## **Neutron portal**

# Maxim Pospelov U of Minnesota and FTPI

#### 3 papers this year

- D. McKeen, MP, 2003.02270 (lifetime of H atom, to appear in PRD)
- D. McKeen, MP, N. Raj, 2006.15140 (H decaying to interacting particles, PRL)
  - D. McKeen, MP, N. Raj, 2012.09865 (cosmological constraints)
  - D. McKeen, MP, N. Raj, 2105.09951 (NS heating constraints)





#### Plan

- 1. Introduction. Broad look at dark sectors.
- 2. Neutron portal: a window into interesting phenomenology.
- 3. What happens when proton is stable and Hydrogen atom is not.
- 4. Select cosmological bounds.
- 5. Neutron star bounds on mirror neutrons.
- 6. Conclusions.

### Dark Sectors = light BSM states

Typical BSM model-independent approach is to include all possible BSM operators once very heavy new physics is integrated out plus all possible light states explicitly

$$L_{SM+BSM} = -m_H^2 (H^+_{SM} H_{SM}) + \text{all dim 4 terms } (A_{SM}, \psi_{SM}, H_{SM}) + (W.\text{coeff.} / \Lambda^2) \times \text{Dim 6 etc } (A_{SM}, \psi_{SM}, H_{SM}) + \dots$$
all lowest dimension portals  $(A_{SM}, \psi_{SM}, H, A_{DS}, \psi_{DS}, H_{DS}) \times \text{portal couplings}$ 

+ dark sector interactions  $(A_{DS}, \psi_{DS}, H_{DS})$ 

SM = Standard Model

DS – Dark Sector

#### Classes of portal interactions

Let us *classify* possible connections between Dark sector and SM

 $H^+H$  ( $\lambda S^2 + AS$ ) Higgs-singlet scalar interactions (scalar portal)

 $B_{\mu\nu}V_{\mu\nu}$  "Kinetic mixing" with additional U(1) group

(becomes a specific example of  $J_{\mu}^{i} A_{\mu}$  extension)

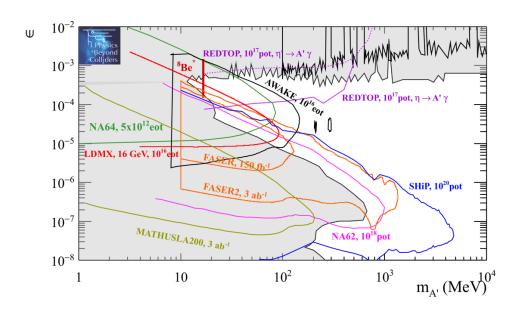
*LH N* neutrino Yukawa coupling, *N* – RH neutrino

 $J_{\mu}^{i} A_{\mu}$  requires gauge invariance and anomaly cancellation

It is very likely that the observed neutrino masses indicate that Nature may have used the *LHN* portal...

Dim>4

 $J_{\mu}^{A} \partial_{\mu} a /f$  axionic portal


$$\mathcal{L}_{\text{mediation}} = \sum_{k,l,n}^{k+l=n+4} \frac{\mathcal{O}_{\text{med}}^{(k)} \mathcal{O}_{\text{SM}}^{(l)}}{\Lambda^n},$$

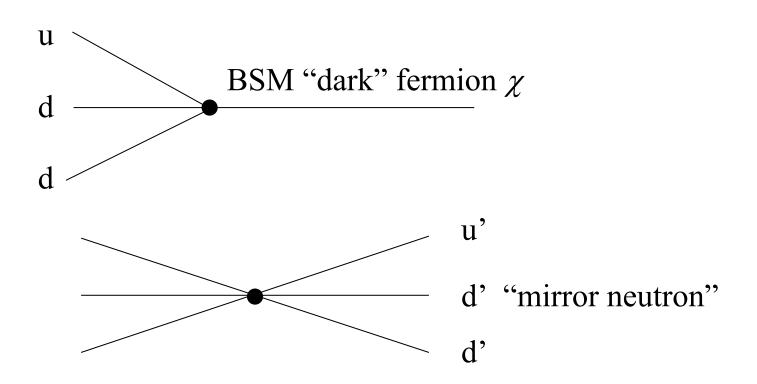
## A simple model of dark sector

$$\mathcal{L} = \mathcal{L}_{\psi,A} + \mathcal{L}_{\chi,A'} - \frac{\epsilon}{2} F_{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2.$$

