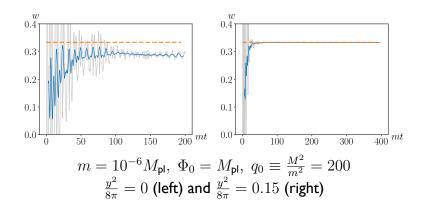

- Energy transfer in existing models of preheating are bottlenecked by backreaction from daughter fields
- \bullet Spillway preheating alleviates this backreaction. We were able to realize transfer of 99.99% of inflaton energy density, more efficient than existing models.
- The residual inflaton energy density scales as q_0^{-x} , $x\sim 1$, showing potential for even better energy transfer depending on model parameters.
- Effects on cosmological observables, such as inflationary observables and gravitational waves?
- Applications outside reheating?

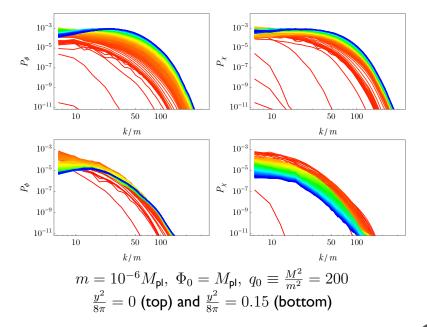

Backup slides

Details of Numerical Simulations

- LatticeEasy modified to use Runge-Kutta 4th order integrator
- \bullet Fermion modeled as a radiation-like homogeneous fluid with energy density ρ_{ψ}
- Time evolution of ρ_{ψ} derived by $\Delta_{\mu}T^{\mu0}=0$
- $\dot{\rho}_{\psi} + 4H\rho_{\psi} \langle \Gamma_{\chi} \dot{\chi}^2 \rangle = 0$
- $\ddot{\chi} + 3H\dot{\chi} \frac{1}{a^2}\nabla^2\chi + \frac{M^2}{f}\phi\chi + \lambda\chi^3 + \Gamma_\chi\dot{\chi} = 0$

•
$$\Gamma_{\chi} = \frac{y^2}{8\pi} m_{\chi}(\phi) = \begin{cases} \frac{y^2}{8\pi} \sqrt{\frac{M^2}{f} \phi}, & \phi > 0\\ \frac{y^2}{8\pi} \sqrt{\frac{2M^2}{f} |\phi|}, & \phi < 0. \end{cases}$$


$$V = \frac{1}{2} m^2 \phi^2 + \frac{M^2}{\Phi_2} \phi \chi^2 + \frac{\lambda}{4} \chi^4 + y \chi \bar{\psi} \psi \tag{I}$$


Validity of the Numerical Study

For the numerical study to hold,

- The scalar fields need to have large occupation numbers to justify use of classical equations of motion
- Fermion backreaction on the scalar potential needs to be negligible
 - $\circ~$ Fermion cannot have a large mass from $\langle\chi\rangle\,\bar\psi\psi$
 - \circ Tadpole term $\chi\left\langle ar{\psi}\psi
 ight
 angle$ cannot be large compared to $\phi\chi^2$ term
- \bullet ϕ perturbative decay cannot be significant during the time scale of our simulations
- Need to avoid Pauli blocking: fermions cannot have large occupations numbers

To satisfy all the constraints, need to couple N_f fermions to χ , where $N_f\gg 1$, and $y^2\lesssim N_f\lambda$.