$$\mathcal{L}_{\psi,A} = -\frac{1}{4} F_{\mu\nu}^2 + \bar{\psi} [\gamma_{\mu} (i\partial_{\mu} - eA_{\mu}) - m_{\psi}] \psi$$

$$\mathcal{L}_{\chi,A'} = -\frac{1}{4} (F'_{\mu\nu})^2 + \bar{\chi} [\gamma_{\mu} (i\partial_{\mu} - g'A'_{\mu}) - m_{\chi}] \chi,$$

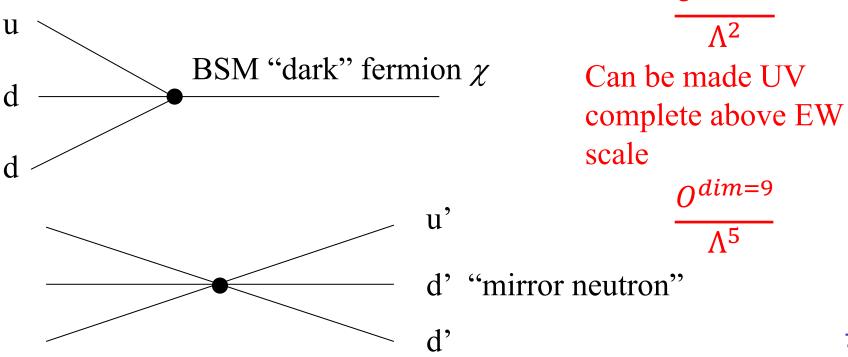



Plot from recent Physics Beyond Colliders review

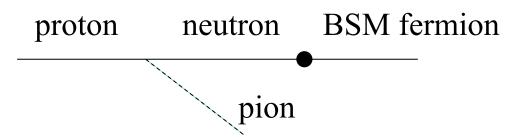
 Investigation of dark sector parameter space is an active field of research at the moment

## A similar model for a baryon portal?




 Due to a composite nature of nucleons, this is a higherdimensional operator




## A similar model for a baryon portal?

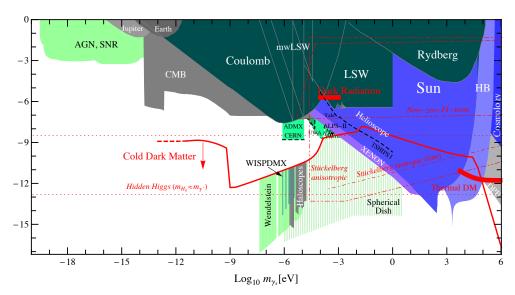
## Neutron BSM fermion

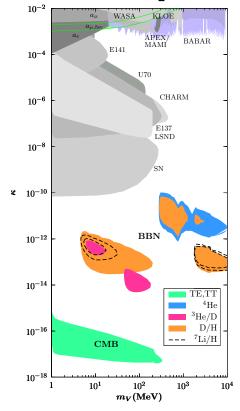
 Due to a composite nature of nucleons, this is a higherdimensional operator

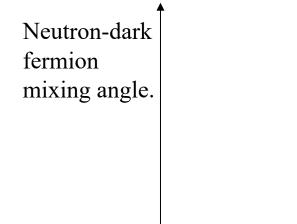


## Strong constraints at m<sub>y</sub> << m<sub>n</sub>




- When  $m_{\gamma} \ll m_n$ , strong constraints from proton (nucleon) decay apply.
- If  $m_{\gamma} << m_n$  it is not obvious if a model is constrained at all.
- When the mass splitting becomes smaller than O(1.8 MeV),  $\Delta m =$  $m_n$  -  $m_{\gamma}$  < 1.8 MeV, the nuclei are stable but neutrons are not. Expect modifications to the physics of free neutrons.
- When the mass splitting is sub-eV, i.e.  $\chi$  is a mirror neutron, quantum oscillations are expected.
- Investigate the parameter space, identify most interesting physics!


## Motivation for studying neutron portal


- *Economical new physics*, with implications for high- and low-energy physics experiments
- "Shared" baryon number provides interesting possibilities for baryogenesis.
- A new fermion  $\chi$  maybe stable, in which case it is an *appealing DM* candidate, and a mass close to  $m_n$  maybe also behind  $\rho_{DM} \sim \rho_{baryon}$
- New effects in cosmology where neutrons are crucial: *neutron stars*, *Big Bang Nucleosynthesis*.
- Novel effects in neutron physics: new neutron decay channels, oscillations into dark states, oscillations back (regeneration)

### Motivation for studying neutron portal

• Dark photons (e.g.) are well studied





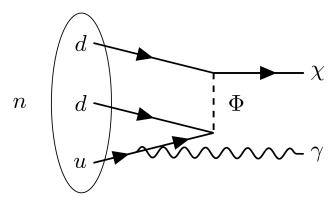


Mass of dark fermion

## Possibility to alter the neutron lifetime

Grinstein, Fornal 2018; Berezhiani 2018 + earlier papers

Speculates whether there is an extra decay channels for neutrons


$$\tau_n^{\text{bottle}} = 879.6 \pm 0.6 \text{ s}.$$

$$\tau_n^{\rm beam} = 888.0 \pm 2.0 \,\mathrm{s}$$
.

Beam experiments register protons in the final state. Will miss an "exotic" decay mode. This is why bottle experiments see shorter lifetime (!)

#### Neutron portal and its UV completions

Grinstein, Fornal 2018, PRL

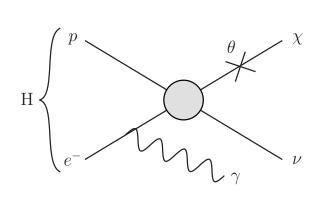


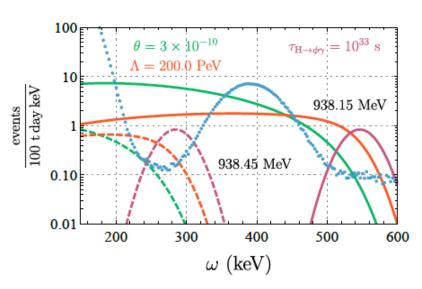
- In this example, the scale of the UV completion (i.e. the mass of  $\Phi$  scalar) can be made in the 10's of TeV's, and far outside the current collider reach.
- Neutron lifetime issues can be addressed [maybe]
- It makes total sense to study exotic channels for neutron decay.
- Very quickly, new gamma and electron-positron decay channels were investigated! (Tang et al, 2018, 1802.01595)

### Simplest low-energy model

• A tantalizing simple model consists of one dark fermion  $\chi$ .

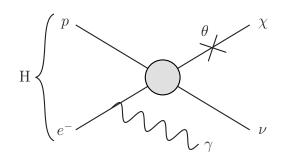
$$\mathcal{L} = \bar{n} (i \not \partial - m_n) n + \bar{\chi} (i \not \partial - m_\chi) \chi - \delta (\bar{n} \chi + \bar{\chi} n)$$

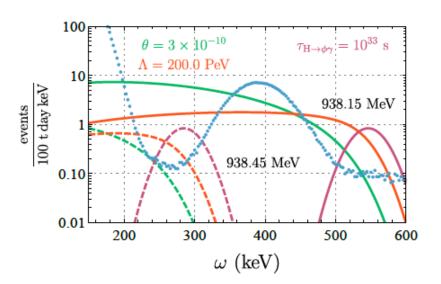

- Two-parameter model: mass-mixing angle  $\{\Delta m, \theta = \delta/\Delta m\}$
- If we want to "influence" neutron lifetime, but have no other dramatic consequences,  $m_{\gamma}$  has to be in a narrow ~ 1.8 MeV range.


$$\operatorname{Br}_{n \to \chi \gamma} \simeq 0.02 \left( \frac{\theta}{10^{-9}} \right)^2 \left( \frac{\Delta m}{\text{MeV}} \right)^3$$

- Roughly 1% Br is interesting for the neutron lifetime controversy
- Astrophysics provide strong constraints on this possibility (McKeen, Nelson, Reddy, Zhou; Baym et al, Motta et al, 2018). Mass-radius relation imply some mechanism that generates extra pressure in the dark sector → self interaction etc (e.g. Cline, Cornell 2018)

# Proton and nuclei maybe stable by H-atom can decay


- If  $m_{\chi} < m_p + m_e$ , there is a possibility for H  $\rightarrow \chi + \nu$  decay.
- It looks like a "completely dark" decay.
- Radiative hydrogen decay is discoverable, however, via the energy release associated with  $\sim 100$ 's keV photon.






Radiative decays of H can be probed down to  $\sim 50$  keV energy release through Borexino data on "e decays", and by Borexino test facility results from the 1990s

- McKeen and MP, this year
- Large hydrocarbon-containing detectors are being used for the solar neutrino studies: Borexino, SNO+, etc. Lots of H.



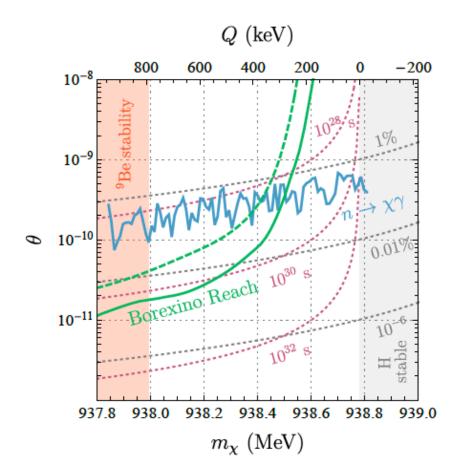


■ Radiative decays of H can be probed down to ~ 50 keV energy release through Borexino data on "e decays", and by Borexino test<sub>5</sub> facility results from the 1990s

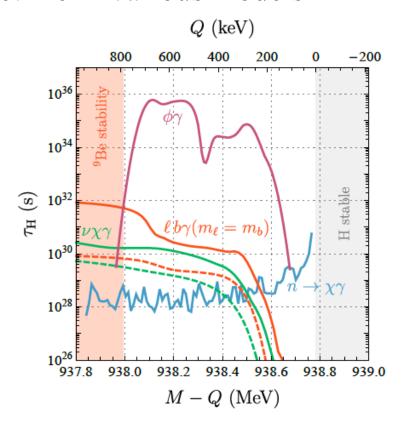
Radiative branching in the mixing model:

$$\Gamma_{H \to \nu \chi} = \frac{1}{\tau_H} \simeq |\psi(0)|^2 \frac{G_F^2 |V_{ud}|^2 \theta^2}{2\pi} \left(1 + 3g_A^2\right) Q^2$$
$$= \frac{1}{10^{27} \text{ s}} \left(\frac{\theta}{10^{-9}}\right)^2 \left(\frac{Q}{m_e}\right)^2,$$

Photon spectrum


$$\frac{d}{d\omega} \operatorname{Br}_{H \to \nu \chi \gamma} = \frac{\alpha}{\pi} \frac{\omega}{m_e^2} \left( 1 - \frac{\omega}{Q} \right)^2 + \mathcal{O}\left(\frac{m_e}{m_p}\right)$$

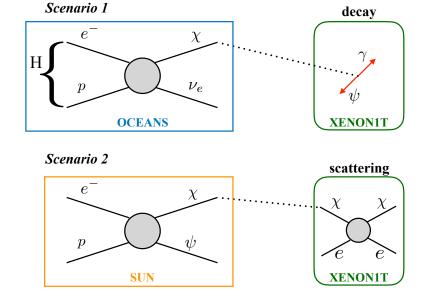
$$\simeq \frac{5 \times 10^{-6}}{\text{keV}} \frac{\omega}{m_e} \left( 1 - \frac{\omega}{Q} \right)^2.$$


Total radiative branching

$$\operatorname{Br}_{H\to\nu\chi\gamma}\simeq\frac{\alpha}{12\pi}\frac{Q^2}{m_e^2}\simeq 2\times 10^{-4}\left(\frac{Q}{m_e}\right)^2.$$

- McKeen and MP, 2003.02270
- Adding constraints on mass-mixing parameter space.




- McKeen and MP, 2003.02270
- Limits on H lifetime in various models



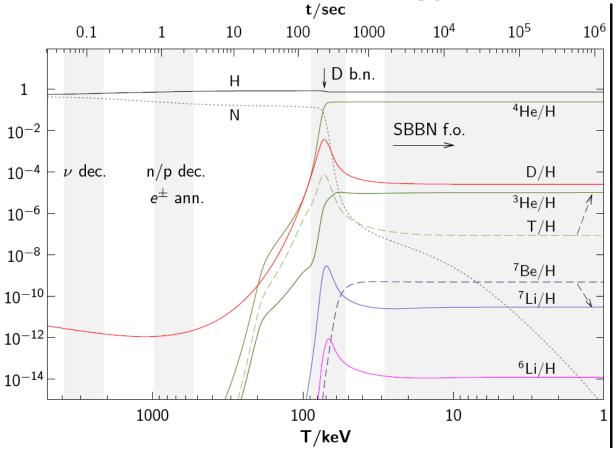
- Typical constraints are at  $\sim 10^{30}$  seconds level.
- This is ~ several orders of magnitude less tight than p decay limits

# Could H decay to a more interacting species than neutrino + χ?

$$\begin{split} &\Phi_{\rm DM\ decay}^{\rm global+MW} \sim 10^4\ {\rm cm}^{-2} {\rm s}^{-1} \bigg(\frac{10\,\tau_{\rm U}}{\tau_{\rm DM}}\bigg) \bigg(\frac{1\,{\rm GeV}}{m_{\rm DM}}\bigg)\ , \\ &\Phi_{\rm proton\ decay}^{\odot} \sim 10^{-8}\ {\rm cm}^{-2} {\rm s}^{-1} \bigg(\frac{10^{30}\ {\rm yr}}{\tau_p}\bigg)\ , \\ &\Phi_{\rm H\ decay}^{\odot} \sim 10^3\ {\rm cm}^{-2} {\rm s}^{-1} \bigg(\frac{10^{28}\ {\rm s}}{\tau_{\rm H}}\bigg)\ , \\ &\Phi_{\rm H\ decay}^{\oplus} \sim 1\ {\rm cm}^{-2} {\rm s}^{-1} \bigg(\frac{10^{28}\ {\rm s}}{\tau_{\rm H}}\bigg)\ . \end{split}$$



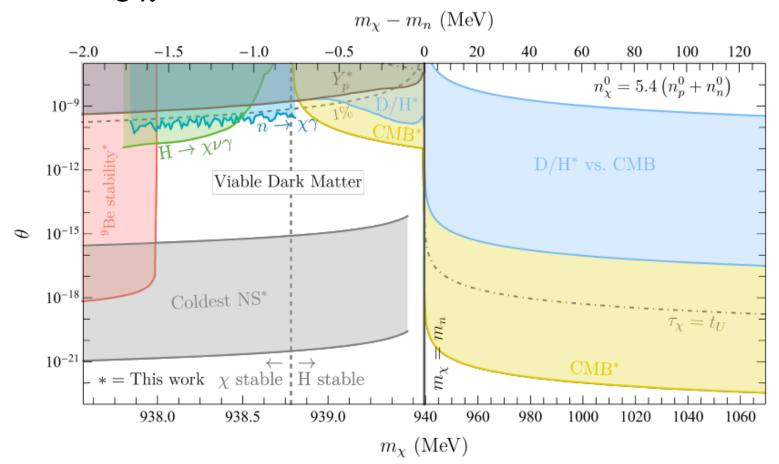
We (McKeen, MP, Raj)
have considered two
speculative scenarios vs
Xenon1T electron excess,
that could conceivably
come from this exotic
source


#### Cosmological bounds

(McKeen, Raj, MP, 2012.09865)

(back to the minimal model)

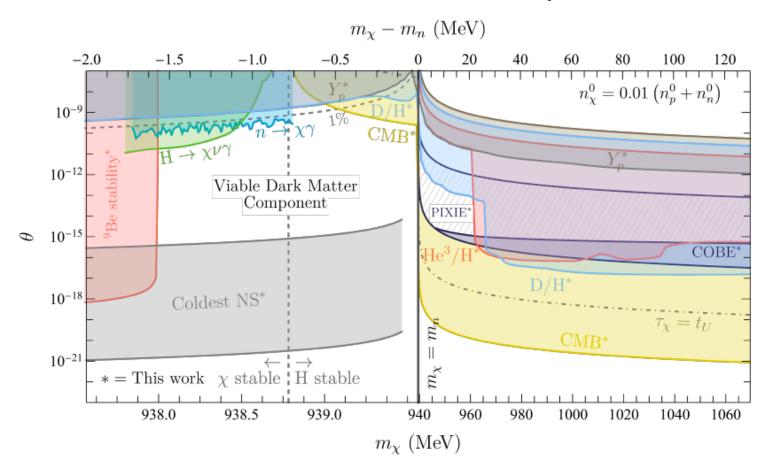
- Early Universe can lead to new bounds.
- Equilibration  $n \leftarrow \rightarrow \chi$  at early times is inevitable.
- Subsequent decay dumps energy via  $n \rightarrow \chi + \gamma$  or  $\chi \rightarrow n + \gamma$ . (CMB and BBN implications)
- Extra neutrons can be supplied at late times (e.g.  $\sim 10^4$  seconds) affecting BBN outcomes.


#### **BBN** chronology



- Late stages of BBN occur in "neutron starvation" regime. Any new addition of n will be reflected in elevated D/H.
- "Dark neutrons" can be converted to normal neutrons via  $\chi+\gamma\rightarrow$ n. This will work well for smaller mass splittings!

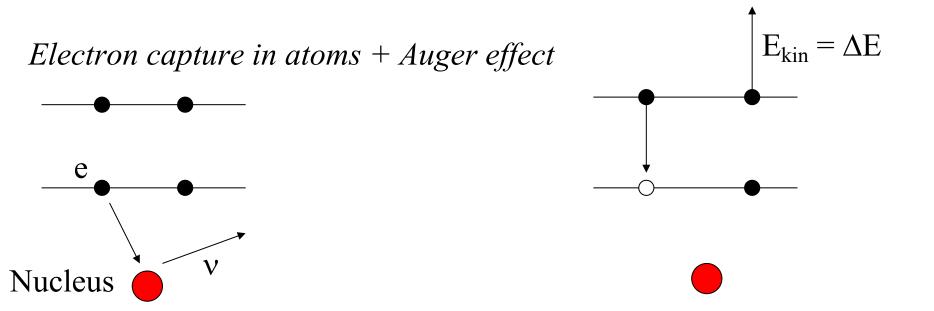
### Cosmological bounds


Assuming  $\chi$  abundance = DM abundance

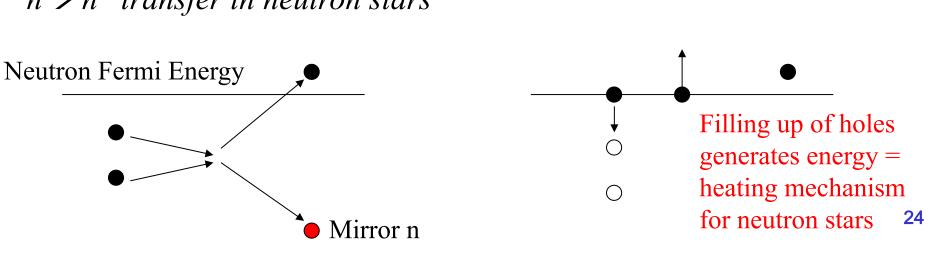


- Small sliver of parameter space still exists for neutron lifetime!
- CMB limits on the left come from  $\chi \rightarrow p + e + v$  decays at late times.

### Cosmological bounds

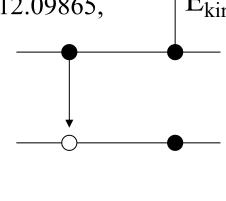

Same for small abundance, 1% from the baryon abundance.

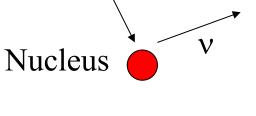



• NS constraints at small angle follow from  $n \rightarrow \chi$  conversion and do not rely on chi being dark matter

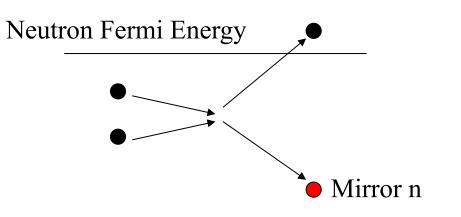
23

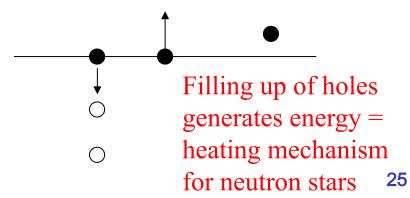
#### **Energy generation mechanism in NS**





 $n \rightarrow n'$  transfer in neutron stars




### **Energy generation mechanism in NS**


This interesting mechanism of heat generation was pointed out in Goldman, Mohapatra, Nussinov, 19011.07077, PRD;
Berezhiani et al. 22012.15233; McKeen, MP, Raj, 2012.09865, 2105.09951





 $n \rightarrow n$ ' transfer in neutron stars





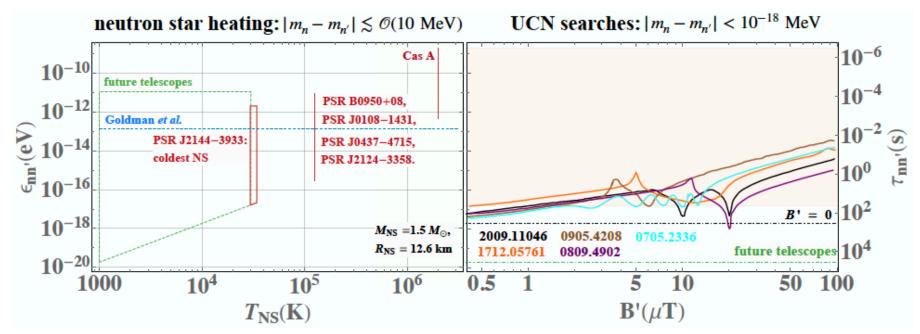
#### Mirror neutrons and old neutron stars

Taking a simply Hamiltonian as before,

$$H = \begin{pmatrix} m_n + \Delta E & \epsilon_{nn'} \\ \epsilon_{nn'} & m_{n'} \end{pmatrix}$$

we evaluate  $n \rightarrow n$ ' conversion. ( $\Delta E$  comes from matter effects in NS). Taking into account nn->nn' and np ->n'p processes, while using

$$\sigma_{nn\to nn} \simeq \frac{1}{4} \times \frac{16\pi}{m_N^2 v^2} \sin^2 \delta_S,$$
  
$$\sigma_{np\to np} \simeq \frac{1}{4} \times \frac{16\pi}{m_N^2 v^2} \left(\sin^2 \delta_S + 3\sin^2 \delta_T\right)$$


as input, we derive numerically the heating rate that scales as

$$\Gamma_{n'} = \frac{1}{1.2 \times 10^{11} \text{ yr}} \left( \frac{\epsilon_{nn'}}{10^{-17} \text{ eV}} \right)^2 \left( \frac{n_{\text{nuc}}}{0.3 \text{ fm}^{-3}} \right)$$

In the oldest NS, when surface emission from photons dominates, additional heating mechanism generates *minimum* temperature

$$T_{\min}^4 4\pi R^2 \sim O(1)$$
 number  $\times \Gamma_n$ ,  $E_F$ .

#### Mirror neutrons and old neutron stars



From McKeen, MP, Raj, 2105.09951

- The coldest pulsar, J2144-3933, T < 3000K implies the bound for the off-diagonal matrix element  $\varepsilon_{nn}$  =  $\delta$  < 10<sup>-17</sup> eV.
- Above 10<sup>-9</sup> eV there are no limits from NS heating happens too fast.
- Very competitive with lab limits. Can further improve if colder  $T_{NS}$  found

#### Conclusions

- 1. Neutron portal is an example of "economical new physics" at low energy. (However, unlike dark photon or neutrino portal, this is a higher-dimensional operator.) *Needs to be explored!*
- 2. We set a number of new limits on the "minimal model" in that context: through radiative H-decays and cosmology. New constraints "almost entirely" exclude model of  $n \rightarrow \chi \gamma$  correcting neutron lifetime.
- 3. If H can decay to  $\chi$ , typically we get  $\tau_H > 10^{30}$  seconds.
- 4.  $n \rightarrow n$ ' conversion offers an interesting heating mechanism for old NS. Taking at face value the constraint of  $T_{NS} < 4000$  K for the oldest pulsar results in a very restrictive bound for  $\delta < 10^{-17}$  eV.